Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34830020

RESUMEN

Two distinct types of neuronal activity result in long-term depression (LTD) of electrical synapses, with overlapping biochemical intracellular signaling pathways that link activity to synaptic strength, in electrically coupled neurons of the thalamic reticular nucleus (TRN). Because components of both signaling pathways can also be modulated by GABAB receptor activity, here we examined the impact of GABAB receptor activation on the two established inductors of LTD in electrical synapses. Recording from patched pairs of coupled rat neurons in vitro, we show that GABAB receptor inactivation itself induces a modest depression of electrical synapses and occludes LTD induction by either paired bursting or metabotropic glutamate receptor (mGluR) activation. GABAB activation also occludes LTD from either paired bursting or mGluR activation. Together, these results indicate that afferent sources of GABA, such as those from the forebrain or substantia nigra to the reticular nucleus, gate the induction of LTD from either neuronal activity or afferent glutamatergic receptor activation. These results add to a growing body of evidence that the regulation of thalamocortical transmission and sensory attention by TRN is modulated and controlled by other brain regions. Significance: We show that electrical synapse plasticity is gated by GABAB receptors in the thalamic reticular nucleus. This effect is a novel way for afferent GABAergic input from the basal ganglia to modulate thalamocortical relay and is a possible mediator of intra-TRN inhibitory effects.


Asunto(s)
Sinapsis Eléctricas/fisiología , Depresión Sináptica a Largo Plazo/genética , Plasticidad Neuronal/genética , Receptores de GABA-B/genética , Animales , Humanos , Depresión Sináptica a Largo Plazo/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Tálamo/metabolismo , Tálamo/fisiopatología , Núcleos Talámicos Ventrales/metabolismo , Núcleos Talámicos Ventrales/fisiopatología
2.
Sci Rep ; 11(1): 6345, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33737568

RESUMEN

The medial (DMS) and lateral (DLS) dorsal striatum differentially drive goal-directed and habitual/compulsive behaviors, respectively, and are implicated in a variety of neuropsychiatric disorders. These subregions receive distinct inputs from cortical and thalamic regions which uniquely determine dorsal striatal activity and function. Adenosine A1 receptors (A1Rs) are prolific within striatum and regulate excitatory glutamate transmission. Thus, A1Rs may have regionally-specific effects on neuroadaptive processes which may ultimately influence striatally-mediated behaviors. The occurrence of A1R-driven plasticity at specific excitatory inputs to dorsal striatum is currently unknown. To better understand how A1Rs may influence these behaviors, we first sought to understand how A1Rs modulate these distinct inputs. We evaluated A1R-mediated inhibition of cortico- and thalamostriatal transmission using in vitro whole-cell, patch clamp slice electrophysiology recordings in medium spiny neurons from both the DLS and DMS of C57BL/6J mice in conjunction with optogenetic approaches. In addition, conditional A1R KO mice lacking A1Rs at specific striatal inputs to DMS and DLS were generated to directly determine the role of these presynaptic A1Rs on the measured electrophysiological responses. Activation of presynaptic A1Rs produced significant and prolonged synaptic depression (A1R-SD) of excitatory transmission in the both the DLS and DMS of male and female animals. Our findings indicate that A1R-SD at corticostriatal and thalamostriatal inputs to DLS can be additive and that A1R-SD in DMS occurs primarily at thalamostriatal inputs. These findings advance the field's understanding of the functional roles of A1Rs in striatum and implicate their potential contribution to neuropsychiatric diseases.


Asunto(s)
Conducta Compulsiva/genética , Cuerpo Estriado/fisiología , Depresión Sináptica a Largo Plazo/genética , Receptor de Adenosina A1/genética , Adenosina/farmacología , Animales , Conducta Animal/fisiología , Potenciales Postsinápticos Excitadores , Femenino , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratones , Ratones Noqueados , Neuronas/patología , Neuronas/fisiología , Técnicas de Placa-Clamp , Sinapsis/fisiología , Transmisión Sináptica , Tálamo/efectos de los fármacos , Tálamo/fisiología
3.
Glia ; 67(10): 1976-1989, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31348567

RESUMEN

The second messenger inositol 1,4,5-trisphosphate (IP3 ) is paramount for signal transduction in biological cells, mediating Ca2+ release from the endoplasmic reticulum. Of the three isoforms of IP3 receptors identified in the nervous system, Type 2 (IP3 R2) is the main isoform expressed by astrocytes. The complete lack of IP3 R2 in transgenic mice was shown to significantly disrupt Ca2+ signaling in astrocytes, while leaving neuronal intracellular pathways virtually unperturbed. Whether and how this predominantly nonneuronal receptor might affect long-term memory function has been a matter of intense debate. In this work, we found that the absence of IP3 R2-mediated signaling did not disrupt normal learning or recent (24-48 h) memory. Contrary to expectations, however, mice lacking IP3 R2 exhibited remote (2-4 weeks) memory deficits. Not only did the lack of IP3 R2 impair remote recognition, fear, and spatial memories, but it also prevented naturally occurring post-encoding memory enhancements consequent to memory consolidation. Consistent with the key role played by the downscaling of synaptic transmission in memory consolidation, we found that NMDAR-dependent long-term depression was abnormal in ex vivo hippocampal slices acutely prepared from IP3 R2-deficient mice, a deficit that could be prevented upon supplementation with D-serine - an NMDA-receptor co-agonist whose synthesis depends upon astrocytes' activity. Our results reveal that IP3 R2 activation, which in the brain is paramount for Ca2+ signaling in astrocytes, but not in neurons, can help shape brain plasticity by enhancing the consolidation of newly acquired information into long-term memories that can guide remote cognitive behaviors.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/deficiencia , Trastornos de la Memoria/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Miedo/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Aprendizaje/fisiología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Consolidación de la Memoria/fisiología , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Memoria Espacial/fisiología , Técnicas de Cultivo de Tejidos
4.
Mol Neurodegener ; 12(1): 86, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29137651

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is characterized by amyloid deposition, tangle formation as well as synapse loss. Synaptic abnormalities occur early in the pathogenesis of AD. Identifying early synaptic abnormalities and their underlying mechanisms is likely important for the prevention and treatment of AD. METHODS: We performed in vivo two-photon calcium imaging to examine the activities of somas, dendrites and dendritic spines of layer 2/3 pyramidal neurons in the primary motor cortex in the APPswe/PS1dE9 mouse model of AD and age-matched wild type control mice. We also performed calcium imaging to determine the effect of Aß oligomers on dendritic calcium activity. In addition, structural and functional two-photon imaging were used to examine the link between abnormal dendritic calcium activity and changes in dendritic spine size in the AD mouse model. RESULTS: We found that somatic calcium activities of layer 2/3 neurons were significantly lower in the primary motor cortex of 3-month-old APPswe/PS1dE9 mice than in wild type mice during quiet resting, but not during running on a treadmill. Notably, a significantly larger fraction of apical dendrites of layer 2/3 pyramidal neurons showed calcium transients with abnormally long duration and high peak amplitudes during treadmill running in AD mice. Administration of Aß oligomers into the brain of wild type mice also induced abnormal dendritic calcium transients during running. Furthermore, we found that the activity and size of dendritic spines were significantly reduced on dendritic branches with abnormally prolonged dendritic calcium transients in AD mice. CONCLUSION: Our findings show that abnormal dendritic calcium transients and synaptic depotentiation occur before amyloid plaque formation in the motor cortex of the APPswe/PS1dE9 mouse model of AD. Dendritic calcium transients with abnormally long durations and high amplitudes could be induced by soluble Aß oligomers and contribute to synaptic deficits in the early pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Calcio/metabolismo , Dendritas/metabolismo , Sinapsis/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Dendritas/patología , Modelos Animales de Enfermedad , Depresión Sináptica a Largo Plazo/fisiología , Ratones , Corteza Motora/patología , Corteza Motora/fisiopatología , Células Piramidales/metabolismo , Células Piramidales/patología , Sinapsis/patología
5.
Science ; 357(6347): 162-168, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28706064

RESUMEN

Mental strength and history of winning play an important role in the determination of social dominance. However, the neural circuits mediating these intrinsic and extrinsic factors have remained unclear. Working in mice, we identified a dorsomedial prefrontal cortex (dmPFC) neural population showing "effort"-related firing during moment-to-moment competition in the dominance tube test. Activation or inhibition of the dmPFC induces instant winning or losing, respectively. In vivo optogenetic-based long-term potentiation and depression experiments establish that the mediodorsal thalamic input to the dmPFC mediates long-lasting changes in the social dominance status that are affected by history of winning. The same neural circuit also underlies transfer of dominance between different social contests. These results provide a framework for understanding the circuit basis of adaptive and pathological social behaviors.


Asunto(s)
Red Nerviosa/fisiología , Corteza Prefrontal/fisiología , Predominio Social , Tálamo/fisiología , Adaptación Psicológica/fisiología , Animales , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Optogenética , Refuerzo en Psicología
6.
ACS Chem Neurosci ; 7(12): 1706-1716, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27617634

RESUMEN

Abnormalities in the signaling of the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) within cortical and limbic brain regions are thought to underlie many of the complex cognitive and affective symptoms observed in individuals with schizophrenia. The M1 muscarinic acetylcholine receptor (mAChR) subtype is a closely coupled signaling partner of the NMDAR. Accumulating evidence suggests that development of selective positive allosteric modulators (PAMs) of the M1 receptor represent an important treatment strategy for the potential normalization of disruptions in NMDAR signaling in patients with schizophrenia. In the present studies, we evaluated the effects of the novel and highly potent M1 PAM, VU6004256, in ameliorating selective prefrontal cortical (PFC)-mediated physiologic and cognitive abnormalities in a genetic mouse model of global reduction in the NR1 subunit of the NMDAR (NR1 knockdown [KD]). Using slice-based extracellular field potential recordings, deficits in muscarinic agonist-induced long-term depression (LTD) in layer V of the PFC in the NR1 KD mice were normalized with bath application of VU6004256. Systemic administration of VU6004256 also reduced excessive pyramidal neuron firing in layer V PFC neurons in awake, freely moving NR1 KD mice. Moreover, selective potentiation of M1 by VU6004256 reversed the performance impairments of NR1 KD mice observed in two preclinical models of PFC-mediated learning, specifically the novel object recognition and cue-mediated fear conditioning tasks. VU6004256 also produced a robust, dose-dependent reduction in the hyperlocomotor activity of NR1 KD mice. Taken together, the current findings provide further support for M1 PAMs as a novel therapeutic approach for the PFC-mediated impairments in schizophrenia.


Asunto(s)
Colinérgicos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Proteínas del Tejido Nervioso/deficiencia , Nootrópicos/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/deficiencia , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Colinérgicos/farmacocinética , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/metabolismo , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Miedo/efectos de los fármacos , Miedo/fisiología , Técnicas de Silenciamiento del Gen , Compuestos Heterocíclicos de 4 o más Anillos/farmacocinética , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/genética , Nootrópicos/farmacocinética , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Técnicas de Cultivo de Tejidos
7.
Exp Brain Res ; 234(2): 453-61, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26514812

RESUMEN

The beneficial effects of trigeminal nerve stimulation (TNS) on several neurological disorders are increasingly acknowledged. Hypothesized mechanisms include the modulation of excitability in networks involved by the disease, and its main site of action has been recently reported at brain stem level. Aim of this work was to test whether acute TNS modulates brain stem plasticity using the blink reflex (BR) as a model. The BR was recorded from 20 healthy volunteers before and after 20 min of cyclic transcutaneous TNS delivered bilaterally to the infraorbital nerve. Eleven subjects underwent sham-TNS administration and were compared to the real-TNS group. In 12 subjects, effects of unilateral TNS were tested. The areas of the R1 and R2 components of the BR were recorded before and after 0 (T0), 15 (T15), 30 (T30), and 45 (T45) min from TNS. In three subjects, T60 and T90 time points were also evaluated. Ipsi- and contralateral R2 areas were significantly suppressed after bilateral real-TNS at T15 (p = 0.013), T30 (p = 0.002), and T45 (p = 0.001), while R1 response appeared unaffected. The TNS-induced inhibitory effect on R2 responses lasted up to 60 min. Real- and sham-TNS protocols produced significantly different effects (p = 0.005), with sham-TNS being ineffective at any time point tested. Bilateral TNS was more effective (p = 0.009) than unilateral TNS. Acute TNS induced a bilateral long-lasting inhibition of the R2 component of the BR, which resembles a long-term depression-like effect, providing evidence of brain stem plasticity produced by transcutaneous TNS. These findings add new insight into mechanisms of TNS neuromodulation and into physiopathology of those neurological disorders where clinical benefits of TNS are recognized.


Asunto(s)
Parpadeo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Estimulación Eléctrica Transcutánea del Nervio/métodos , Nervio Trigémino/fisiología , Adulto , Electromiografía/métodos , Femenino , Humanos , Masculino , Adulto Joven
8.
Eur J Neurosci ; 42(5): 2214-23, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26118841

RESUMEN

N-methyl-d-aspartic acid (NMDA) receptor-dependent long-term potentiation (LTP) at the thalamus-lateral amygdala (T-LA) synapses is the basis for acquisition of auditory fear memory. However, the role of the NMDA receptor NR2B subunit in synaptic plasticity at T-LA synapses remains speculative. In the present study, using transgenic mice with forebrain-specific overexpression of the NR2B subunit, we have observed that forebrain NR2B overexpression results in enhanced LTP but does not alter long-term depression (LTD) at the T-LA synapses in transgenic mice. To elucidate the cellular mechanisms underlying enhanced LTP at T-LA synapses in these transgenic mice, AMPA and NMDA receptor-mediated postsynaptic currents have been measured. The data show a marked increasing in the amplitude and decay time of NMDA receptor-mediated currents in these transgenic mice. Consistent with enhanced LTP at T-LA synapses, NR2B-transgenic mice exhibit better performance in the acquisition of auditory fear memory than wild-type littermates. Our results demonstrate that up-regulation of NR2B expression facilitates acquisition of auditory cued fear memory and enhances LTP at T-LA synapses.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo/fisiología , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Prosencéfalo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Animales , Ansiedad/fisiopatología , Percepción Auditiva/efectos de los fármacos , Percepción Auditiva/fisiología , Depresión/fisiopatología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Aprendizaje/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Ratones Transgénicos , Prosencéfalo/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Tálamo/efectos de los fármacos , Tálamo/fisiología
9.
J Neurosci ; 35(1): 64-73, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25568103

RESUMEN

Slow waves of non-REM sleep are suggested to play a role in shaping synaptic connectivity to consolidate recently acquired memories and/or restore synaptic homeostasis. During sleep slow waves, both GABAergic neurons of the nucleus reticularis thalami (NRT) and thalamocortical (TC) neurons discharge high-frequency bursts of action potentials mediated by low-threshold calcium spikes due to T-type Ca(2+) channel activation. Although such activity of the intrathalamic network characterized by high-frequency firing and calcium influx is highly suited to modify synaptic efficacy, very little is still known about its consequences on intrathalamic synapse strength. Combining in vitro electrophysiological recordings and calcium imaging, here we show that the inhibitory GABAergic synapses between NRT and TC neurons of the rat somatosensory nucleus develop a long-term depression (I-LTD) when challenged by a stimulation paradigm that mimics the thalamic network activity occurring during sleep slow waves. The mechanism underlying this plasticity presents unique features as it is both heterosynaptic and homosynaptic in nature and requires Ca(2+) entry selectively through T-type Ca(2+) channels and activation of the Ca(2+)-activated phosphatase, calcineurin. We propose that during slow-wave sleep the tight functional coupling between GABAA receptors, calcineurin, and T-type Ca(2+) channels will elicit LTD of the activated GABAergic synapses when coupled with concomitant activation of metabotropic glutamate receptors postsynaptic to cortical afferences. This I-LTD may be a key element involved in the reshaping of the somatosensory information pathway during sleep.


Asunto(s)
Canales de Calcio Tipo T/fisiología , Neuronas GABAérgicas/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Sueño/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Animales , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratas , Ratas Wistar
10.
Cereb Cortex ; 25(2): 545-53, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24046076

RESUMEN

The auditory cortex exhibits frequency-specific plasticity over a life cycle. Although thalamocortical long-term potentiation (LTP) and depression (LTD) are components of a widely held model underlying the receptive field (RF) plasticity of cortical neurons, the model lacks direct supporting evidence. We show here that conventional high-frequency tetanic stimulation (TS) of the auditory thalamus induced long-term changes in cortical field excitatory postsynaptic potentials, including both LTP and LTD, in mice. Thalamic TS induced LTP when the stimulated thalamic and recorded cortical neurons were tuned to the same frequency and induced LTD when they were tuned to different frequencies. The thalamocortical LTP was N-methyl-d-aspartate-dependent, but the LTD also involved cortical γ-amino-butyric acidergic inhibition. Notably, the frequency-specificity of cortical LTP/LTD was in accordance with the frequency-specific plasticity of spike-based RFs of cortical neurons. Our results suggest that cortical LTP and LTD induced by thalamic induction can be a consequence of identical stimuli, occur in an input-specific manner, and account for frequency-specific remodeling of RFs of auditory cortical neurons.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Neuronas/fisiología , Tálamo/fisiología , Estimulación Acústica , Potenciales de Acción/fisiología , Animales , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Ratones Endogámicos C57BL , Microelectrodos , N-Metilaspartato/metabolismo , Vías Nerviosas/fisiología , Ácido gamma-Aminobutírico/metabolismo
11.
Behav Brain Res ; 265: 32-7, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24556204

RESUMEN

The influence of exposure to early adversity on emotional learning later in life remains poorly understood. Long-term potentiation (LTP) in the cortico-amygdalar and thalamo-amygdalar pathways has been postulated to provide a mechanism of synaptic modifications underlying fear learning and memory. These synapses also express homosynaptic long-term depression (LTD). Here we examined the effects of maternal separation stress on the extent of LTP and LTD which could be induced in the lateral amygdala (LA) of adolescent rats. Rat pups were subjected to maternal separation (MS, 3 h/day) on post-natal days 1-21. Field potentials were recorded ex vivo from slices containing the LA, which were prepared from adolescent males. Saturating levels of LTP and LTD were induced using repeated sequences of theta-burst stimulation and low frequency stimulation, respectively. An impairment of the maximum LTP and an enhancement of the maximum LTD were observed in the cortical input in slices prepared from MS-subjected rats. In the thalamic input, both the maximum LTP and the maximum LTD were reduced when compared to control animals. Thus, in the cortico-amygdalar pathway MS stress shifted the potential for bidirectional synaptic modification toward LTD but it shrank the synaptic modification range in the thalamo-amygdalar pathway.


Asunto(s)
Amígdala del Cerebelo/patología , Potenciales Evocados/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Estrés Psicológico/patología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Biofisica , Estimulación Eléctrica , Masculino , Privación Materna , Vías Nerviosas/fisiología , Ratas , Ratas Wistar , Estrés Psicológico/etiología , Tálamo/fisiología
12.
Philos Trans R Soc Lond B Biol Sci ; 369(1633): 20130284, 2014 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-24298166

RESUMEN

Donald Hebb chose visual learning in primary visual cortex (V1) of the rodent to exemplify his theories of how the brain stores information through long-lasting homosynaptic plasticity. Here, we revisit V1 to consider roles for bidirectional 'Hebbian' plasticity in the modification of vision through experience. First, we discuss the consequences of monocular deprivation (MD) in the mouse, which have been studied by many laboratories over many years, and the evidence that synaptic depression of excitatory input from the thalamus is a primary contributor to the loss of visual cortical responsiveness to stimuli viewed through the deprived eye. Second, we describe a less studied, but no less interesting form of plasticity in the visual cortex known as stimulus-selective response potentiation (SRP). SRP results in increases in the response of V1 to a visual stimulus through repeated viewing and bears all the hallmarks of perceptual learning. We describe evidence implicating an important role for potentiation of thalamo-cortical synapses in SRP. In addition, we present new data indicating that there are some features of this form of plasticity that cannot be fully accounted for by such feed-forward Hebbian plasticity, suggesting contributions from intra-cortical circuit components.


Asunto(s)
Ambliopía/fisiopatología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Modelos Neurológicos , Visión Monocular/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Aprendizaje/fisiología , Ratones , Tálamo/fisiología
13.
Brain Stimul ; 6(3): 424-32, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22695026

RESUMEN

BACKGROUND: Non-invasive brain stimulation enables the induction of neuroplasticity in humans, however, with so far restricted duration of the respective cortical excitability modifications. Conventional anodal transcranial direct current stimulation (tDCS) protocols including one stimulation session induce NMDA receptor-dependent excitability enhancements lasting for about 1 h. OBJECTIVE: We aimed to extend the duration of tDCS effects by periodic stimulation, consisting of two stimulation sessions, since periodic stimulation protocols are able to induce neuroplastic excitability alterations stable for days or weeks, termed late phase long term potentiation (l-LTP), in animal slice preparations. Since both, l-LTP and long term memory formation, require gene expression and protein synthesis, and glutamatergic receptor activity modifications, l-LTP might be a candidate mechanism for the formation of long term memory. METHODS: The impact of two consecutive tDCS sessions on cortical excitability was probed in the motor cortex of healthy humans, and compared to that of a single tDCS session. The second stimulation was applied without an interval (temporally contiguous tDCS), during the after-effects of the first stimulation (during after-effects; 3, or 20 min interval), or after the after-effects of the first stimulation had vanished (post after-effects; 3 or 24 h interval). RESULTS: The during after-effects condition resulted in an initially reduced, but then relevantly prolonged excitability enhancement, which was blocked by an NMDA receptor antagonist. The other conditions resulted in an abolishment, or a calcium channel-dependent reversal of neuroplasticity. CONCLUSION: Repeated tDCS within a specific time window is able to induce l-LTP-like plasticity in the human motor cortex.


Asunto(s)
Potenciales Evocados Motores/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Corteza Motora/fisiología , Estimulación Magnética Transcraneal , Administración Oral , Adulto , Análisis de Varianza , Bloqueadores de los Canales de Calcio/administración & dosificación , Dextrometorfano/administración & dosificación , Potenciales Evocados Motores/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Femenino , Flunarizina/administración & dosificación , Humanos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Factores de Tiempo , Adulto Joven
14.
PLoS One ; 7(10): e47484, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23118873

RESUMEN

The mediodorsal nucleus of the thalamus (MD) is a rich source of afferents to the medial prefrontal cortex (mPFC). Dysfunctions in the thalamo-prefrontal connections can impair networks implicated in working memory, some of which are affected in Alzheimer disease and schizophrenia. Considering the importance of the cholinergic system to cortical functioning, our study aimed to investigate the effects of global cholinergic activation of the brain on MD-mPFC synaptic plasticity by measuring the dynamics of long-term potentiation (LTP) and depression (LTD) in vivo. Therefore, rats received intraventricular injections either of the muscarinic agonist pilocarpine (PILO; 40 nmol/µL), the nicotinic agonist nicotine (NIC; 320 nmol/µL), or vehicle. The injections were administered prior to either thalamic high-frequency (HFS) or low-frequency stimulation (LFS). Test pulses were applied to MD for 30 min during baseline and 240 min after HFS or LFS, while field postsynaptic potentials were recorded in the mPFC. The transient oscillatory effects of PILO and NIC were monitored through recording of thalamic and cortical local field potentials. Our results show that HFS did not affect mPFC responses in vehicle-injected rats, but induced a delayed-onset LTP with distinct effects when applied following PILO or NIC. Conversely, LFS induced a stable LTD in control subjects, but was unable to induce LTD when applied after PILO or NIC. Taken together, our findings show distinct modulatory effects of each cholinergic brain activation on MD-mPFC plasticity following HFS and LFS. The LTP-inducing action and long-lasting suppression of cortical LTD induced by PILO and NIC might implicate differential modulation of thalamo-prefrontal functions under low and high input drive.


Asunto(s)
Agonistas Muscarínicos/administración & dosificación , Plasticidad Neuronal , Corteza Prefrontal , Sinapsis , Tálamo , Animales , Estimulación Eléctrica , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Nicotina/administración & dosificación , Pilocarpina/administración & dosificación , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Tálamo/efectos de los fármacos
15.
Nat Neurosci ; 15(5): 746-53, 2012 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-22446881

RESUMEN

Endocannabinoid mediated spike timing-dependent depression (t-LTD) is crucially involved in the development of the sensory neocortex. t-LTD at excitatory synapses in the developing rat barrel cortex requires cannabinoid CB(1) receptor (CB(1)R) activation, as well as activation of NMDA receptors located on the presynaptic terminal, but the exact signaling cascade leading to t-LTD remains unclear. We found that astrocytes are critically involved in t-LTD. Astrocytes gradually increased their Ca(2+) signaling specifically during the induction of t-LTD in a CB(1)R-dependent manner. In this way, astrocytes might act as a memory buffer for previous coincident neuronal activity. Following activation, astrocytes released glutamate, which activated presynaptic NMDA receptors to induce t-LTD. Astrocyte stimulation coincident with afferent activity resulted in long-term depression, indicating that astrocyte activation is sufficient for the induction of synaptic depression. Taken together, our findings describe the retrograde signaling cascade underlying neocortical t-LTD. The critical involvement of astrocytes in this process highlights their importance for experience-dependent sensory remodeling.


Asunto(s)
Astrocitos/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Neocórtex/citología , Transducción de Señal/fisiología , Sinapsis/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/ultraestructura , Benzoxazinas/farmacología , Biofisica , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Maleato de Dizocilpina/farmacología , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ácido Glutámico/metabolismo , Técnicas In Vitro , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Morfolinas/farmacología , Naftalenos/farmacología , Técnicas de Placa-Clamp , Piperidinas/farmacología , Probabilidad , Pirazoles/farmacología , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura , Tetrodotoxina/farmacología , Tálamo/citología , Factores de Tiempo
16.
Transl Psychiatry ; 2: e83, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22408745

RESUMEN

The glutamatergic system has been implicated in the pathophysiology of depression and the mechanism of action of antidepressants. Leptin, an adipocyte-derived hormone, has antidepressant-like properties. However, the functional role of leptin receptor (Lepr) signaling in glutamatergic neurons remains to be elucidated. In this study, we generated conditional knockout mice in which the long form of Lepr was ablated selectively in glutamatergic neurons located in the forebrain structures, including the hippocampus and prefrontal cortex (Lepr cKO). Lepr cKO mice exhibit normal growth and body weight. Behavioral characterization of Lepr cKO mice reveals depression-like behavioral deficits, including anhedonia, behavioral despair, enhanced learned helplessness and social withdrawal, with no evident signs of anxiety. In addition, loss of Lepr in forebrain glutamatergic neurons facilitates NMDA-induced hippocampal long-term synaptic depression (LTD), whereas conventional LTD or long-term potentiation (LTP) was not affected. The facilitated LTD induction requires activation of the GluN2B subunit as it was completely blocked by a selective GluN2B antagonist. Moreover, Lepr cKO mice are highly sensitive to the antidepressant-like behavioral effects of the GluN2B antagonist but resistant to leptin. These results support important roles for Lepr signaling in glutamatergic neurons in regulating depression-related behaviors and modulating excitatory synaptic strength, suggesting a possible association between synaptic depression and behavioral manifestations of depression.


Asunto(s)
Depresión/fisiopatología , Glutamina/fisiología , Leptina/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Prosencéfalo/fisiopatología , Receptores de Leptina/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Nivel de Alerta/fisiología , Corteza Cerebral/fisiopatología , Corticosterona/sangre , Dominación-Subordinación , Conducta Exploratoria/fisiología , Desamparo Adquirido , Hipocampo/fisiopatología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Hipotálamo/fisiopatología , Insulina/sangre , Leptina/genética , Ratones , Ratones Noqueados , Motivación/fisiología , Actividad Motora/fisiología , Neuronas/fisiología , Orientación/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Leptina/genética , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Medio Social , Factores de Transcripción/genética , Factores de Transcripción/fisiología
17.
J Neurosci ; 31(44): 16012-25, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22049443

RESUMEN

Thalamocortical (TC) projections provide the major pathway for ascending sensory information to the mammalian neocortex. Arrays of these projections form synaptic inputs on thalamorecipient neurons, thus contributing to the formation of receptive fields (RFs) in sensory cortices. Experience-dependent plasticity of RFs persists throughout an organism's life span but in adults requires activation of cholinergic inputs to the cortex. In contrast, synaptic plasticity at TC projections is limited to the early postnatal period. This disconnect led to the widespread belief that TC synapses are the principal site of RF plasticity only in neonatal sensory cortices, but that they lose this plasticity upon maturation. Here, we tested an alternative hypothesis that mature TC projections do not lose synaptic plasticity but rather acquire gating mechanisms that prevent the induction of synaptic plasticity. Using whole-cell recordings and direct measures of postsynaptic and presynaptic activity (two-photon glutamate uncaging and two-photon imaging of the FM 1-43 assay, respectively) at individual synapses in acute mouse brain slices that contain the auditory thalamus and cortex, we determined that long-term depression (LTD) persists at mature TC synapses but is gated presynaptically. Cholinergic activation releases presynaptic gating through M(1) muscarinic receptors that downregulate adenosine inhibition of neurotransmitter release acting through A(1) adenosine receptors. Once presynaptic gating is released, mature TC synapses can express LTD postsynaptically through group I metabotropic glutamate receptors. These results indicate that synaptic plasticity at TC synapses is preserved throughout the life span and, therefore, may be a cellular substrate of RF plasticity in both neonate and mature animals.


Asunto(s)
Corteza Cerebral/citología , Depresión Sináptica a Largo Plazo/fisiología , Terminales Presinápticos/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Tálamo/citología , Animales , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Glutamatos/farmacología , Técnicas In Vitro , Indoles/farmacología , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Receptor de Adenosina A1/deficiencia , Transmisión Sináptica/genética
18.
Proc Natl Acad Sci U S A ; 108(49): E1266-74, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22089232

RESUMEN

Current advances in neuromorphic engineering have made it possible to emulate complex neuronal ion channel and intracellular ionic dynamics in real time using highly compact and power-efficient complementary metal-oxide-semiconductor (CMOS) analog very-large-scale-integrated circuit technology. Recently, there has been growing interest in the neuromorphic emulation of the spike-timing-dependent plasticity (STDP) Hebbian learning rule by phenomenological modeling using CMOS, memristor or other analog devices. Here, we propose a CMOS circuit implementation of a biophysically grounded neuromorphic (iono-neuromorphic) model of synaptic plasticity that is capable of capturing both the spike rate-dependent plasticity (SRDP, of the Bienenstock-Cooper-Munro or BCM type) and STDP rules. The iono-neuromorphic model reproduces bidirectional synaptic changes with NMDA receptor-dependent and intracellular calcium-mediated long-term potentiation or long-term depression assuming retrograde endocannabinoid signaling as a second coincidence detector. Changes in excitatory or inhibitory synaptic weights are registered and stored in a nonvolatile and compact digital format analogous to the discrete insertion and removal of AMPA or GABA receptor channels. The versatile Hebbian synapse device is applicable to a variety of neuroprosthesis, brain-machine interface, neurorobotics, neuromimetic computation, machine learning, and neural-inspired adaptive control problems.


Asunto(s)
Potenciales de Acción/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Animales , Fenómenos Biofísicos , Calcio/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Humanos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Metales/química , Red Nerviosa/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Óxidos/química , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Semiconductores , Procesamiento de Señales Asistido por Computador/instrumentación , Transmisión Sináptica/fisiología , Factores de Tiempo
19.
Neuron ; 71(3): 529-41, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21835348

RESUMEN

Changes in food availability alter the output of hypothalamic nuclei that underlie energy homeostasis. Here, we asked whether food deprivation impacts the ability of GABA synapses in the dorsomedial hypothalamus (DMH), an important integrator of satiety signals, to undergo activity-dependent changes. GABA synapses in DMH slices from satiated rats exhibit endocannabinoid-mediated long-term depression (LTD(GABA)) in response to high-frequency stimulation of afferents. When CB1Rs are blocked, however, the same stimulation elicits long-term potentiation (LTP(GABA)), which manifests presynaptically and requires heterosynaptic recruitment of NMDARs and nitric oxide (NO). Interestingly, NO signaling is required for eCB-mediated LTD(GABA). Twenty-four hour food deprivation results in a CORT-mediated loss of CB1R signaling and, consequently, GABA synapses only exhibit LTP(GABA). These observations indicate that CB1R signaling promotes LTD(GABA) and gates LTP(GABA). Furthermore, the satiety state of an animal, through regulation of eCB signaling, determines the polarity of activity-dependent plasticity at GABA synapses in the DMH.


Asunto(s)
Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Privación de Alimentos/fisiología , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Receptor Cannabinoide CB1/fisiología , Saciedad/fisiología , Corticoesteroides/fisiología , Animales , Hipotálamo/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Óxido Nítrico/fisiología , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/fisiología , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/fisiología
20.
Neurosci Res ; 71(2): 114-23, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21726589

RESUMEN

The mammalian startle response is controlled by glycine inhibition in the spinal cord. Evidence for additional glycine inhibition on the level of the brainstem, namely in the caudal pontine reticular nucleus (PnC), is controversial. Startle mediating PnC neurons receive fast input from sensory pathways and project to cranial and spinal motoneurons. Synaptic depression in the sensory synapses in the PnC has been indicated as underlying mechanism of short-term habituation of startle. We here performed patch-clamp recordings of PnC giant neurons in rat brain slices to test the hypothesis that the activation of glycine receptors inhibits PnC neurons and that this inhibition is involved in synaptic depression in the PnC. Glycine strongly inhibited PnC neuron activity and synaptic signalling, indicating that functional glycine receptors mediate a powerful inhibition of PnC neurons over a wide range of glycine concentrations. Strychnine reversed all glycine effects, but had no effect on PnC neurons itself. Thus, we found no evidence for a tonic glycine inhibition or for glycine activation within the primary startle pathway indicating that baseline startle reactions are unlikely to be controlled by glycine in the PnC. Most importantly, synaptic depression underlying short-term habituation was not affected by glycine or strychnine.


Asunto(s)
Glicina/farmacología , Neuronas/fisiología , Puente/fisiología , Reflejo de Sobresalto/fisiología , Formación Reticular/fisiología , Sinapsis/fisiología , Estimulación Acústica/métodos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Habituación Psicofisiológica/efectos de los fármacos , Habituación Psicofisiológica/fisiología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Puente/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Reflejo de Sobresalto/efectos de los fármacos , Formación Reticular/efectos de los fármacos , Estricnina/farmacología , Sinapsis/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA