Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 127: 155480, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484462

RESUMEN

BACKGROUND: Intervertebral disc degeneration (IVDD) is an essential cause of low back pain (LBP), the incidence of which has risen in recent years and is progressively younger, but treatment options are limited, placing a serious economic burden on society. Sanbi decoction (SBD) is an important classical formula for the treatment of IVDD, which can significantly improve patients' symptoms and is a promising alternative therapy. PURPOSE: The aim of this study is to investigate the safety and efficacy of SBD in the treatment of IVDD and to explore the underlying mechanisms by using an integrated analytical approach of microbiomics and serum metabolomics, as well as by using molecular biology. METHODS: A rat IVDD puncture model was established and treated by gavage with different concentrations of SBD, and clean faeces, serum, liver, kidney, and intervertebral disc (IVD) were collected after 4 weeks. We assessed the safety by liver and kidney weighing, functional tests and tissue staining, the expression of tumor necrosis factor-alpha (TNF-ɑ), interleukin 1ß (IL-1ß) and interleukin 6 (IL-6) inflammatory factors in serum was detected by ELISA kits, and X-ray test, magnetic resonance imaging (MRI) examination, immunohistochemistry (IHC), western blotting (WB), hematoxylin-eosin (HE) staining and safranin O-fast green (SO/FG) staining were used to assess the efficacy. Finally, we performed 16S rRNA sequencing analysis on the faeces of different groups and untargeted metabolomics on serum and analyzed the association between them. RESULTS: SBD can effectively reduce the inflammatory response, regulate the metabolic balance of extracellular matrix (ECM), improve symptoms, and restore IVD function. In addition, SBD can significantly improve the diversity of intestinal flora and maintain the balance. At the phylum level, SBD greatly increased the relative abundance of Patescibacteria and Actinobacteriota and decreased the relative abundance of Bacteroidota. At the genus level, SBD significantly increased the relative abundance of Clostridia_UCG-014, Enterorhabdus, and Adlercreutzia, and decreased the relative abundance of Ruminococcaceae_UCG-005 (p < 0.05). Untargeted metabolomics indicated that SBD significantly improved serum metabolites and altered serum expression of 4alpha-phorbol 12,13-didecanoate (4alphaPDD), euscaphic acid (EA), alpha-muricholic acid (α-MCA), 5-hydroxyindoleacetic acid (5-HIAA), and kynurenine (Kyn) (p < 0.05), and the metabolic pathways were mainly lipid metabolism and amino acid metabolism. CONCLUSIONS: This study demonstrated that SBD can extensively regulate intestinal flora and serum metabolic homeostasis to reduce inflammatory response, inhibit the degradation of ECM, restore IVD height and water content to achieve apparent therapeutic effect for IVDD.


Asunto(s)
Microbioma Gastrointestinal , Degeneración del Disco Intervertebral , Disco Intervertebral , Humanos , Ratas , Animales , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , ARN Ribosómico 16S , Disco Intervertebral/metabolismo , Disco Intervertebral/patología , Homeostasis
2.
Commun Biol ; 7(1): 325, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486093

RESUMEN

Regulating metabolic disorders has become a promising focus in treating intervertebral disc degeneration (IDD). A few drugs regulating metabolism, such as atorvastatin, metformin, and melatonin, show positive effects in treating IDD. Glutamine participates in multiple metabolic processes, including glutaminolysis and glycolysis; however, its impact on IDD is unclear. The current study reveals that glutamine levels are decreased in severely degenerated human nucleus pulposus (NP) tissues and aging Sprague-Dawley (SD) rat nucleus pulposus tissues, while lactate accumulation and lactylation are increased. Supplementary glutamine suppresses glycolysis and reduces lactate production, which downregulates adenosine-5'-monophosphate-activated protein kinase α (AMPKα) lactylation and upregulates AMPKα phosphorylation. Moreover, glutamine treatment reduces NP cell senescence and enhances autophagy and matrix synthesis via inhibition of glycolysis and AMPK lactylation, and glycolysis inhibition suppresses lactylation. Our results indicate that glutamine could prevent IDD by glycolysis inhibition-decreased AMPKα lactylation, which promotes autophagy and suppresses NP cell senescence.


Asunto(s)
Degeneración del Disco Intervertebral , Ratas , Animales , Humanos , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Ratas Sprague-Dawley , Glutamina , Proteínas Quinasas Activadas por AMP , Autofagia , Lactatos/farmacología , Lactatos/uso terapéutico
3.
Int Immunopharmacol ; 129: 111596, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38301412

RESUMEN

Intervertebral disc degeneration (IDD) stands for the most frequent cause of low back pain. Finding a cure for this disease is an important challenge as current conservative treatments and surgical interventions fail to bring a solution to this disease. Ozone therapy (O2-O3) has yielded outstanding outcomes in intervertebral disc pathology. The ozone's efficacy in the treatment of IDD remains unconfirmed. This study aimed to assess the effectiveness of intradiscal ozone injection on IDD induced in a rat. Effects of ozone therapy on the viability of nucleus pulposus cells were evaluated by CCK-8 assays. Macrophage immunoreactivity was detected by immunohistochemical, the expression of collagen type II was evaluated by western blot, and measurement of oxidative stress parameters was realized. Molecular docking studies were carried out in order to predict the interaction formed between O3 and the target enzymes, on the one hand, O3 with PI3K and, on the other hand, O3 with COX-2. IRM, X-ray, hematoxylin-eosin, and bleu alcian staining were realized to assess the therapeutic impacts of ozone in the puncture-induced rat model of IDD. In vivo, O3 ameliorated the IDD in the early stage of this disease. It was also displayed in molecular docking that O3 might bind to PI3K to suppress the PI3K/Akt/NF-κB signaling pathway. This study's results show that the O3 should be administered at the low grade of IDD and at an early stage because it cannot restore the advanced inflammatory alteration of the IVD. Our results corroborated also that O3 inhibits the progression of IDD via the PI3K/Akt/NF-κB signaling pathway, which supports O3 as an effective therapeutic option for treating IDD.


Asunto(s)
Degeneración del Disco Intervertebral , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Simulación del Acoplamiento Molecular , Transducción de Señal , Estrés Oxidativo
4.
Drug Des Devel Ther ; 18: 493-512, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38405577

RESUMEN

Background: Intervertebral disc degeneration (IVDD) is a pathophysiological process that leads to severe back pain or neurological deficits. The Bushen Huoxue Formula (BSHXF) is a traditional herbal remedy widely used to treat diseases related to IVDD. However, its pharmacological mechanism needs further exploration. Objective: This study aimed to elucidate the mechanisms through which BSHXF treats IVDD-related diseases by integrating metabolomics with network pharmacology. Methods: Network pharmacology was utilized to identify potential targets of BSHXF against IVDD. Additionally, an animal model of needle puncture-induced disc degeneration was established to assess the effect of BSHXF. Mice were randomly assigned to the sham group, model group, and BSHXF group. Various techniques, including PCR, CCK-8 assay, MRI, histological examinations, and immunohistochemical analyses, were employed to evaluate degenerative and oxidative stress conditions in mouse disc tissue and cultured nucleus pulposus (NP) cells. UHPLC-HRMS/MS was used to differential distinct metabolites in the disc tissue from different groups, and MetaboAnalyst 5.0 was employed to enrich the metabolic pathways. Results: Through network pharmacology, 15 core proteins were identified through protein-protein interaction (PPI) network construction. Functional enrichment analysis highlighted the critical role of BSHXF in addressing IVDD by influencing the response to oxidative stress. Furthermore, experimental evidence demonstrated that BSHXF significantly improved the pathological progression of IVDD and increased oxidative stress markers SOD-1 and GPX1, both in the disc degeneration model and cultured NP cells. Metabolomics identified differential metabolites among the three groups, revealing 15 metabolic pathways between the sham and model groups, and 13 metabolic pathways enriched between the model and BSHXF groups. Conclusion: This study, integrating network pharmacology and metabolomics, suggests that BSHXF can alleviate IVDD progression by modulating oxidative stress. Key metabolic pathways associated with BSHXF-mediated reduction of oxidative stress include the citrate cycle, cysteine and methionine metabolism, alanine, aspartate and glutamate metabolism, glycine, serine and threonine metabolism, D-glutamine and D-glutamate metabolism, glutathione metabolism, and tryptophan metabolism. While this research demonstrates the therapeutic potential of BSHXF in reducing oxidative stress levels in IVDD, further research is needed to thoroughly understand its underlying mechanisms.


Asunto(s)
Medicamentos Herbarios Chinos , Degeneración del Disco Intervertebral , Núcleo Pulposo , Ratas , Ratones , Animales , Degeneración del Disco Intervertebral/metabolismo , Ratas Sprague-Dawley , Farmacología en Red , Núcleo Pulposo/metabolismo
5.
J Orthop Res ; 42(6): 1314-1325, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38225869

RESUMEN

Known to be involved in bone-cartilage metabolism, Vitamin D (VD) may play a role in human's disc pathophysiology. Given that postmenopausal women are prone to suffer VD deficiency and intervertebral disc degeneration (IDD), this study is intended to investigate whether VD can delay IDD in ovariectomized rats by improving bone microstructure and antioxidant stress. Female Sprague-Dawley rats were randomly allocated into four groups: sham, oophorectomy (OVX)+VD deficiency (VDD), OVX, and OVX+VD supplementation (VDS). In vivo, after a 6-month intervention, imaging and pathology slice examinations showed that IDD induced by OVX was significantly alleviated in VDS and deteriorated by VDD. The expressions of aggrecan and Collagen II in intervertebral disc were reduced by OVX and VDD, and elevated by VDS. Compared with the OVX+VDD and OVX group vertebrae, OVX+VDS group vertebrae showed significantly improved endplate porosity and lumbar bone mineral density with increased percent bone volume and trabecular thickness. Furthermore, 1α,25(OH)2D3 restored the redox balance (total antioxidant capacity, ratio of oxidized glutathione/glutathione) in the disc. The cocultivation of 1α,25(OH)2D3 and nucleus pulposus cells (NPCs) was conducted to observe its potential ability to resist excessive oxidative stress damage induced by H2O2. In vitro experiments revealed that 1α,25(OH)2D3 reduced the senescence, apoptosis, and extracellular matrix degradation induced by H2O2 in NPCs. In conclusion, VDS exhibits protective effects in OVX-induced IDD, partly by regulating the redox balance and preserving the microstructure of endplate. This finding provides a new idea for the prevention and treatment of IDD.


Asunto(s)
Degeneración del Disco Intervertebral , Ovariectomía , Ratas Sprague-Dawley , Vitamina D , Animales , Femenino , Degeneración del Disco Intervertebral/prevención & control , Degeneración del Disco Intervertebral/metabolismo , Vitamina D/uso terapéutico , Vitamina D/farmacología , Densidad Ósea/efectos de los fármacos , Deficiencia de Vitamina D/complicaciones , Ratas , Agrecanos/metabolismo , Estrés Oxidativo/efectos de los fármacos
6.
Aging (Albany NY) ; 16(2): 1145-1160, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38284902

RESUMEN

Lumbar disc degeneration (LDD) is a prevalent clinical spinal disease characterized by the calcification and degeneration of the cartilage endplate (CEP), which significantly reduces nutrient supply to the intervertebral disc. Traditional Chinese medicine offers a conservative and effective approach for treating LDD. We aimed to investigate the molecular mechanisms underlying the therapeutic effects of Sesamin in LDD treatment. Transcriptome sequencing was used to analyze the effect of Sesamin on LPS-induced ATDC5. We explored the role of BECN2, a target gene of Sesamin, in attenuating LPS-induced degeneration of ATDC5 cells. Our results revealed the identification of 117 differentially expressed genes (DEGs), with 54 up-regulated and 63 down-regulated genes. Notably, Sesamin significantly increased the expression of BECN2 in LPS-induced ATDC5 cell degeneration. Overexpressed BECN2 enhanced cell viability and inhibited cell apoptosis in LPS-induced ATDC5 cells, while BECN2 knockdown reduced cell viability and increased apoptosis. Furthermore, BECN2 played a crucial role in attenuating chondrocyte degeneration by modulating autophagy and inflammation. Specifically, BECN2 suppressed autophagy by reducing the expression of ATG14, VPS34, and GASP1, and alleviated the inflammatory response by decreasing the expression of inflammasome proteins NLRP3, NLRC4, NLRP1, and AIM2. In vivo experiments further supported the beneficial effects of Sesamin in mitigating LDD. This study provides novel insights into the potential molecular mechanism of Sesamin in treating LDD, highlighting its ability to mediate autophagy and inflammation inhibition via targeting the BECN2. This study provides a new therapeutic strategy for the treatment of LDD, as well as a potential molecular target for LDD.


Asunto(s)
Dioxoles , Degeneración del Disco Intervertebral , Péptidos y Proteínas de Señalización Intracelular , Lignanos , Autofagia , Cartílago/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipopolisacáridos/farmacología , Animales , Ratones
7.
BMC Musculoskelet Disord ; 24(1): 772, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784117

RESUMEN

BACKGROUND: Through bioinformatics analysis to identify the hub genes of Intervertebral disc degeneration (IVDD) associated with basement membranes (BMs) and find out the potential molecular targets and drugs for BMs-related annulus fibrosus (AF) degeneration based on bioinformatic analysis and molecular approach. METHODS: Intervertebral disc degeneration (IVDD) related targets were obtained from GeneCards, DisGenet and OMIM databases. BMs related genes were obtained from Basement membraneBASE database. The intersection targets were identified and subjected to protein-to-protein interaction (PPI) construction via STRING. Hub genes were identified and conducted Gene ontology (GO) and pathway enrichment analysis through MCODE and Clue GO in Cytospace respectively. DSigDB database was retrieved to predict therapeutic drugs and molecular docking was performed through PyMOL, AutoDock 1.5.6 to verify the binding energy between the drug and the different expressed hub genes. Finally, GSE70362 from GEO database was obtained to verify the different expression and correlation of each hub gene for AF degeneration. RESULTS: We identified 41 intersection genes between 3 disease targets databases and Basement membraneBASE database. PPI network revealed 25 hub genes and they were mainly enriched in GO terms relating to glycosaminoglycan catabolic process, the TGF-ß signaling pathway. 4 core targets were found to be significant via comparison of microarray samples and they showed strong correlation. The molecular docking results showed that the core targets have strong binding energy with predicting drugs including chitosamine and retinoic acid. CONCLUSIONS: In this study, we identified hub genes, pathways, potential targets, and drugs for treatment in BMs-related AF degeneration and IVDD.


Asunto(s)
Medicamentos Herbarios Chinos , Degeneración del Disco Intervertebral , Humanos , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Simulación del Acoplamiento Molecular , Mapas de Interacción de Proteínas/genética , Análisis por Micromatrices , Biología Computacional/métodos
8.
Comput Intell Neurosci ; 2023: 7091407, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37288170

RESUMEN

Intervertebral disc degeneration (IDD) poses a grim public health impact. Duhuo Jisheng Decoction (DJD), a traditional Chinese medicine formula, has recently received significant attention for its efficacy and safety in treating IDD. However, the pathological processes of IDD in which DJD interferes and molecular mechanism involved are poorly understood, which brings difficulties to the clinical practice of DJD for the treatment of IDD. This study systematically investigated the underlying mechanism of DJD treatment of IDD. Network pharmacology approaches were employed, integrating molecular docking and random walk with restart (RWR) algorithm, to identify key compounds and targets for DJD in the treatment of IDD. Bioinformatics approaches were used to further explore the biological insights in DJD treatment of IDD. The analysis identifies AKT1, PIK3R1, CHUK, ALB, TP53, MYC, NR3C1, IL1B, ERBB2, CAV1, CTNNB1, AR, IGF2, and ESR1 as key targets. Responses to mechanical stress, oxidative stress, cellular inflammatory responses, autophagy, and apoptosis are identified as the critical biological processes involved in DJD treatment of IDD. The regulation of DJD targets in extracellular matrix components, ion channel regulation, transcriptional regulation, synthesis and metabolic regulation of reactive oxygen products in the respiratory chain and mitochondria, fatty acid oxidation, the metabolism of Arachidonic acid, and regulation of Rho and Ras protein activation are found to be potential mechanisms in disc tissue response to mechanical stress and oxidative stress. MAPK, PI3K/AKT, and NF-κB signaling pathways are identified as vital signaling pathways for DJD to treat IDD. Quercetin and Kaempferol are assigned a central position in the treatment of IDD. This study contributes to a more comprehensive understanding of the mechanism of DJD in treating IDD. It provides a reference for applying natural products to delay the pathological process of IDD.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Humanos , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas/metabolismo
9.
J Ethnopharmacol ; 316: 116692, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37277086

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lower back pain (LBP) is a common and frequent clinical condition, and intervertebral disc degeneration (IDD) is recognized as the leading cause of LBP, typically manifested by increased nucleus pulposus cell (NPC) senescence and death. In recent years, the treatment of IDD with stem cell injections has had great potential compared to surgical treatment. Combining the two may achieve better results, as BuShenHuoXueFang (BSHXF) is an herbal formula that improves the survival rate of transplanted stem cells and enhances their efficacy. AIM OF THE STUDY: We aimed to qualitatively and quantitatively analyze BSHXF-medicated serum and investigate the molecular mechanism of BSHXF-mediated serum in promoting the differentiation of adipose mesenchymal stem cells (ADSCs) into NPCs and delaying the senescence of NPCs by regulating the TGF-ß1/Smad pathway. MATERIALS AND METHODS: In this study, an ultrahigh-performance liquid chromatography-quadrupole-time-of-flight mass spectrometer (UPLC-Q-TOF-MS) was used to establish a method for the analysis of rat serum samples to track the active components in vivo; the oxidative damage model of NPCs was induced by T-BHP, and a Transwell chamber was used to construct a coculture system of ADSCs and NPCs. Flow cytometry was used to determine the cell cycle; SA-ß-Gal staining was used to assess cell senescence; ELISA was used to detect IL-1ß, IL-6 inflammatory factors, CXCL-1, CXCL-3, CXCL-10 chemokines, and TGF-ß1 in the supernatants of ADSCs and NPCs. WB was used to detect COL2A1, COL1A1, and Aggrecan in ADSCs to assess the manifestation of NP differentiation in ADSCs, and the WB method was used to detect COL2A1, COL1A1, Aggrecan, p16, p21, p53, and p-p53 protein expression in NPCs to reflect the cellular senescence status and to detect TGF-ß1, Smad2, Smad3, p- Smad2, and p- Smad3 protein expression in NPCs to reflect the pathway condition. RESULTS: We finally identified 70 blood components and their metabolites, including 38 prototypes, from the BSHXF-medicated serum. Compared with that in the nonmedicated serum group, the TGF-ß1/Smad pathway was activated in the medicated serum group, ADSCs moved toward NPC characteristics, the number of NPCs in the S/G2M phase increased, the number of senescent NPCs decreased, IL-1ß and IL-6 inflammatory factors in the Transwell decreased, CXCL-1, CXCL-3, and CXCL-10 chemokines decreased, and the expression of p16, p21, p53 and p-p53 proteins in NPCs was inhibited. CONCLUSION: By regulating the TGF-ß1/Smad pathway, BSHXF-medicated serum promoted ADSCs to NPCs, effectively alleviated the cycle blockage of NPCs after oxidative damage, encouraged the growth and proliferation of NPCs, delayed the aging of NPCs, improved the deteriorating microenvironment around NPCs, and repaired oxidatively damaged NPCs. The combination of BSHXF or its compounds with ADSCs has great potential for the treatment of IDD in the future.


Asunto(s)
Degeneración del Disco Intervertebral , Factor de Crecimiento Transformador beta1 , Ratas , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Proteína p53 Supresora de Tumor , Agrecanos/metabolismo , Interleucina-6/metabolismo , Degeneración del Disco Intervertebral/terapia , Degeneración del Disco Intervertebral/metabolismo
10.
J Orthop Surg Res ; 18(1): 436, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37322524

RESUMEN

Intervertebral disc degeneration (IVDD) has become a serious public health problem, placing a heavy burden on society and the healthcare system. Its pathogenesis is not completely clear and may be closely related to mechanical damage, inflammatory factors, oxidative stress and death of nucleus pulposus cells (NPCs). The treatment of IVDD mainly includes conservative treatment and surgery. Conservative treatment is based on hormonal and anti-inflammatory drugs and massage techniques, which can relieve the pain symptoms to a certain extent, but cannot solve the problem from the root cause. Surgical treatment is mainly by removing the herniated nucleus pulposus, but it is more traumatic for IVDD patients, expensive and not suitable for all patients. Therefore, it is extremely important to clarify the pathogenesis of IVDD, to find an effective and convenient treatment and to further elaborate its mechanism of action. The effectiveness of traditional Chinese medicine in the treatment of IVDD has been well demonstrated in clinical medical research. We have been working on the Chinese herbal formula Duhuo Jisheng Decoction, which is a common formula for the treatment of degenerative disc disease. Not only does it have significant clinical effects, but it also has few adverse effects. At present, we found that its mechanism of action mainly involves regulation of inflammatory factors, reduction of apoptosis and pyroptosis of NPCs, inhibition of extracellular matrix degradation, improvement of intestinal flora, etc. However, a few relevant articles have yet comprehensively and systematically summarized the mechanisms by which they exert their effect. Therefore, this paper will comprehensively and systematically explain on it. This is of great clinical significance and social value for elucidating the pathogenesis of IVDD and improving the symptoms of patients, and will provide a theoretical basis and scientific basis for the treatment of IVDD with traditional Chinese medicine.


Asunto(s)
Medicamentos Herbarios Chinos , Degeneración del Disco Intervertebral , Desplazamiento del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animales , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Núcleo Pulposo/metabolismo , Desplazamiento del Disco Intervertebral/patología , Disco Intervertebral/metabolismo
11.
Mech Ageing Dev ; 211: 111794, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841375

RESUMEN

Intervertebral disc degeneration (IDD) is triggered primarily by ageing, a process characterized by intrinsic, multifaceted and progressive characteristics. Regarding the crucial senescence genes and underlying regulatory mechanisms leading to the etiology of IDD, there is still some uncertainty. In this study, we used gene expression patterns from the GEO database to create a diagnostic model of IDD using differential ageing-related genes (DARG). We examine the relative dynamics of immune cells by single-sample gene set. On the basis of transcription factor (TF) miRNA and miRNA-mRNA pairs, the regulatory network for transcription and post-transcriptional processes was built. The active therapeutic components and Chinese herbal remedies of the main ageing genes were investigated using a network pharmacology approach. 20 DARGs were combined to create a diagnostic model, and both the training and validation sets had an area under the ROC curve of 1. We found alterations in many cell types in IDD tissue, but mainly in activated dendritic cells, type 17 T helper cells, and mast cells. We identified a regulatory axis for STAT1/miR-4306/PPARA based on the correlations between gene expression and targeting. Active substances (Naringenin and Quercetin) and herbs (Aurantii fructus and Eucommiae cortex) targeting PPARA for the treatment of IDD were discovered through network pharmacology. These results provide a theoretical framework for identifying and treating IDD. For the first time, we were able to diagnose IDD patients using 20 ageing-related indicators. At the same time, TF-miRNA-mRNA in conjunction with network pharmacology enabled the identification of prospective therapeutic targets and pharmacological processes.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , MicroARNs , Humanos , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica , Envejecimiento/genética , ARN Mensajero/metabolismo , Disco Intervertebral/metabolismo
12.
Biomed Res Int ; 2022: 8929448, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669720

RESUMEN

Background: Low back pain (LBP) has the characteristics of chronic and persistence, which is a heavy social burden. Intervertebral disc degeneration (IVDD) is a major cause of LBP. The typical features of IVDD are extracellular matrix (ECM) degradation and nucleus pulposus cell (NP) apoptosis. Bushen Huoxue Formula (BSHXF) has good clinical effects on LBP. However, the mechanism of BSHXF affecting ECM and NP cells is still unclear. Aim of the Study. In this study, the impact of BSHXF on autophagy and apoptosis of NP cells was studied through the AMPK/SIRT1 pathway. Material and Methods. NP cells were extracted through the digestion of collagenase and trypsin, and the components of BSHXF were identified. Cell Counting Kit-8 was applied to detect the impact of BSHXF on NP cells. Mitochondrial function was detected using MitoTracker assay, ATP kit, and SOD kit. Autophagy and apoptosis were detected by RT-qPCR, western blotting, and flow cytometry. Results: BSHXF promoted NP cell survival in a concentration-dependent manner, and the elimination of rat serum did not increase cell proliferation; TNF-α accelerated ECM degradation, ROS accumulation, and NP cell apoptosis and decreased autophagic flux. BSHXF restored mitochondrial function and autophagic flux. In addition, AMPK/SIRT1 pathway activation was associated with IVDD. Conclusions: BSHXF regulates autophagy and enhances autophagic flux to suppress excessive ROS production and restore mitochondrial function in an AMPK/SIRT1-dependent manner. However, the protection of BSHXF on TNF-α-treated cells was eliminated by 3-MA. Furthermore, the protective impact of BSHXF on ECM degradation and apoptosis induced by TNF-α was restrained by an AMPK inhibitor. Therefore, maintaining the proper autophagy illustrates treatment strategy for IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis , Autofagia , Células Cultivadas , Medicamentos Herbarios Chinos , Degeneración del Disco Intervertebral/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
13.
Phytomedicine ; 102: 154176, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35660354

RESUMEN

BACKGROUND: Intervertebral disc degeneration (IVDD) is a highly prevalent musculoskeletal disorder characterized by a local inflammatory response associated with the IL-1ß/NLRP3 inflammasome positive feedback loop. Rice bran-derived gamma-oryzanol (Ory) as a sterol ferulate has attracted much attention due to its powerful anti-inflammatory, hypoglycemic and hypolipidemic health effects. As a clinical pharmaceutical for autonomic disorders, Ory's role in musculoskeletal degenerative disease remains unknown. PURPOSE: This study aims to validate the role of Ory in IVDD and explore the potential mechanism. STUDY DESIGN: Establishing the in vitro and in vivo IVDD models to detect the protective effect and molecular mechanism of Ory. METHOD: The anti-ECM degradation, antioxidant and anti-NLRP3 inflammasome activation effects of Ory on IL-1ß-stimulated nucleus pulposus (NP) cells were assessed by immunoblotting and immunofluorescence, etc. MRI, S-O staining and immunohistochemistry were performed to estimate the effects of Ory administration on acupuncture-mediated IVDD in rats at imaging and histological levels. RESULTS: Ory treatment inhibited IL-1ß-mediated ECM degradation, oxidative stress and NLRP3 inflammasome activation in NP cells. By interfering with NF-κB signaling and ROS overproduction, Ory interrupted IL-1ß/NLRP3-inflammasome positive cycle. In vivo experiments showed that Ory delayed acupuncture-mediated IVDD development. CONCLUSION: Our results support the potential application of Ory as a therapeutic compound for IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Animales , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Fenilpropionatos , Ratas
14.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2400-2408, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35531687

RESUMEN

Traditional Chinese medicine has unique advantages in the treatment of degenerative bone and joint diseases, and its widely used in clinical practice. In recent years, many scholars have conducted a large number of basic studies on the delay of intervertebral disc degeneration by herbal compound and monomeric components from different perspectives. In order to further elucidate its mechanism of action, this paper summarizes the in vivo and in vitro experimental studies conducted at the level of both herbal compound and single components, respectively, in order to provide references for the basic research on the treatment of lumbar intervertebral disc degeneration by Chinese medicine. A summary shows that commonly used herbal compound prescriptions include both classical prescriptions such as Duhuo Jisheng Decoction, as well as clinical experience prescriptions such as Yiqi Huoxue Recipe. Angelicae Sinensis Radix, Chuanxiong Rhizoma, Rehmanniae Radix Praeparata, Achyranthis Bidentatae Radix, and Eucommiae Cortex were used most frequently. Tonic for deficiency and blood stasis activators were used most frequently. The most utilized monomeric components include icariin, ginsenoside Re, salvianolic acid B and aucubin. The main molecular mechanisms by which herbal compound and monomeric components delay of lumbar intervertebral disc degeneration include improving the intervertebral disc microenvironment, promoting the synthesis of aggregated proteoglycans and type Ⅱ collagen in the intervertebral disc, reducing the degradation of the extracellular matrix, and inhibiting apoptosis in the nucleus pulposus cells, etc. The main signaling pathways involved include Wnt/ß-catenin signaling pathway, MAPK-related signaling pathway, mTOR signaling pathway, Fas/FasL signaling pathway, PI3 K/Akt signaling pathway, NF-κB signaling pathway, JAK/STAT signaling pathway, and hedgehog signaling pathway, etc.


Asunto(s)
Medicamentos Herbarios Chinos , Degeneración del Disco Intervertebral , Núcleo Pulposo , China , Medicamentos Herbarios Chinos/uso terapéutico , Proteínas Hedgehog/metabolismo , Humanos , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Vía de Señalización Wnt
15.
Aging (Albany NY) ; 14(5): 2400-2417, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35289767

RESUMEN

With the increasing burden of a globally aging population, low back pain has become one of the most common musculoskeletal disorders, caused mainly by intervertebral disc (IVD) degeneration. There are currently several clinical methods to alleviate back pain, but there is scarce attention paid as to whether they can improve age-related IVD degeneration. It is therefore difficult to conduct an in-depth evaluation of these methods. A large number of clinical studies have shown that manual therapy (MT), a widely used comprehensive alternative method, has effects on pain, the mechanisms of which require further study. In this study, MT was performed on aging rats for 6 months, and their behaviors were compared with those of a non-intervention group of aging and young rats. After the intervention, all rats were examined by X-ray to observe lumbar spine degeneration, and the IVD tissues were dissected for detection, including pathological staining, immunofluorescence, Western bolt, etc. This study demonstrated the possibility that MT intervention delay the lumbar IVD degeneration in aging rats, specifically improving the motor function and regulating senescence-associated ß-galactosidase, p53, p21, p16, and telomerase activity to retard the senescence of cells in IVDs. Moreover, MT intervention can modify oxidative stress, increase the expression of SIRT1 and FOXO1 in IVDs and decrease ac-FOXO1 expression, suggesting that MT can reduce oxidative stress through the SIRT1/FOXO1 pathway, thereby playing a role in delaying the aging of IVDs. This study shows that drug-free, non-invasive mechanical interventions could be of major significance in improving the physical function of the elderly.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Manipulaciones Musculoesqueléticas , Envejecimiento , Animales , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Estrés Oxidativo , Ratas , Sirtuina 1/metabolismo
16.
Biomed Pharmacother ; 148: 112739, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35202910

RESUMEN

To date, the underlying mechanisms involved intervertebral disc degeneration (IDD) remain unclear, which has hindered the development of molecular biological therapy for IDD. Autophagy is vital for intracellular quality control and metabolic balance in intervertebral disc cells. Hence, autophagy homeostasis is important. Emerging evidence has implicated vitamin D (VD) and the vitamin D receptor (VDR) in IDD progression because of their effects on different autophagy steps. However, the results of clinical trials in which VD supplementation was assessed as a treatment for IDD are controversial. Furthermore, experimental studies on the interplay between VD/VDR and autophagy are still in their infancy. In view of the significance of the crosstalk between VD/VDR and autophagy components, this review focuses on the latest research on VD/VDR modulation in autophagy and investigates the possible regulatory mechanisms. This article will deepen our understanding of the relationship between VD/VDR and autophagy and suggests novel strategies for IDD prevention and treatment.


Asunto(s)
Autofagia , Degeneración del Disco Intervertebral/metabolismo , Receptores de Calcitriol/metabolismo , Deficiencia de Vitamina D/metabolismo , Vitamina D/metabolismo , Humanos , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/prevención & control , Degeneración del Disco Intervertebral/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Vitaminas/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6256-6263, 2022 Dec.
Artículo en Chino | MEDLINE | ID: mdl-36604869

RESUMEN

Intervertebral disc degeneration(IDD) is a common clinical degenerative disease of the musculoskeletal system, which increases the risk of lower back pain, severely reduces patients' quality of life and work efficiency, and imposes a large economic burden on society. Mitochondria, as the "power stations" of eukaryotic cells, are involved in many key biological processes, and their abnormal function can induce cellular dysfunction and lead to the development of a series of degenerative diseases. Recent studies have revealed that mitochondrial quality control(MQC) imbalance, characterized by abnormalities in mitochondrial oxidative stress, kinetics, mitophagy and biogenesis, plays an important role in IDD. The research reviewed the progress of the role of MQC in IDD and summarized traditional Chinese medicine monomers and small molecule compounds targeting MQC for the treatment of IDD, with the aim of providing reference and new ideas for studying novel therapeutic strategies for IDD.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Humanos , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/prevención & control , Degeneración del Disco Intervertebral/metabolismo , Calidad de Vida , Mitofagia , Núcleo Pulposo/metabolismo , Mitocondrias
18.
Artículo en Chino | WPRIM | ID: wpr-928119

RESUMEN

Traditional Chinese medicine has unique advantages in the treatment of degenerative bone and joint diseases, and its widely used in clinical practice. In recent years, many scholars have conducted a large number of basic studies on the delay of intervertebral disc degeneration by herbal compound and monomeric components from different perspectives. In order to further elucidate its mechanism of action, this paper summarizes the in vivo and in vitro experimental studies conducted at the level of both herbal compound and single components, respectively, in order to provide references for the basic research on the treatment of lumbar intervertebral disc degeneration by Chinese medicine. A summary shows that commonly used herbal compound prescriptions include both classical prescriptions such as Duhuo Jisheng Decoction, as well as clinical experience prescriptions such as Yiqi Huoxue Recipe. Angelicae Sinensis Radix, Chuanxiong Rhizoma, Rehmanniae Radix Praeparata, Achyranthis Bidentatae Radix, and Eucommiae Cortex were used most frequently. Tonic for deficiency and blood stasis activators were used most frequently. The most utilized monomeric components include icariin, ginsenoside Re, salvianolic acid B and aucubin. The main molecular mechanisms by which herbal compound and monomeric components delay of lumbar intervertebral disc degeneration include improving the intervertebral disc microenvironment, promoting the synthesis of aggregated proteoglycans and type Ⅱ collagen in the intervertebral disc, reducing the degradation of the extracellular matrix, and inhibiting apoptosis in the nucleus pulposus cells, etc. The main signaling pathways involved include Wnt/β-catenin signaling pathway, MAPK-related signaling pathway, mTOR signaling pathway, Fas/FasL signaling pathway, PI3 K/Akt signaling pathway, NF-κB signaling pathway, JAK/STAT signaling pathway, and hedgehog signaling pathway, etc.


Asunto(s)
Humanos , China , Medicamentos Herbarios Chinos/uso terapéutico , Proteínas Hedgehog/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Vía de Señalización Wnt
19.
Drug Des Devel Ther ; 15: 4911-4924, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880601

RESUMEN

PURPOSE: To explore the pharmacological mechanisms of Liuwei Dihuang Decoction (LWDHD) against intervertebral disc (IVD) degeneration (IVDD) via network pharmacology analysis combined with experimental validation. METHODS: First, active ingredients and related targets of LWDHD, as well as related genes of IVDD, were collected from public databases. The protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed to predict the core targets and pathways of LWDHD against IVDD. Secondly, the IVDD model of mice treated with LWDHD was selected to validate the major targets predicted by network pharmacology. RESULTS: By searching the intersection of the active ingredient targets and IVDD targets, a total of 110 targets matched the related targets of 30 active ingredients in LWDHD and IVDD were retrieved. PPI network analysis indicated that 17 targets, including Caspase-3, IL-1ß, P53, etc., were hub targets. GO and KEGG enrichment analyses showed that the apoptosis pathway was enriched by multiple targets and served as the target for in vivo experimental study validation. The results of animal experiments revealed that LWDHD administration not only restored the decrease in disc height and abnormal degradation of matrix metabolism in IVDD mice but also reversed the high expression of Bax, Caspase-3, IL-1ß, P53, and low expression of Bcl-2, thereby inhibiting the apoptosis of IVD tissue and ameliorating the progression of IVDD. CONCLUSION: Using a comprehensive network pharmacology approach, our findings predicted the active ingredients and potential targets of LWDHD intervention for IVDD, and some major target proteins involved in the predictive signaling pathway were validated experimentally, which gave us a new understanding of the pharmacological mechanism of LWDHD in treating IVDD at the comprehensive level.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Degeneración del Disco Intervertebral/tratamiento farmacológico , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/administración & dosificación , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/cirugía , Medicina Tradicional China , Ratones , Ratones Endogámicos C57BL , Farmacología en Red
20.
Biomed Res Int ; 2021: 5165075, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805401

RESUMEN

BACKGROUND: Intervertebral disc degeneration (IVDD) is the most significant cause of low back pain, the sixth-largest disease burden globally, and the leading cause of disability. This study is aimed at investigating the molecular biological mechanism of Danggui-Sini formula (DSF) mediated IVDD treatment. METHODS: A potential gene set for DSF treatment of IVDD was identified through TCMSP, UniProt, and five disease gene databases. A protein interaction network of common targets between DSF and IVDD was established by using the STRING database. GO and KEGG enrichment analyses were performed using the R platform to discover the potential mechanism. Moreover, AutoDock Vina was used to verify molecular docking and calculate the binding energy. RESULTS: A total of 119 active ingredients and 136 common genes were identified, including 10 core genes (AKT1, IL6, ALB, TNF, VEGFA, TP53, MAPK3, CASP3, JUN, and EGF). Enrichment analysis results showed that the therapeutic targets of DSF for diseases mainly focused on the AGE-RAGE signaling pathway involved in diabetic complications, IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, apoptosis, cellular senescence, PI3K-Akt signaling pathway, and FoxO signaling pathway. These biological processes are induced mainly in response to oxidative stress and reactive oxygen species and the regulation of apoptotic signaling pathways. Molecular docking showed that there was a stable affinity between the core genes and the key components. CONCLUSIONS: The combination of network pharmacology and molecular docking provides a practical way to analyze the molecular biological mechanism of DSF-mediated IVDD treatment, which confirms the "multicomponent, multitarget and multipathway" characteristics of DSF and provides an essential theoretical basis for clinical practice.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Degeneración del Disco Intervertebral/tratamiento farmacológico , Farmacología en Red , Fitoterapia , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Medicamentos Herbarios Chinos/química , Ontología de Genes , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Simulación del Acoplamiento Molecular , Mapas de Interacción de Proteínas/efectos de los fármacos , Mapas de Interacción de Proteínas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA