Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int Ophthalmol ; 44(1): 115, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411703

RESUMEN

PURPOSE: To assess the potential influencing effects of Dexmedetomidine on impaired lacrimal glands after high-dose radioiodine treatment (RAI). METHODS: Thirty-six rats were arbitrarily separated into 3 groups: Sham, RAI, and Dexmedetomidine. Dexmedetomidine group was given Dexmedetomidine and RAI, the Sham group was given the same millimeters of saline, and the RAI group was given RAI only. All forms of lacrimal glands, including harderian glands (HG), extraorbital (EG), and intraorbital (IG) lacrimal glands, were evaluated for immunohistochemical, histopathologic assessments and also for tissue cytokines, oxidant and antioxidant levels. RESULTS: Dexmedetomidine significantly ameliorated histopathologic changes such as periacinar fibrosis, acinar atrophy, lymphocytic infiltration, ductal proliferation, lipofuscin-like accumulation, and nucleus changes caused by RAI in all lacrimal gland forms (p < 0.05 for all of the parameters). However, periductal fibrosis was improved significantly only in EG (p = 0.049), and mast cell infiltration was improved significantly only in IG (p = 0.038) in Dexmedetomidine groups. There was a significant decrease in the elevated caspase-3 and TUNEL levels after RAI administration in the Dexmedetomidine group in all lacrimal gland forms (p < 0.05 for all parameters). Dexmedetomidine attenuated NF-kb, TNF-α, and IL-6 levels significantly diminished total oxidant status and raised total antioxidant status levels (p < 0.05 for all parameters). CONCLUSIONS: The results of this study demonstrated that following RAI, Dexmedetomidine diminished inflammation, tissue cytokine levels, and apoptosis and ameliorated impaired histopathologic patterns of the lacrimal glands.


Asunto(s)
Dexmedetomidina , Aparato Lagrimal , Animales , Ratas , Antioxidantes/farmacología , Dexmedetomidina/farmacología , Radioisótopos de Yodo , Citocinas , Oxidantes , Fibrosis
2.
Altern Ther Health Med ; 29(6): 164-169, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37235497

RESUMEN

Background: The number of patients having ischemic stroke is increasing year on year. The anesthetic adjuvant dexmedetomidine is neuroprotective in rats and has potential for use in the treatment of ischemic stroke. Objective: The neuroprotective mechanism of dexmedetomidine in cerebral ischemia-reperfusion injury was studied in relation to its regulation of the oxidative stress response, astrocyte response, microglia overactivation, and apoptosis-related protein expression. Methods: We randomly and equally divided 25 male Sprague-Dawley rats into 5 groups: a sham-operation group, an ischemia-reperfusion injury group, and low-, medium-, and high-dose dexmedetomidine groups. A rat model of focal cerebral ischemia-reperfusion injury was established by embolization of the right middle cerebral artery for 60 minutes and reperfusion for 2 hours. The volume of cerebral infarction was calculated by triphenyl tetrazolium chloride staining. The protein expression levels of caspase-3, methionyl aminopeptidase 2 (MetAP2 or MAP2), glial fibrillary acidic protein, and allograft inflammatory factor 1 (AIF-1) in the cerebral cortex were determined by Western blot and immunohistochemistry. Results: The volume of cerebral infarction in rats decreased with increasing dose of dexmedetomidine (P = .039, 95% CI = .027 to .044). The expression levels of caspase-3, glial fibrillary acidic protein, and allograft inflammatory factor 1 and the amount of 4-hydroxynonenal decreased with increasing doses of dexmedetomidine (P = .033, 95% CI = .021 to .037). Methionyl aminopeptidase 2 (MetAP2 or MAP2) expression increased with increasing doses of dexmedetomidine (P = .023, 95% CI = .011 to .028). Conclusion: Dexmedetomidine has a dose-dependent protective effect on cerebral ischemic injury in rats. The neuroprotective effects of dexmedetomidine are achieved, in part, by reducing the oxidative stress response, inhibiting glial overactivation, and inhibiting expression levels of apoptosis-related proteins.


Asunto(s)
Isquemia Encefálica , Dexmedetomidina , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Daño por Reperfusión , Humanos , Ratas , Masculino , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas Sprague-Dawley , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Proteína Ácida Fibrilar de la Glía , Metionil Aminopeptidasas , Caspasa 3/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Infarto Cerebral/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico
3.
Ann Palliat Med ; 11(9): 2916-2922, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36217620

RESUMEN

BACKGROUND: To investigate the protective effect of electroacupuncture combined with dexmedetomidine (EA + Dex) on oxidative stress injury in myocardial ischemia/reperfusion (I/R) rats. METHODS: A total of 50 male Sprague-Dawley (SD) rats were randomly divided into 5 groups: sham operation (sham group); I/R group; dexmedetomidine group (Dex group); electroacupuncture group (EA group); and EA + Dex group. The myocardial I/R model was established. The EA group received EA at the Neiguan acupoint [pericardium 6 (PC6)] every day for 1 week before modeling. Rats in the EA + Dex group received EA at PC6 every day for 1 week before modeling, and intraperitoneal injection of Dex was performed 15 minutes before modeling. Dex was injected intraperitoneally in the Dex group 15 minutes before modeling. The rats were sacrificed 1 hour after reperfusion, and myocardial tissue was obtained to measure the myocardial infarction area. The myocardial tissue pathologic changes were shown by hematoxylin and eosin (HE) staining, and the superoxide dismutase (SOD), malondialdehyde (MDA), adenosine triphosphate (ATP), and reactive oxygen species (ROS) content in serum was determined. RESULTS: Compared with the sham group, the myocardial infarction area was significantly increased (P<0.01), SOD and ATP content was significantly decreased (P<0.01), and MDA and ROS content was significantly increased (P<0.01) in the I/R group; this change was significantly reduced in the Dex, EA, and EA + Dex groups (P<0.01). The indicators in the EA + Dex group were better than those in the EA and Dex groups (P<0.05). There was no significant change in the above indices in the Dex group compared with the EA group (P>0.05). CONCLUSIONS: EA + Dex pretreatment improved the damage of myocardial I/R by increasing SOD and ATP content and reducing the generation of MDA and ROS in an oxygen-free radical system.


Asunto(s)
Dexmedetomidina , Electroacupuntura , Infarto del Miocardio , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Adenosina Trifosfato , Animales , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Masculino , Malondialdehído , Daño por Reperfusión Miocárdica/prevención & control , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Superóxido Dismutasa
4.
Chem Biol Interact ; 367: 110114, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36027947

RESUMEN

Dexmedetomidine (DEX) displays a neuroprotective role in aged rats with isoflurane (ISO)-induced cognitive impairment through antioxidant, and anti-inflammatory, and anti-apoptotic effects. Therefore, the present study was performed to define the molecular mechanism of DEX on ISO-induced neurological impairment in aged rats in relation to the MEK1/ERK1/Nrf2/HO-1 axis. The study enrolled elderly patients undergoing ISO anesthesia. Patient cognitive function following treatment with DEX was evaluated using mini-mental state examination (MMSE). The results revealed that DEX supplementation of anesthesia contributed to higher MMSE scores in patients one week post treatment. Rat model of neurological impairment was also induced in 18-month-age Wistar rats by ISO, followed by DEX treatment. Based on the results of Morris water maze experiment, ELISA, and TUNEL and hematoxylin-eosin staining, in vivo experiments confirmed that DEX could reduce the oxidative stress and neurological damage induced by ISO in rats. DEX activated the nuclear factor erythroid 2-related factor (Nrf2)/Heme Oxygenase 1 (HO-1) pathway. DEX upregulated the expression of Nrf2 and HO-1 by activating the MEK1/ERK1 pathway, whereby attenuating the ISO-caused oxidative stress and neurological damage in rats. Collectively, DEX suppresses the ISO-induced neurological impairment in the aged rats by promoting HO-1 through activation of the MEK1/ERK1/Nrf2 axis.


Asunto(s)
Dexmedetomidina , Isoflurano , Animales , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Dexmedetomidina/farmacología , Eosina Amarillenta-(YS)/farmacología , Hematoxilina/farmacología , Hemo-Oxigenasa 1/metabolismo , Isoflurano/toxicidad , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 1/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley , Ratas Wistar
5.
Cell Mol Biol (Noisy-le-grand) ; 68(3): 77-85, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35988196

RESUMEN

To explore the impact of nano-microsphere loaded with dexmedetomidine (DEX) combined with percutaneous acupoint electrical stimulation on the postoperative cognitive function of elderly patients with hip fracture. The free base was prepared by the alkali precipitation method in this research, and then the drug was loaded into PLGA microspheres to construct the drug sustained-release system. The PLAG microspheres loaded with DEX (MS/DEX) were prepared by the O/W emulsion volatilization method and then Gel-(DEX-MS/BUP) suspension was obtained. A scanning electron microscope (SEM) was used to analyze the characterization of the prepared drug-loaded nano-microsphere, rheological analysis was performed on the copolymer solution, and in vivo release and degradation, experiments were carried out. Wistar rats were randomly divided into four groups (n=ten). After the sciatic nerve block model was established, the block time was observed after the injection of each sustained-release agent. The results showed that the gel-forming temperature of Gel and Gel-(DEX-MS/BUP) were 27.3°C and 26.3°C, respectively. Both MS/BUP and Gel-(DEX-MS/BUP) drugs could completely enter the blocking state. There was no loss of motor function in the rats after GEL-DEX. The clinical trials showed that Gel-(DEX-MS/BUP) system had good in situ and sustained release effects, and the analgesic effect of local anesthesia was significantly improved.


Asunto(s)
Dexmedetomidina , Puntos de Acupuntura , Animales , Cognición , Preparaciones de Acción Retardada , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Estimulación Eléctrica , Microesferas , Ratas , Ratas Wistar
6.
Am J Chin Med ; 50(6): 1529-1551, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35931662

RESUMEN

Our study aimed to explore the function and mechanism of Dexmedetomidine (Dex) in regulating myocardial ischemia/reperfusion (I/R)-induced mitochondrial apoptosis through lncRNA HCP5. We demonstrated Dex suppressed I/R-induced myocardial infarction and mitochondrial apoptosis in vivo. Dex induced the expression of lncRNA HCP5 and MCL1, inhibited miR-29a expression and activated the JAK2/STAT3 signaling. Dex attenuated hypoxia/reoxygenation (H/R)-induced mitochondrial apoptosis by upregulating lncRNA HCP5 in cardiomyocytes. Overexpression of lncRNA HCP5 sponged miR-29a to suppress H/R-induced mitochondrial apoptosis. Knockdown of miR-29a also alleviated cardiomyocyte apoptosis by upregulating MCL1. Overexpression of lncRNA HCP5 activated the JAK2/STAT3 signaling through sponging miR-29a and enhancing MCL1 expression in cardiomyocytes. Dex mitigated myocardial I/R-induced mitochondrial apoptosis through the lncRNA HCP5/miR-29a/MCL1 axis and activation of the JAK2/STAT3 signaling.


Asunto(s)
Dexmedetomidina , MicroARNs , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , ARN Largo no Codificante , Apoptosis , Dexmedetomidina/farmacología , Humanos , MicroARNs/genética , Mitocondrias/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Isquemia Miocárdica/genética , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/genética
7.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613961

RESUMEN

Dexmedetomidine is a selective α2-adrenoceptor agonist and appears to disinhibit endogenous sleep-promoting pathways, as well as to attenuate noradrenergic excitation. Recent evidence suggests that dexmedetomidine might also directly inhibit hyperpolarization-activated cyclic-nucleotide gated (HCN) channels. We analyzed the effects of dexmedetomidine on native HCN channel function in thalamocortical relay neurons of the ventrobasal complex of the thalamus from mice, performing whole-cell patch-clamp recordings. Over a clinically relevant range of concentrations (1-10 µM), the effects of dexmedetomidine were modest. At a concentration of 10 µM, dexmedetomidine significantly reduced maximal Ih amplitude (relative reduction: 0.86 [0.78-0.91], n = 10, and p = 0.021), yet changes to the half-maximal activation potential V1/2 occurred exclusively in the presence of the very high concentration of 100 µM (-4,7 [-7.5--4.0] mV, n = 10, and p = 0.009). Coincidentally, only the very high concentration of 100 µM induced a significant deceleration of the fast component of the HCN activation time course (τfast: +135.1 [+64.7-+151.3] ms, n = 10, and p = 0.002). With the exception of significantly increasing the membrane input resistance (starting at 10 µM), dexmedetomidine did not affect biophysical membrane properties and HCN channel-mediated parameters of neuronal excitability. Hence, the sedative qualities of dexmedetomidine and its effect on the thalamocortical network are not decisively shaped by direct inhibition of HCN channel function.


Asunto(s)
Dexmedetomidina , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Ratones , Animales , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Dexmedetomidina/farmacología , Hipnóticos y Sedantes/farmacología , Tálamo/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacología
8.
Nitric Oxide ; 118: 17-25, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34718145

RESUMEN

AIMS: Patients with type 2 diabetes mellitus (T2DM) have reduced vasodilatory responses during exercise partially attributable to low nitric oxide (NO) levels. Low NO contributes to greater α-adrenergic mediated vasoconstriction in contracting skeletal muscle. We hypothesized boosting NO bioavailability via 8wks of active beetroot juice (BRA, 4.03 mmol nitrate, 0.29 mmol nitrite, n = 19) improves hyperemia, via reduced α-mediated vasoconstriction, during handgrip exercise relative to nitrate/nitrite-depleted beetroot juice (BRP, n = 18) in patients with T2DM. METHODS: Forearm blood flow (FBF) and vascular conductance (FVC) were calculated at rest and during handgrip exercise (20%max, 20contractions·min-1). Phenylephrine (α1-agonist) and dexmedetomidine (α2-agonist) were infused intra-arterially during independent trials to determine the influence of α-mediated vasoconstriction on exercise hyperemia. Vasoconstriction was quantified as the percent-reduction in FVC during α-agonist infusion, relative to pre-infusion, as well as the absolute change in %FVC during exercise relative to the respective rest trial (magnitude of sympatholysis). RESULTS: ΔFBF (156 ± 69 to 175 ± 73 ml min-1) and ΔFVC (130 ± 54 to 156 ± 63 ml min-1·100 mmHg-1, both P < 0.05) during exercise were augmented following BRA, but not BRP (P = 0.96 and 0.51). Phenylephrine-induced vasoconstriction during exercise was blunted following BRA (-17.1 ± 5.9 to -12.6 ± 3.1%, P < 0.01), but not BRP (P = 0.58) supplementation; the magnitude of sympatholysis was unchanged by either (beverage-by-time P = 0.15). BRA supplementation reduced dexmedetomidine-induced vasoconstriction during exercise (-23.3 ± 6.7 to -19.7 ± 5.2%) and improved the corresponding magnitude of sympatholysis (25.3 ± 11.4 to 34.4 ± 15.5%, both P < 0.05). CONCLUSIONS: BRA supplementation improves the hyperemic and vasodilatory responses to exercise in patients with T2DM which appears to be attributable to reduced α-adrenergic mediated vasoconstriction in contracting skeletal muscle.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Ejercicio Físico/fisiología , Nitratos/farmacología , Nitritos/farmacología , Vasoconstricción/efectos de los fármacos , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Anciano , Beta vulgaris/química , Dexmedetomidina/farmacología , Suplementos Dietéticos , Femenino , Jugos de Frutas y Vegetales , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/efectos de los fármacos , Óxido Nítrico/metabolismo , Fenilefrina/farmacología , Raíces de Plantas/química
9.
Sci Rep ; 11(1): 23940, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907251

RESUMEN

Previous studies suggest an impact of dexmedetomidine on cardiac electrophysiology. However, experimental data is sparse. Therefore, purpose of this study was to investigate the influence of dexmedetomidine on different experimental models of proarrhythmia. 50 rabbit hearts were explanted and retrogradely perfused. The first group (n = 12) was treated with dexmedetomidine in ascending concentrations (3, 5 and 10 µM). Dexmedetomidine did not substantially alter action potential duration (APD) but reduced spatial dispersion of repolarization (SDR) and rendered the action potentials rectangular, resulting in no proarrhythmia. In further 12 hearts, erythromycin (300 µM) was administered to simulate long-QT-syndrome-2 (LQT2). Additional treatment with dexmedetomidine reduced SDR, thereby suppressing torsade de pointes. In the third group (n = 14), 0.5 µM veratridine was added to reduce the repolarization reserve. Further administration of dexmedetomidine did not influence APD, SDR or the occurrence of arrhythmias. In the last group (n = 12), a combination of acetylcholine (1 µM) and isoproterenol (1 µM) was used to facilitate atrial fibrillation. Additional treatment with dexmedetomidine prolonged the atrial APD but did not reduce AF episodes. In this study, dexmedetomidine did not significantly alter cardiac repolarization duration and was not proarrhythmic in different models of ventricular and atrial arrhythmias. Of note, dexmedetomidine might be antiarrhythmic in acquired LQT2 by reducing SDR.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Dexmedetomidina/farmacología , Técnicas Electrofisiológicas Cardíacas , Sistema de Conducción Cardíaco/fisiopatología , Animales , Modelos Animales de Enfermedad , Preparación de Corazón Aislado , Conejos
10.
Anesthesiology ; 135(4): 633-648, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34270686

RESUMEN

BACKGROUND: Parabrachial nucleus excitation reduces cortical delta oscillation (0.5 to 4 Hz) power and recovery time associated with anesthetics that enhance γ-aminobutyric acid type A receptor action. The effects of parabrachial nucleus excitation on anesthetics with other molecular targets, such as dexmedetomidine and ketamine, remain unknown. The hypothesis was that parabrachial nucleus excitation would cause arousal during dexmedetomidine and ketamine anesthesia. METHODS: Designer Receptors Exclusively Activated by Designer Drugs were used to excite calcium/calmodulin-dependent protein kinase 2α-positive neurons in the parabrachial nucleus region of adult male rats without anesthesia (nine rats), with dexmedetomidine (low dose: 0.3 µg · kg-1 · min-1 for 45 min, eight rats; high dose: 4.5 µg · kg-1 · min-1 for 10 min, seven rats), or with ketamine (low dose: 2 mg · kg-1 · min-1 for 30 min, seven rats; high dose: 4 mg · kg-1 · min-1 for 15 min, eight rats). For control experiments (same rats and treatments), the Designer Receptors Exclusively Activated by Designer Drugs were not excited. The electroencephalogram and anesthesia recovery times were recorded and analyzed. RESULTS: Parabrachial nucleus excitation reduced delta power in the prefrontal electroencephalogram with low-dose dexmedetomidine for the 150-min analyzed period, excepting two brief periods (peak median bootstrapped difference [clozapine-N-oxide - saline] during dexmedetomidine infusion = -6.06 [99% CI = -12.36 to -1.48] dB, P = 0.007). However, parabrachial nucleus excitation was less effective at reducing delta power with high-dose dexmedetomidine and low- and high-dose ketamine (peak median bootstrapped differences during high-dose [dexmedetomidine, ketamine] infusions = [-1.93, -0.87] dB, 99% CI = [-4.16 to -0.56, -1.62 to -0.18] dB, P = [0.006, 0.019]; low-dose ketamine had no statistically significant decreases during the infusion). Recovery time differences with parabrachial nucleus excitation were not statistically significant for dexmedetomidine (median difference for [low, high] dose = [1.63, 11.01] min, 95% CI = [-20.06 to 14.14, -20.84 to 23.67] min, P = [0.945, 0.297]) nor low-dose ketamine (median difference = 12.82 [95% CI: -3.20 to 39.58] min, P = 0.109) but were significantly longer for high-dose ketamine (median difference = 11.38 [95% CI: 1.81 to 24.67] min, P = 0.016). CONCLUSIONS: These results suggest that the effectiveness of parabrachial nucleus excitation to change the neurophysiologic and behavioral effects of anesthesia depends on the anesthetic's molecular target.


Asunto(s)
Ritmo Delta/efectos de los fármacos , Dexmedetomidina/farmacología , Ácido Glutámico , Ketamina/farmacología , Neuronas/efectos de los fármacos , Núcleos Parabraquiales/efectos de los fármacos , Anestesia/métodos , Anestésicos Disociativos/farmacología , Animales , Proteínas de Unión al Calcio/fisiología , Ritmo Delta/fisiología , Ácido Glutámico/fisiología , Hipnóticos y Sedantes/farmacología , Masculino , Neuronas/fisiología , Núcleos Parabraquiales/fisiología , Ratas , Ratas Sprague-Dawley
11.
Int J Med Sci ; 17(16): 2454-2467, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33029088

RESUMEN

Aims: Dexmedetomidine (Dex) as a highly selective α2-adrenoceptor agonist, was widely used anesthetic in perioperative settings, whether Dex induces cardiac hypertrophy during perioperative administration is unknown. Methods: The effects of Dex on cardiac hypertrophy were explored using the transverse aortic constriction model and neonatal rat cardiomyocytes. Results: We reported that Dex induces cardiomyocyte hypertrophy with activated ERK, AKT, PKC and inactivated AMPK in both wild-type mice and primary cultured rat cardiomyocytes. Additionally, pre-administration of Dex protects against transverse aortic constriction induced-heart failure in mice. We found that Dex up-regulates the activation of ERK, AKT, and PKC via suppression of AMPK activation in rat cardiomyocytes. However, suppression of mitochondrial coupling efficiency and membrane potential by FCCP blocks Dex induced AMPK inactivation as well as ERK, AKT, and PKC activation. All of these effects are blocked by the α2-adrenoceptor antagonist atipamezole. Conclusion: The present study demonstrates Dex preconditioning induces cardiac hypertrophy that protects against heart failure through mitochondria-AMPK pathway in perioperative settings.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Cardiomegalia/inducido químicamente , Dexmedetomidina/farmacología , Insuficiencia Cardíaca/prevención & control , Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Animales , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/administración & dosificación , Células Cultivadas , Dexmedetomidina/uso terapéutico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Cultivo Primario de Células , Ratas , Transducción de Señal/efectos de los fármacos
12.
Int J Med Sci ; 17(16): 2496-2504, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33029092

RESUMEN

Background: To maintain the normal pregnancy, suppression of inflammatory signaling pathway is a crucial physiologic response. Dexmedetomidine has been used for labor analgesia or supplement of inadequate regional analgesia during delivery. And it has been reported that dexmedetomidine has an anti-inflammatory effect. In this study, we examined the influence of dexmedetomidine on the expression of cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) and inflammatory cytokines in lipopolysaccharide (LPS)-stimulated human amnion-derived WISH cells. In addition, we evaluated the association of mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathway in anti-inflammatory effect of dexmedetomidine. Methods: Human amnion-derived WISH cells were pretreated with various concentrations of dexmedetomidine (0.001-1 µg/ml) for 1 h and after then treated with LPS (1 µg/ml) for 24 h. MTT assay was conducted to evaluate the cytotoxicity. Nitric oxide (NO) production was analyzed using Griess-reaction microassay. RT-PCR was performed for analysis of mRNA expressions of COX-2, PGE2, tumor necrosis factor (TNF)-α and interlukin (IL)-1ß. Protein expressions of COX-2, PGE2, p38 and NF-κB were analyzed by western blotting. Results: LPS and dexmedetomidine had no cytotoxic effect on WISH cells. There was no difference in NO production after dexmedetomidine pretreatment. The mRNA and protein expressions of COX-2 and PGE2 were decreased by dexmedetomidine pretreatment in LPS-treated WISH cells. Dexmedetomidine also attenuated the LPS-induced mRNA expression of TNF-α and IL-1ß. The activation of p38 and NF-κB was suppressed by dexmedetomidine pretreatment in LPS-treated WISH cells. Conclusion: We demonstrated that dexmedetomidine pretreatment suppressed the expressions of inflammatory mediators increased by LPS. In addition, this study suggests that anti-inflammatory effect of dexmedetomidine on WISH cells was mediated by the inhibitions of p38 and NF-κB activation.


Asunto(s)
Amnios/efectos de los fármacos , Antiinflamatorios/farmacología , Dexmedetomidina/farmacología , Inflamación/tratamiento farmacológico , Amnios/citología , Amnios/inmunología , Antiinflamatorios/uso terapéutico , Línea Celular , Ciclooxigenasa 2/metabolismo , Dexmedetomidina/uso terapéutico , Dinoprostona/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/inmunología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
J Med Life ; 13(2): 206-210, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32742515

RESUMEN

Nausea is a mental sensation of unease and discomfort before vomiting. Vomiting refers to the return of the contents of the upper gastrointestinal tract to the mouth caused by contractions of chest and abdomen muscles. Postoperative nausea and vomiting is an unpleasant experience with high treatment costs. Therefore, this study aimed to compare the effects of haloperidol, metoclopramide, dexmedetomidine, and ginger on postoperative nausea and vomiting after laparoscopy. This double-blind clinical trial was performed on all laparoscopy candidates at Valiasr hospital, Arak, Iran. The patients were randomly divided into four groups (haloperidol, metoclopramide, dexmedetomidine and ginger), and all patients underwent general anesthesia using fentanyl, midazolam, atracurium, and propofol. After intubation, tube fixation, and stable hemodynamic conditions, the patients received four ginger capsules with a hint of lemon. A group of patients received 25 µg of dexmedetomidine. In the Plasil group, 10 mg of metoclopramide was given 30 minutes before the completion of surgery. In addition, 0.5 cc of haloperidol (5 mg) was administered to a group of patients. Heart rate, blood pressure, and oxygen saturation were recorded from the beginning of surgery, every 15 minutes until the end of the surgery. Furthermore, the occurrence of nausea and vomiting was recorded during recovery, 2 and 4 hours after surgery. Data were then analyzed using the SPSS software v.23. Eighty-eight patients were enrolled in the study. The youngest and the oldest were 30 years and 70 years old, respectively, and the mean age was 48.02 ± 9.31 years. Moreover, the number of women in the four groups was higher than that of men. Blood pressure in the dexmedetomidine group was lower than the other four groups (P <0.05). The lowest heart rate was observed in the haloperidol group, while the highest heart rate was seen in the plasil group (P <0.05). The occurrence of vomiting and nausea was not significantly different between the four groups (P <0.05). Our results showed no significant difference in postoperative nausea and vomiting between the four drugs. Due to the hemodynamic changes induced by each drug, it is best to use these drugs based on the patient's condition. Ginger is also a herbal remedy that has fewer side effects, and this drug can be a good option for patients when there is no contraindication.


Asunto(s)
Colecistectomía Laparoscópica/efectos adversos , Dexmedetomidina/uso terapéutico , Haloperidol/uso terapéutico , Metoclopramida/uso terapéutico , Extractos Vegetales/uso terapéutico , Náusea y Vómito Posoperatorios/tratamiento farmacológico , Náusea y Vómito Posoperatorios/etiología , Zingiber officinale/química , Adulto , Anciano , Presión Sanguínea/efectos de los fármacos , Dexmedetomidina/farmacología , Método Doble Ciego , Femenino , Haloperidol/farmacología , Humanos , Irán , Masculino , Metoclopramida/farmacología , Persona de Mediana Edad , Oxígeno/metabolismo
14.
Pharmacology ; 105(11-12): 662-668, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32460288

RESUMEN

BACKGROUND: Adrenaline (Adr) and dexmedetomidine (Dex) are commonly used adjuvants of local anesthetics; however, the difference in the improvement of analgesia of local anesthetics between the 2 adjuvants remains unclear. OBJECTIVE: The objective of this experimental research was to evaluate the cutaneous analgesic effect of mexiletine (Mex) by coadministration with Dex or Adr. METHODS: The effect of a nociceptive block was assessed based on the inhibition of the cutaneous trunci muscle reflex in response to skin pinpricks in rats. The analgesic activity of Mex alone and Mex coadministered with Dex or Adr was evaluated after subcutaneous injections. Subcutaneous injections of drugs or combinations include Mex 0.6, 1.8, and 6.0 µmol; Adr 13.66 nmol; Dex 1.05600 nmol; saline; and Mex 1.8 and 6.0 µmol, respectively, combined with Dex 0.01056, 0.10560, and 1.05600 nmol or Adr 0.55, 2.73, and 13.66 nmol, with each injection dose of 0.6 mL. RESULTS: Subcutaneous injections of Mex elicited dose-related cutaneous analgesia. Compared with Mex (1.8 µmol), adding Dex or Adr to Mex (1.8 µmol) solutions for skin nociceptive block potentiated and prolonged the action. Mex (6.0 µmol) combined with Dex or Adr extended the duration of cutaneous analgesia when compared with Mex (6.0 µmol) alone. A high dose of Adr is more effective with Mex 1.8 µmol than that of Dex, whereas medium and low doses were less effective. Mex 6.0 µmol combined with any dose of Adr is superior to that of Dex. CONCLUSIONS: Both Dex and Adr improve the sensory block and enhance the nociceptive block duration of Mex. But in most cases, Adr is superior to Dex. It may be that different mechanisms of action of the 2 adjuvants lead to the differences.


Asunto(s)
Adyuvantes Farmacéuticos/farmacología , Anestésicos Locales/farmacología , Dexmedetomidina/farmacología , Epinefrina/farmacología , Mexiletine/farmacología , Dolor Nociceptivo/tratamiento farmacológico , Adyuvantes Farmacéuticos/administración & dosificación , Analgesia/métodos , Anestesia Local/métodos , Anestésicos Locales/administración & dosificación , Animales , Conducta Animal/efectos de los fármacos , Dexmedetomidina/administración & dosificación , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Epinefrina/administración & dosificación , Inyecciones Subcutáneas , Masculino , Mexiletine/administración & dosificación , Ratas , Ratas Sprague-Dawley , Reflejo/efectos de los fármacos , Piel/efectos de los fármacos
15.
Free Radic Res ; 54(1): 76-90, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31909644

RESUMEN

Dexmedetomidine (Dex), a sedative and analgesic agent, is known to have a cardioprotective effect against ischaemia/reperfusion (I/R) injury via regulation of antioxidant and anti-inflammatory signals. In contrast, Se shows a cardioprotective effect against I/R injury, because it is a key component of selenoproteins, most of which are antioxidant enzymes such as GPxs and TrxRs. This study aimed to determine whether the protective effects on myocardial cells against I/R injury were further improved when treatment with Dex and Se in combination. H9C2 cells were treated with Dex and Na2SeO3, alone or in combination, before oxygen glucose deprivation/reoxygenation (OGD/R). OGD/R-induced myocardial cell injury was evaluated using cell viability, apoptosis rate, the release of LDH, and intracellular ROS levels. Both Dex and Na2SeO3 improved cell viability and reduced the apoptosis rate, LDH release, and intracellular ROS. This cytoprotection was higher with Dex and Na2SeO3 cotreatment than their individual treatments. Treatment with Dex increased the SOD1, SOD2, GPx1, and GPx2 expression in H9C2 cells in OGD/R, while Na2SeO3 increased the GPx1-4 and TrxR1-3 mRNA levels. Notably, cotreatment with Dex and Na2SeO3 increased the mRNA expression of all these antioxidant enzymes. Dex treatment attenuated the activation of JNK, p65 (NF-κB), Camk1, and NLRP3 signals. Na2SeO3 enhanced the inhibitory effect of Dex on phosphorylated (p)-p65, p65, and NLRP3 in OGD/R. However, TrxR1 knockdown attenuated the positive effect of Na2SeO3 on Dex-mediated anti-inflammatory effects. In summary, cotreatments with Dex and Na2SeO3 further improved antioxidant and anti-inflammatory protection of myocardial cells from I/R injury compared to their individual treatments.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Dexmedetomidina/uso terapéutico , Hipnóticos y Sedantes/uso terapéutico , Miocardio/metabolismo , Selenio/metabolismo , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Dexmedetomidina/farmacología , Humanos , Hipnóticos y Sedantes/farmacología , Miocardio/citología , Ratas
16.
Neuromolecular Med ; 22(2): 210-217, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31654225

RESUMEN

Although there is an increment in stroke burden in the world, stroke therapeutic strategies are still extremely limited to a minority of patients. We previously demonstrated that dexmedetomidine (DEX) protects against focal cerebral ischemia via inhibiting neurons autophagy. Nevertheless, the role of DEX in regulating astrocytes autophagic status in oxygen-glucose deprivation, a condition that mimics cerebral ischemia, is still unknown. In this study, we have shown that DEX and DEX + RAPA (autophagy inducer) increased viability and reduced apoptosis of primary astrocytes in oxygen-glucose deprivation (OGD) model compared with DEX + 3-methyladenine (3-MA) (autophagy inhibitor). DEX induced the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin 1, while reduced the expression of p62 in primary cultured astrocytes through induction of autophagy. In addition, DEX enhanced the expression of tuberous sclerosis complex 2 (TSC2) in primary cultured astrocytes, while reduced the expression of mammalian target of rapamycin (mTOR). In conclusion, our study suggests that DEX exerts a neuroprotection against OGD-induced astrocytes injury via activation of astrocytes autophagy by regulating the TSC2/mTOR signaling pathway, which provides a new insight into the mechanisms of DEX treatment for acute ischemic injury.


Asunto(s)
Astrocitos/efectos de los fármacos , Autofagia/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Dexmedetomidina/farmacología , Proteínas del Tejido Nervioso/fisiología , Fármacos Neuroprotectores/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/fisiología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Autofagia/fisiología , Células Cultivadas , Evaluación Preclínica de Medicamentos , Glucosa/farmacología , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Daño por Reperfusión/prevención & control , Sirolimus/farmacología , Proteína 2 del Complejo de la Esclerosis Tuberosa/fisiología
17.
Aging (Albany NY) ; 11(21): 9556-9568, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31682592

RESUMEN

Dexmedetomidine is known to alleviate cerebral ischemia-reperfusion injury (CIRI). We established a rat model of CIRI, which exhibited higher neurological deficit scores and a greater number of apoptotic cells in the cerebral ischemic penumbra than controls. Dexmedetomidine reversed the neuronal apoptosis and improved neurological function in this model. We then examined Sigma-1 receptor (Sig-1R) expression on the endoplasmic reticulum (ER) in brain tissues at different reperfusion time points. Sig-1R expression increased with CIRI and decreased with increasing reperfusion times. After 24 hours of reperfusion, dexmedetomidine upregulated Sig-1R expression, and ER stress proteins (GRP78, CHOP, JNK and Caspase-3) were detected in brain tissues with Western blotting. Moreover, GRP78 expression followed a pattern similar to Sig-1R. Dexmedetomidine induced GRP78 expression but inhibited CHOP, Caspase-3 and phosphorylated-JNK expression in brain tissues. A Sig-1R-specific inhibitor reduced GRP78 expression and partially inhibited the upregulation of GRP78 by dexmedetomidine. The inhibitor also increased CHOP and Caspase-3 expression and partially reversed the inhibitory effects of dexmedetomidine on these pro-apoptotic ER stress proteins. These results suggest that dexmedetomidine at least partially inhibits ER stress-induced apoptosis by activating Sig-1R, thereby attenuating brain damage after 24 hours of ischemia-reperfusion.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Lesiones Encefálicas/prevención & control , Dexmedetomidina/uso terapéutico , Receptores sigma/metabolismo , Daño por Reperfusión/prevención & control , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Animales , Apoptosis/efectos de los fármacos , Dexmedetomidina/farmacología , Evaluación Preclínica de Medicamentos , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Masculino , Distribución Aleatoria , Ratas Sprague-Dawley , Receptor Sigma-1
18.
Kidney Int ; 96(5): 1150-1161, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31530477

RESUMEN

Norepinephrine exacerbates renal medullary hypoxia in experimental septic acute kidney injury. Here we examined whether dexmedetomidine, an α2-adrenergic agonist, can restore vasopressor responsiveness, decrease the requirement for norepinephrine and attenuate medullary hypoxia in ovine gram-negative sepsis. Sheep were instrumented with pulmonary and renal artery flow probes, and laser Doppler and oxygen-sensing probes in the renal cortex and medulla. Conscious sheep received an infusion of live Escherichia coli for 30 hours. Eight sheep in each group were randomized to receive norepinephrine, norepinephrine with dexmedetomidine, dexmedetomidine alone or saline vehicle, from 24-30 hours of sepsis. Sepsis significantly reduced the average mean arterial pressure (84 to 67 mmHg), average renal medullary perfusion (1250 to 730 perfusion units), average medullary tissue pO2 (40 to 21 mmHg) and creatinine clearance (2.50 to 0.78 mL/Kg/min). Norepinephrine restored baseline mean arterial pressure (to 83 mmHg) but worsened medullary hypoperfusion (to 330 perfusion units) and medullary hypoxia (to 9 mmHg). Dexmedetomidine (0.5 µg/kg/h) co-administration significantly reduced the norepinephrine dose (0.8 to 0.4 µg/kg/min) required to restore baseline mean arterial pressure, attenuated medullary hypoperfusion (to 606 perfusion units), decreased medullary tissue hypoxia (to 29 mmHg), and progressively increased creatinine clearance (to 1.8 mL/Kg/min). Compared with vehicle time-control, dexmedetomidine given alone significantly prevented the temporal reduction in mean arterial pressure, but had no significant effects on medullary perfusion and oxygenation or creatinine clearance. Thus, in experimental septic acute kidney injury, dexmedetomidine reduced norepinephrine requirements, attenuated its adverse effects on the renal medulla, and maintained renal function.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Agonistas alfa-Adrenérgicos/uso terapéutico , Dexmedetomidina/uso terapéutico , Norepinefrina/uso terapéutico , Lesión Renal Aguda/sangre , Lesión Renal Aguda/etiología , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Agonistas alfa-Adrenérgicos/farmacología , Animales , Citocinas/sangre , Dexmedetomidina/farmacología , Evaluación Preclínica de Medicamentos , Escherichia coli , Hemodinámica/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Norepinefrina/farmacología , Oxígeno/metabolismo , Sepsis/complicaciones , Ovinos
19.
Vet Anaesth Analg ; 46(4): 529-537, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31147260

RESUMEN

OBJECTIVE: To compare the antinociceptive, sedative and cardiovascular effects of dexmedetomidine pharmacopuncture at Governing Vessel 1 (GV 1) with dexmedetomidine intramuscular (IM) administration. STUDY DESIGN: Randomized, masked crossover design. ANIMALS: A group of eight healthy female cats. METHODS: Cats were randomly administered either dexmedetomidine (0.005 mg kg-1; Dex-IM) IM or at acupuncture point GV 1 (Dex-P) separated by 1 week. Prior to and up to 120 minutes posttreatment, skin temperature (ST), thermal threshold (TT), heart rate (HR), respiratory rate (fR), sedation, muscle relaxation and auditory response scores were recorded. Parametric data were analyzed using a two-way repeated measures anova followed by Tukey's test for multiple comparisons. Nonparametric data were analyzed using a Friedman test followed by Dunn's multiple comparisons test, and Wilcoxon signed-rank test with Bonferroni correction for multiple comparisons. Significance was set at p ≤ 0.05. RESULTS: There were no differences within or between treatments for ST, fR and auditory response. TT was significantly higher at 30-90 minutes in Dex-P (p ≤ 0.0285) than baseline. TT was significantly higher at 60-90 minutes for Dex-P than for Dex-IM (p ≤ 0.0252). HR was significantly lower at 10-75 minutes in Dex-P (p ≤ 0.0378) and at 5-75 minutes in Dex-IM (p ≤ 0.0132) than baseline. Compared with baseline, sedation scores were higher at 25 minutes (p = 0.0327) and 30 minutes (p = 0.0327), and muscle relaxation scores were higher at 25 minutes (p = 0.0151) and 35 minutes (p = 0.0151) in Dex-P. There were no differences in HR, sedation and muscle relaxation scores between treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Dex-P increased thermal antinociception compared with Dex-IM at the same dose of dexmedetomidine in cats. This antinociceptive effect must be evaluated under clinical situations.


Asunto(s)
Analgesia por Acupuntura/veterinaria , Gatos , Sedación Consciente/veterinaria , Dexmedetomidina/administración & dosificación , Frecuencia Cardíaca/efectos de los fármacos , Dolor/veterinaria , Animales , Estudios Cruzados , Dexmedetomidina/farmacología , Femenino , Calor , Relajación Muscular/efectos de los fármacos , Distribución Aleatoria , Respiración/efectos de los fármacos , Temperatura Cutánea/efectos de los fármacos
20.
Neurochem Int ; 129: 104493, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31220473

RESUMEN

Glutamatergic excitotoxicity is crucial in the pathogenesis of epileptic seizures. Dexmedetomidine, a potent and highly selective α2 adrenoceptor agonist, inhibits glutamate release from nerve terminals in rat cerebrocortical nerve terminals. However, the ability of dexmedetomidine to affect glutamate-induced brain injury is still unknown. Therefore, the present study evaluated the protective effect of dexmedetomidine against brain damage by using a kainic acid (KA) rat model, a frequently used model for temporal lobe epilepsy. Rats were treated with dexmedetomidine (1 or 5 µg/kg, intraperitoneally) 30 min before the KA (15 mg/kg) intraperitoneal injection. KA-induced seizure score and elevations of glutamate release in rat hippocampi were inhibited by pretreatment with dexmedetomidine. Histopathological and TUNEL staining analyzes showed that dexmedetomidine attenuated KA-induced neuronal death in the hippocampus. Dexmedetomidine ameliorated KA-induced apoptosis, and this neuroprotective effect was accompanied by inhibited the KA-induced caspase-3 expression as well as MAPKs phosphorylation, and reversed Bcl-2 down-expression, coupled with increased Nrf2, BDNF and TrkB expression in KA-treated rats. The results suggest that dexmedetomidine protected rat brains from KA-induced excitotoxic damage by reducing glutamate levels, suppressing caspase-3 activation and MAPKs phosphorylation, and enhancing Bcl-2, Nrf2, BDNF and TrkB expression in the hippocampus. Therefore, dexmedetomidine may be beneficial for preventing or treating brain disorders associated with excitotoxic neuronal damage. In conclusion, these data suggest that dexmedetomidine has the therapeutic potential for treating epilepsy.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/agonistas , Dexmedetomidina/uso terapéutico , Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Ácido Kaínico/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Convulsiones/prevención & control , Animales , Anticonvulsivantes/farmacología , Apoptosis/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/genética , Dexmedetomidina/farmacología , Evaluación Preclínica de Medicamentos , Hipocampo/fisiopatología , Ácido Kaínico/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Factor 2 Relacionado con NF-E2/biosíntesis , Factor 2 Relacionado con NF-E2/genética , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Receptor trkB/biosíntesis , Receptor trkB/genética , Convulsiones/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA