Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34830020

RESUMEN

Two distinct types of neuronal activity result in long-term depression (LTD) of electrical synapses, with overlapping biochemical intracellular signaling pathways that link activity to synaptic strength, in electrically coupled neurons of the thalamic reticular nucleus (TRN). Because components of both signaling pathways can also be modulated by GABAB receptor activity, here we examined the impact of GABAB receptor activation on the two established inductors of LTD in electrical synapses. Recording from patched pairs of coupled rat neurons in vitro, we show that GABAB receptor inactivation itself induces a modest depression of electrical synapses and occludes LTD induction by either paired bursting or metabotropic glutamate receptor (mGluR) activation. GABAB activation also occludes LTD from either paired bursting or mGluR activation. Together, these results indicate that afferent sources of GABA, such as those from the forebrain or substantia nigra to the reticular nucleus, gate the induction of LTD from either neuronal activity or afferent glutamatergic receptor activation. These results add to a growing body of evidence that the regulation of thalamocortical transmission and sensory attention by TRN is modulated and controlled by other brain regions. Significance: We show that electrical synapse plasticity is gated by GABAB receptors in the thalamic reticular nucleus. This effect is a novel way for afferent GABAergic input from the basal ganglia to modulate thalamocortical relay and is a possible mediator of intra-TRN inhibitory effects.


Asunto(s)
Sinapsis Eléctricas/fisiología , Depresión Sináptica a Largo Plazo/genética , Plasticidad Neuronal/genética , Receptores de GABA-B/genética , Animales , Humanos , Depresión Sináptica a Largo Plazo/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Tálamo/metabolismo , Tálamo/fisiopatología , Núcleos Talámicos Ventrales/metabolismo , Núcleos Talámicos Ventrales/fisiopatología
2.
J Neurophysiol ; 126(5): 1622-1634, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34495785

RESUMEN

Choline is an essential nutrient under evaluation as a cognitive enhancing treatment for fetal alcohol spectrum disorders (FASD) in clinical trials. As a result, there is increased pressure to identify therapeutic mechanism(s) of action. Choline is not only a precursor for several essential cell membrane components and signaling molecules but also has the potential to directly affect synaptic mechanisms that are believed important for cognitive processes. In the current work, we study how the direct application of choline can affect synaptic transmission in the dentate gyrus (DG) of hippocampal slices obtained from adolescent (postnatal days 21-28) Sprague-Dawley rats (Rattus norvegicus). The acute administration of choline chloride (2 mM) reliably induced a long-term depression (LTD) of field excitatory postsynaptic potentials (fEPSPs) in the DG in vitro. The depression required the involvement of M1 receptors, and the magnitude of the effect was similar in slices obtained from male and female animals. To further study the impact of choline in an animal model of FASD, we examined offspring from dams fed an ethanol-containing diet (35.5% ethanol-derived calories) throughout gestation. In slices from the adolescent animals that experienced prenatal ethanol exposure (PNEE), we found that the choline induced an LTD that uniquely involved the activation of N-methyl-d-aspartate (NMDA) and M1 receptors. This study provides a novel insight into how choline can modulate hippocampal transmission at the level of the synapse and that it can have unique effects following PNEE.NEW & NOTEWORTHY Choline supplementation is a nutraceutical therapy with significant potential for a variety of developmental disorders; however, the mechanisms involved in its therapeutic effects remain poorly understood. Our research shows that choline directly impacts synaptic communication in the brain, inducing a long-term depression of synaptic efficacy in brain slices. The depression is equivalent in male and female animals, involves M1 receptors in control animals, but uniquely involves NMDA receptors in a model of FASD.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Colina/farmacología , Giro Dentado/efectos de los fármacos , Etanol/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Trastornos del Espectro Alcohólico Fetal/fisiopatología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Nootrópicos/farmacología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Receptor Muscarínico M1/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Ratas Sprague-Dawley
3.
Mol Brain ; 14(1): 84, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34034796

RESUMEN

Down syndrome (DS) is the most frequent genetic cause of intellectual disability including hippocampal-dependent memory deficits. We have previously reported hippocampal mTOR (mammalian target of rapamycin) hyperactivation, and related plasticity as well as memory deficits in Ts1Cje mice, a DS experimental model. Here we characterize the proteome of hippocampal synaptoneurosomes (SNs) from these mice, and found a predicted alteration of synaptic plasticity pathways, including long term depression (LTD). Accordingly, mGluR-LTD (metabotropic Glutamate Receptor-LTD) is enhanced in the hippocampus of Ts1Cje mice and this is correlated with an increased proportion of a particular category of mushroom spines in hippocampal pyramidal neurons. Remarkably, prenatal treatment of these mice with rapamycin has a positive pharmacological effect on both phenotypes, supporting the therapeutic potential of rapamycin/rapalogs for DS intellectual disability.


Asunto(s)
Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Síndrome de Down/patología , Síndrome de Down/fisiopatología , Depresión Sináptica a Largo Plazo , Receptores de Glutamato Metabotrópico/metabolismo , Sirolimus/farmacología , Animales , Espinas Dendríticas/efectos de los fármacos , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Ratones Transgénicos , Proteínas Mitocondriales/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Proteómica , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/patología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
4.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946358

RESUMEN

The cerebellum is endowed with the capacity for compensation and restoration after pathological injury, a property known as cerebellar reserve. Such capacity is attributed to two unique morphological and physiological features of the cerebellum. First, mossy fibers that convey peripheral and central information run mediolaterally over a wide area of the cerebellum, resulting in the innervation of multiple microzones, commonly known as cerebellar functional units. Thus, a single microzone receives redundant information that can be used in pathological conditions. Secondly, the circuitry is characterized by a co-operative interplay among various forms of synaptic plasticity. Recent progress in understanding the mechanisms of redundant information and synaptic plasticity has allowed outlining therapeutic strategies potentiating these neural substrates to enhance the cerebellar reserve, taking advantage of the unique physiological properties of the cerebellum which appears as a modular and potentially reconfiguring brain structure.


Asunto(s)
Cerebelo/fisiología , Plasticidad Neuronal , Animales , Humanos , Depresión Sináptica a Largo Plazo , Neuronas/fisiología , Estimulación Eléctrica Transcutánea del Nervio
5.
Sci Rep ; 11(1): 6345, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33737568

RESUMEN

The medial (DMS) and lateral (DLS) dorsal striatum differentially drive goal-directed and habitual/compulsive behaviors, respectively, and are implicated in a variety of neuropsychiatric disorders. These subregions receive distinct inputs from cortical and thalamic regions which uniquely determine dorsal striatal activity and function. Adenosine A1 receptors (A1Rs) are prolific within striatum and regulate excitatory glutamate transmission. Thus, A1Rs may have regionally-specific effects on neuroadaptive processes which may ultimately influence striatally-mediated behaviors. The occurrence of A1R-driven plasticity at specific excitatory inputs to dorsal striatum is currently unknown. To better understand how A1Rs may influence these behaviors, we first sought to understand how A1Rs modulate these distinct inputs. We evaluated A1R-mediated inhibition of cortico- and thalamostriatal transmission using in vitro whole-cell, patch clamp slice electrophysiology recordings in medium spiny neurons from both the DLS and DMS of C57BL/6J mice in conjunction with optogenetic approaches. In addition, conditional A1R KO mice lacking A1Rs at specific striatal inputs to DMS and DLS were generated to directly determine the role of these presynaptic A1Rs on the measured electrophysiological responses. Activation of presynaptic A1Rs produced significant and prolonged synaptic depression (A1R-SD) of excitatory transmission in the both the DLS and DMS of male and female animals. Our findings indicate that A1R-SD at corticostriatal and thalamostriatal inputs to DLS can be additive and that A1R-SD in DMS occurs primarily at thalamostriatal inputs. These findings advance the field's understanding of the functional roles of A1Rs in striatum and implicate their potential contribution to neuropsychiatric diseases.


Asunto(s)
Conducta Compulsiva/genética , Cuerpo Estriado/fisiología , Depresión Sináptica a Largo Plazo/genética , Receptor de Adenosina A1/genética , Adenosina/farmacología , Animales , Conducta Animal/fisiología , Potenciales Postsinápticos Excitadores , Femenino , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratones , Ratones Noqueados , Neuronas/patología , Neuronas/fisiología , Técnicas de Placa-Clamp , Sinapsis/fisiología , Transmisión Sináptica , Tálamo/efectos de los fármacos , Tálamo/fisiología
6.
Proc Natl Acad Sci U S A ; 117(41): 25789-25799, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32973099

RESUMEN

All animals can perform certain survival behaviors without prior experience, suggesting a "hard wiring" of underlying neural circuits. Experience, however, can alter the expression of innate behaviors. Where in the brain and how such plasticity occurs remains largely unknown. Previous studies have established the phenomenon of "aggression training," in which the repeated experience of winning successive aggressive encounters across multiple days leads to increased aggressiveness. Here, we show that this procedure also leads to long-term potentiation (LTP) at an excitatory synapse, derived from the posteromedial part of the amygdalohippocampal area (AHiPM), onto estrogen receptor 1-expressing (Esr1+) neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl). We demonstrate further that the optogenetic induction of such LTP in vivo facilitates, while optogenetic long-term depression (LTD) diminishes, the behavioral effect of aggression training, implying a causal role for potentiation at AHiPM→VMHvlEsr1 synapses in mediating the effect of this training. Interestingly, ∼25% of inbred C57BL/6 mice fail to respond to aggression training. We show that these individual differences are correlated both with lower levels of testosterone, relative to mice that respond to such training, and with a failure to exhibit LTP after aggression training. Administration of exogenous testosterone to such nonaggressive mice restores both behavioral and physiological plasticity. Together, these findings reveal that LTP at a hypothalamic circuit node mediates a form of experience-dependent plasticity in an innate social behavior, and a potential hormone-dependent basis for individual differences in such plasticity among genetically identical mice.


Asunto(s)
Hipotálamo/fisiología , Instinto , Acontecimientos que Cambian la Vida , Depresión Sináptica a Largo Plazo , Plasticidad Neuronal , Agresión , Animales , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Conducta Social , Sinapsis/fisiología , Testosterona/metabolismo
7.
J Neurosci ; 40(31): 5894-5907, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601247

RESUMEN

The orbitofrontal cortex (OFC) plays a critical role in evaluating outcomes in a changing environment. Administering opioids to the OFC can alter the hedonic reaction to food rewards and increase their consumption in a subregion-specific manner. However, it is unknown how mu-opioid signaling influences synaptic transmission in the OFC. Thus, we investigated the cellular actions of mu-opioids within distinct subregions of the OFC. Using in vitro patch-clamp electrophysiology in brain slices containing the OFC, we found that the mu-opioid agonist DAMGO produced a concentration-dependent inhibition of GABAergic synaptic transmission onto medial OFC (mOFC), but not lateral OFC (lOFC) neurons. This effect was mediated by presynaptic mu-opioid receptor activation of local parvalbumin (PV+)-expressing interneurons. The DAMGO-induced suppression of inhibition was long lasting and not reversed on washout of DAMGO or by application of the mu-opioid receptor antagonist CTAP, suggesting an inhibitory long-term depression (LTD) induced by an exogenous mu-opioid. We show that LTD at inhibitory synapses is dependent on downstream cAMP/protein kinase A (PKA) signaling, which differs between the mOFC and lOFC. Finally, we demonstrate that endogenous opioid release triggered via moderate physiological stimulation can induce LTD. Together, these results suggest that presynaptic mu-opioid stimulation of local PV+ interneurons induces a long-lasting suppression of GABAergic synaptic transmission, which depends on subregional differences in mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascade. These findings provide mechanistic insight into the opposing functional effects produced by mu-opioids within the OFC.SIGNIFICANCE STATEMENT Considering that both the orbitofrontal cortex (OFC) and the opioid system regulate reward, motivation, and food intake, understanding the role of opioid signaling within the OFC is fundamental for a mechanistic understanding of the sequelae for several psychiatric disorders. This study makes several novel observations. First, mu-opioids induce a long-lasting suppression of inhibitory synaptic transmission onto OFC pyramidal neurons in a regionally selective manner. Second, mu-opioids recruit parvalbumin inputs to suppress inhibitory synaptic transmission in the mOFC. Third, the regional selectivity of mu-opioid action of endogenous opioids is due to the efficacy of mu-opioid receptor coupling to the downstream cAMP/PKA intracellular cascades. These experiments are the first to reveal a cellular mechanism of opioid action within the OFC.


Asunto(s)
Analgésicos Opioides/farmacología , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Lóbulo Frontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Receptores Opioides mu/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico , Animales , Proteínas Quinasas Dependientes de AMP Cíclico , Endorfinas/metabolismo , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Parvalbúminas , Técnicas de Placa-Clamp , Transducción de Señal/efectos de los fármacos
8.
Neuroreport ; 31(8): 597-604, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32282574

RESUMEN

The memory-boosting property of Indian traditional herb, Convolvulus pluricaulis, has been documented in literature; however, its effect on synaptic plasticity has not yet been reported. Two important forms of synaptic plasticity known to be involved in the processes of memory formation are long-term potentiation (LTP) and long-term depression (LTD). In the present study, the effect of C. pluricaulis plant extract on LTP and LTD were evaluated. The adult male Wistar rats were fed orally with 250, 500 and 1000 mg/kg of this extract for 4 weeks and the effect was determined on LTP and LTD in the Schaffer collaterals of the hippocampal cornu ammonis region CA1. We found that the 500 mg/kg dose of the extract could significantly enhance LTP compared to the vehicle treated ones. Moreover, the same dose could also reduce LTD while used in a separate set of animals. Also, a fresh group of animals treated with the effective dose (500 mg/kg) of plant extract were examined for memory retention in two behavioral platforms namely, contextual fear conditioning (CFC) and novel object recognition test (NORT). Increased fear response to the conditioned stimulus and enhanced recognition of objects were observed in CFC and NORT, respectively, both indicating strengthening of memory. Following up, ex-vivo electrophysiology experiments were performed with the active single molecule scopoletin, present in C. pluricaulis extract and similar patterns in synaptic plasticity changes were obtained. These findings suggest that prolonged treatment of C. pluricaulis extract, at a specific dose in healthy animals, can augment memory functions by modulating hippocampal plasticity.


Asunto(s)
Convolvulus , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Animales , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Ratas Wistar
9.
Neuron ; 105(1): 46-59.e3, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31735403

RESUMEN

Non-selective antagonists of metabotropic glutamate receptor subtypes 2 (mGlu2) and 3 (mGlu3) exert rapid antidepressant-like effects by enhancing prefrontal cortex (PFC) glutamate transmission; however, the receptor subtype contributions and underlying mechanisms remain unclear. Here, we leveraged newly developed negative allosteric modulators (NAMs), transgenic mice, and viral-assisted optogenetics to test the hypothesis that selective inhibition of mGlu2 or mGlu3 potentiates PFC excitatory transmission and confers antidepressant efficacy in preclinical models. We found that systemic treatment with an mGlu2 or mGlu3 NAM rapidly activated biophysically unique PFC pyramidal cell ensembles. Mechanistic studies revealed that mGlu2 and mGlu3 NAMs enhance thalamocortical transmission and inhibit long-term depression by mechanistically distinct presynaptic and postsynaptic actions. Consistent with these actions, systemic treatment with either NAM decreased passive coping and reversed anhedonia in two independent chronic stress models, suggesting that both mGlu2 and mGlu3 NAMs induce antidepressant-like effects through related but divergent mechanisms of action.


Asunto(s)
Regulación Alostérica/fisiología , Corteza Cerebral/fisiología , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Tálamo/fisiología , Adaptación Psicológica/efectos de los fármacos , Anhedonia/efectos de los fármacos , Animales , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Corteza Cerebral/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Optogenética , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Células Piramidales/fisiología , Tálamo/metabolismo
10.
Glia ; 67(10): 1976-1989, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31348567

RESUMEN

The second messenger inositol 1,4,5-trisphosphate (IP3 ) is paramount for signal transduction in biological cells, mediating Ca2+ release from the endoplasmic reticulum. Of the three isoforms of IP3 receptors identified in the nervous system, Type 2 (IP3 R2) is the main isoform expressed by astrocytes. The complete lack of IP3 R2 in transgenic mice was shown to significantly disrupt Ca2+ signaling in astrocytes, while leaving neuronal intracellular pathways virtually unperturbed. Whether and how this predominantly nonneuronal receptor might affect long-term memory function has been a matter of intense debate. In this work, we found that the absence of IP3 R2-mediated signaling did not disrupt normal learning or recent (24-48 h) memory. Contrary to expectations, however, mice lacking IP3 R2 exhibited remote (2-4 weeks) memory deficits. Not only did the lack of IP3 R2 impair remote recognition, fear, and spatial memories, but it also prevented naturally occurring post-encoding memory enhancements consequent to memory consolidation. Consistent with the key role played by the downscaling of synaptic transmission in memory consolidation, we found that NMDAR-dependent long-term depression was abnormal in ex vivo hippocampal slices acutely prepared from IP3 R2-deficient mice, a deficit that could be prevented upon supplementation with D-serine - an NMDA-receptor co-agonist whose synthesis depends upon astrocytes' activity. Our results reveal that IP3 R2 activation, which in the brain is paramount for Ca2+ signaling in astrocytes, but not in neurons, can help shape brain plasticity by enhancing the consolidation of newly acquired information into long-term memories that can guide remote cognitive behaviors.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Trastornos de la Memoria/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Miedo/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Aprendizaje/fisiología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Consolidación de la Memoria/fisiología , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Memoria Espacial/fisiología , Técnicas de Cultivo de Tejidos
11.
Elife ; 72018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30311905

RESUMEN

Brief (2-3d) monocular deprivation (MD) during the critical period induces a profound loss of responsiveness within binocular (V1b) and monocular (V1m) regions of rodent primary visual cortex. This has largely been ascribed to long-term depression (LTD) at thalamocortical synapses, while a contribution from intracortical inhibition has been controversial. Here we used optogenetics to isolate and measure feedforward thalamocortical and feedback intracortical excitation-inhibition (E-I) ratios following brief MD. Despite depression at thalamocortical synapses, thalamocortical E-I ratio was unaffected in V1b and shifted toward excitation in V1m, indicating that thalamocortical excitation was not effectively reduced. In contrast, feedback intracortical E-I ratio was shifted toward inhibition in V1m, and a computational model demonstrated that these opposing shifts produced an overall suppression of layer 4 excitability. Thus, feedforward and feedback E-I ratios can be independently tuned by visual experience, and enhanced feedback inhibition is the primary driving force behind loss of visual responsiveness.


Asunto(s)
Retroalimentación Fisiológica , Inhibición Neural/fisiología , Sensación/fisiología , Corteza Visual/fisiología , Potenciales de Acción , Animales , Potenciales Postsinápticos Excitadores , Interneuronas/fisiología , Depresión Sináptica a Largo Plazo , Ratones Endogámicos C57BL , Células Piramidales/fisiología , Ratas Long-Evans , Privación Sensorial/fisiología , Sinapsis/fisiología , Tálamo/fisiología
12.
Cell Death Dis ; 9(11): 1096, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30367065

RESUMEN

Leptin, produced and secreted by white adipose tissue, plays a critical role in regulating body weight, food intake, and energy metabolism. Recently, several studies have identified an underlying role for leptin in regulation of mood and cognition via regulation of synaptic changes in the brain that have been associated with antidepressant-like actions. Brain neural plasticity occurs in response to a range of intrinsic and extrinsic stimuli, including those that may mediate the effects of antidepressants. Neural plasticity theories of depression are thought to explain multiple aspects of depression and the effects of antidepressants. It is also well documented that leptin has effects on neural plasticity. This review summarizes the recent literature on the role of leptin in neural plasticity in order to elaborate the possible mechanism of leptin's antidepressant-like effects. Recent findings provide new insights into the underlying mechanisms of neural plasticity in depression. Leptin may influence these mechanisms and consequently constitute a possible target for novel therapeutic approaches to the treatment of depression.


Asunto(s)
Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Leptina/uso terapéutico , Terapia Molecular Dirigida , Animales , Antidepresivos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/metabolismo , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Neurogénesis , Ratas
13.
Neuron ; 98(4): 801-816.e7, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29706583

RESUMEN

Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes.


Asunto(s)
Cuerpo Estriado/metabolismo , Plasticidad Neuronal/genética , Receptores de Serotonina 5-HT4/genética , Serotonina/metabolismo , Tálamo/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Indoles/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Depresión Sináptica a Largo Plazo , Ratones , Ratones Transgénicos , Vías Nerviosas , Plasticidad Neuronal/efectos de los fármacos , Optogenética , Piperidinas/farmacología , Propano/análogos & derivados , Propano/farmacología , Antagonistas del Receptor de Serotonina 5-HT4/farmacología , Sulfonamidas/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Tálamo/citología , Tálamo/efectos de los fármacos
14.
Neurobiol Learn Mem ; 154: 112-120, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29631001

RESUMEN

The human pain system can be bidirectionally modulated by high-frequency (HFS; 100 Hz) and low-frequency (LFS; 1 Hz) electrical stimulation of nociceptors leading to long-term potentiation or depression of pain perception (pain-LTP or pain-LTD). Here we show that priming a test site by very low-frequency stimulation (VLFS; 0.05 Hz) prevented pain-LTP probably by elevating the threshold (set point) for pain-LTP induction. Conversely, prior HFS-induced pain-LTP was substantially reversed by subsequent VLFS, suggesting that preceding HFS had primed the human nociceptive system for pain-LTD induction by VLFS. In contrast, the pain elicited by the pain-LTP-precipitating conditioning HFS stimulation remained unaffected. In aggregate these experiments demonstrate that the human pain system expresses two forms of higher-order plasticity (metaplasticity) acting in either direction along the pain-LTD to pain-LTP continuum with similar shifts in thresholds for LTD and LTP as in synaptic plasticity, indicating intriguing new mechanisms for the prevention of pain memory and the erasure of hyperalgesia related to an already established pain memory trace. There were no apparent gender differences in either pain-LTP or metaplasticity of pain-LTP. However, individual subjects appeared to present with an individual balance of pain-LTD to pain-LTP (a pain plasticity "fingerprint").


Asunto(s)
Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Nocicepción/fisiología , Dolor/fisiopatología , Adulto , Estudios Cruzados , Estimulación Eléctrica , Femenino , Humanos , Masculino , Umbral del Dolor , Estimulación Eléctrica Transcutánea del Nervio , Adulto Joven
15.
Eur J Pain ; 22(1): 58-71, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28805336

RESUMEN

BACKGROUND: This feasibility study addresses the applicability of matrix electrodes for the reduction of ongoing pain in cancer patients via low-frequency electrical stimulation (LFS). METHODS: Low-frequency matrix stimulation (4 Hz) was applied to the skin within the 'Head's zones' referring to the tumour localization of cancer pain patients. Pain at baseline was compared to a 3-day treatment interval consisting of 5 min of matrix stimulation in the morning and evening followed by a 3-day follow-up period without therapy. Main outcome parameters included numeric rating scale values (rating scale 0-100), painDETECT, HADS, and German pain questionnaire, as well as the opioid intake, calculated as the oral morphine equivalent (OME). RESULTS: Twenty patients with cancer pain (aged 64.4 ± 10.3; 9 women) were examined. In the majority of patients, the pain was classified as nociceptive. The mean pain reduction achieved by matrix therapy was 30%, under stable daily controlled-release opioid doses between 177 and 184 mg/day (OME). Seventeen patients (85%) were responders, defined by a pain reduction of at least 30%, while four responders experienced a pain reduction of over 50%. The only side effect was short-term erythema. CONCLUSION: Findings are consistent with the concept of synaptic long-term depression in cancer pain induced after conditioning LFS. Despite the short, but well-tolerated, treatment duration of 2 × 5 min/day, effects persisted throughout the 3-day follow-up. SIGNIFICANCE: Cutaneous neuromodulation using LFS via a matrix electrode has been shown to be a safe intervention for effectively reducing cancer pain in palliative care patients.


Asunto(s)
Dolor en Cáncer/terapia , Terapia por Estimulación Eléctrica/métodos , Anciano , Analgésicos Opioides/uso terapéutico , Dolor en Cáncer/tratamiento farmacológico , Terapia por Estimulación Eléctrica/efectos adversos , Estudios de Factibilidad , Femenino , Humanos , Depresión Sináptica a Largo Plazo , Masculino , Persona de Mediana Edad , Dimensión del Dolor/métodos , Resultado del Tratamiento
16.
Mol Neurodegener ; 12(1): 86, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29137651

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is characterized by amyloid deposition, tangle formation as well as synapse loss. Synaptic abnormalities occur early in the pathogenesis of AD. Identifying early synaptic abnormalities and their underlying mechanisms is likely important for the prevention and treatment of AD. METHODS: We performed in vivo two-photon calcium imaging to examine the activities of somas, dendrites and dendritic spines of layer 2/3 pyramidal neurons in the primary motor cortex in the APPswe/PS1dE9 mouse model of AD and age-matched wild type control mice. We also performed calcium imaging to determine the effect of Aß oligomers on dendritic calcium activity. In addition, structural and functional two-photon imaging were used to examine the link between abnormal dendritic calcium activity and changes in dendritic spine size in the AD mouse model. RESULTS: We found that somatic calcium activities of layer 2/3 neurons were significantly lower in the primary motor cortex of 3-month-old APPswe/PS1dE9 mice than in wild type mice during quiet resting, but not during running on a treadmill. Notably, a significantly larger fraction of apical dendrites of layer 2/3 pyramidal neurons showed calcium transients with abnormally long duration and high peak amplitudes during treadmill running in AD mice. Administration of Aß oligomers into the brain of wild type mice also induced abnormal dendritic calcium transients during running. Furthermore, we found that the activity and size of dendritic spines were significantly reduced on dendritic branches with abnormally prolonged dendritic calcium transients in AD mice. CONCLUSION: Our findings show that abnormal dendritic calcium transients and synaptic depotentiation occur before amyloid plaque formation in the motor cortex of the APPswe/PS1dE9 mouse model of AD. Dendritic calcium transients with abnormally long durations and high amplitudes could be induced by soluble Aß oligomers and contribute to synaptic deficits in the early pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Calcio/metabolismo , Dendritas/metabolismo , Sinapsis/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Dendritas/patología , Modelos Animales de Enfermedad , Depresión Sináptica a Largo Plazo/fisiología , Ratones , Corteza Motora/patología , Corteza Motora/fisiopatología , Células Piramidales/metabolismo , Células Piramidales/patología , Sinapsis/patología
17.
Science ; 357(6347): 162-168, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28706064

RESUMEN

Mental strength and history of winning play an important role in the determination of social dominance. However, the neural circuits mediating these intrinsic and extrinsic factors have remained unclear. Working in mice, we identified a dorsomedial prefrontal cortex (dmPFC) neural population showing "effort"-related firing during moment-to-moment competition in the dominance tube test. Activation or inhibition of the dmPFC induces instant winning or losing, respectively. In vivo optogenetic-based long-term potentiation and depression experiments establish that the mediodorsal thalamic input to the dmPFC mediates long-lasting changes in the social dominance status that are affected by history of winning. The same neural circuit also underlies transfer of dominance between different social contests. These results provide a framework for understanding the circuit basis of adaptive and pathological social behaviors.


Asunto(s)
Red Nerviosa/fisiología , Corteza Prefrontal/fisiología , Predominio Social , Tálamo/fisiología , Adaptación Psicológica/fisiología , Animales , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Optogenética , Refuerzo en Psicología
18.
Neuropharmacology ; 117: 114-123, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28159646

RESUMEN

The striatum plays critical roles in action control and cognition, and activity of striatal neurons is driven by glutamatergic input. Inhibition of glutamatergic inputs to projection neurons and interneurons of the striatum by presynaptic G protein-coupled receptors (GPCRs) stands to modulate striatal output and striatum-dependent behaviors. Despite knowledge that a substantial number of glutamatergic inputs to striatal neurons originate in the thalamus, most electrophysiological studies assessing GPCR modulation do not differentiate between effects on corticostriatal and thalamostriatal transmission, and synaptic inhibition is frequently assumed to be mediated by activation of GPCRs on corticostriatal terminals. We used optogenetic techniques and recently-discovered pharmacological tools to dissect the effects of a prominent presynaptic GPCR, metabotropic glutamate receptor 2 (mGlu2), on corticostriatal vs. thalamostriatal transmission. We found that an agonist of mGlu2 and mGlu3 induces long-term depression (LTD) at synapses onto MSNs from both the cortex and the thalamus. Thalamostriatal LTD is selectively blocked by an mGlu2-selective negative allosteric modulator and reversed by application of an antagonist following LTD induction. Activation of mGlu2/3 also induces LTD of thalamostriatal transmission in striatal cholinergic interneurons (CINs), and pharmacological activation of mGlu2/3 or selective activation of mGlu2 inhibits CIN-mediated dopamine release evoked by selective stimulation of thalamostriatal inputs. Thus, mGlu2 activation exerts effects on striatal physiology that extend beyond modulation of corticostriatal synapses, and has the potential to influence cognition and striatum-related disorders via inhibition of thalamus-derived glutamate and dopamine release.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Tálamo/fisiología , Animales , Neuronas Colinérgicas/fisiología , Interneuronas/fisiología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores
19.
Biochem Biophys Res Commun ; 483(4): 998-1004, 2017 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-27641664

RESUMEN

Alzheimer's disease (AD) is the disease of lost memories. Synaptic loss is a major reason for memory defects in AD. Signaling pathways involved in memory loss in AD are under intense investigation. The role of deranged neuronal calcium (Ca2+) signaling in synaptic loss in AD is described in this review. Familial AD (FAD) mutations in presenilins are linked directly with synaptic Ca2+ signaling abnormalities, most likely by affecting endoplasmic reticulum (ER) Ca2+ leak function of presenilins. Excessive ER Ca2+ release via type 2 ryanodine receptors (RyanR2) is observed in AD spines due to increase in expression and function of RyanR2. Store-operated Ca2+ entry (nSOC) pathway is disrupted in AD spines due to downregulation of STIM2 protein. Because of these Ca2+ signaling abnormalities, a balance in activities of Ca2+-calmodulin-dependent kinase II (CaMKII) and Ca2+-dependent phosphatase calcineurin (CaN) is shifted at the synapse, tilting a balance between long-term potentiation (LTP) and long-term depression (LTD) synaptic mechanisms. As a result, synapses are weakened and eliminated in AD brains by LTD mechanism, causing memory loss. Targeting synaptic calcium signaling pathways offers opportunity for development of AD therapeutic agents.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Calcio/metabolismo , Homeostasis , Neuronas/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Animales , Calcineurina/metabolismo , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Modelos Animales de Enfermedad , Humanos , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
20.
ACS Chem Neurosci ; 7(12): 1706-1716, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27617634

RESUMEN

Abnormalities in the signaling of the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) within cortical and limbic brain regions are thought to underlie many of the complex cognitive and affective symptoms observed in individuals with schizophrenia. The M1 muscarinic acetylcholine receptor (mAChR) subtype is a closely coupled signaling partner of the NMDAR. Accumulating evidence suggests that development of selective positive allosteric modulators (PAMs) of the M1 receptor represent an important treatment strategy for the potential normalization of disruptions in NMDAR signaling in patients with schizophrenia. In the present studies, we evaluated the effects of the novel and highly potent M1 PAM, VU6004256, in ameliorating selective prefrontal cortical (PFC)-mediated physiologic and cognitive abnormalities in a genetic mouse model of global reduction in the NR1 subunit of the NMDAR (NR1 knockdown [KD]). Using slice-based extracellular field potential recordings, deficits in muscarinic agonist-induced long-term depression (LTD) in layer V of the PFC in the NR1 KD mice were normalized with bath application of VU6004256. Systemic administration of VU6004256 also reduced excessive pyramidal neuron firing in layer V PFC neurons in awake, freely moving NR1 KD mice. Moreover, selective potentiation of M1 by VU6004256 reversed the performance impairments of NR1 KD mice observed in two preclinical models of PFC-mediated learning, specifically the novel object recognition and cue-mediated fear conditioning tasks. VU6004256 also produced a robust, dose-dependent reduction in the hyperlocomotor activity of NR1 KD mice. Taken together, the current findings provide further support for M1 PAMs as a novel therapeutic approach for the PFC-mediated impairments in schizophrenia.


Asunto(s)
Colinérgicos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Proteínas del Tejido Nervioso/deficiencia , Nootrópicos/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/deficiencia , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Colinérgicos/farmacocinética , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/metabolismo , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Miedo/efectos de los fármacos , Miedo/fisiología , Técnicas de Silenciamiento del Gen , Compuestos Heterocíclicos de 4 o más Anillos/farmacocinética , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/genética , Nootrópicos/farmacocinética , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA