Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nutrients ; 16(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612951

RESUMEN

BACKGROUND: The study investigated the impact of starch degradation products (SDexF) as prebiotics on obesity management in mice and overweight/obese children. METHODS: A total of 48 mice on a normal diet (ND) and 48 on a Western diet (WD) were divided into subgroups with or without 5% SDexF supplementation for 28 weeks. In a human study, 100 overweight/obese children were randomly assigned to prebiotic and control groups, consuming fruit and vegetable mousse with or without 10 g of SDexF for 24 weeks. Stool samples were analyzed for microbiota using 16S rRNA gene sequencing, and short-chain fatty acids (SCFA) and amino acids (AA) were assessed. RESULTS: Results showed SDexF slowed weight gain in female mice on both diets but only temporarily in males. It altered bacterial diversity and specific taxa abundances in mouse feces. In humans, SDexF did not influence weight loss or gut microbiota composition, showing minimal changes in individual taxa. The anti-obesity effect observed in mice with WD-induced obesity was not replicated in children undergoing a weight-loss program. CONCLUSIONS: SDexF exhibited sex-specific effects in mice but did not impact weight loss or microbiota composition in overweight/obese children.


Asunto(s)
Obesidad Infantil , Solanum tuberosum , Niño , Humanos , Masculino , Femenino , Animales , Ratones , Dextrinas , Dieta Occidental , Disbiosis , Sobrepeso , ARN Ribosómico 16S/genética , Peso Corporal , Almidón/farmacología , Frutas
2.
Nutrients ; 16(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38613013

RESUMEN

This study aims to investigate the potential mechanisms underlying the protective effects of myo-inositol (MI) supplementation during suckling against the detrimental effects of fetal energy restriction described in animal studies, particularly focusing on the potential connections with BDNF signaling. Oral physiological doses of MI or the vehicle were given daily to the offspring of control (CON) and 25%-calorie-restricted (CR) pregnant rats during suckling. The animals were weaned and then fed a standard diet until 5 months of age, when the diet was switched to a Western diet until 7 months of age. At 25 days and 7 months of age, the plasma BDNF levels and mRNA expression were analyzed in the hypothalamus and three adipose tissue depots. MI supplementation, especially in the context of gestational calorie restriction, promoted BDNF secretion and signaling at a juvenile age and in adulthood, which was more evident in the male offspring of the CR dams than in females. Moreover, the CR animals supplemented with MI exhibited a stimulated anorexigenic signaling pathway in the hypothalamus, along with improved peripheral glucose management and enhanced browning capacity. These findings suggest a novel connection between MI supplementation during suckling, BDNF signaling, and metabolic programming, providing insights into the mechanisms underlying the beneficial effects of MI during lactation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Restricción Calórica , Masculino , Femenino , Embarazo , Animales , Ratas , Tejido Adiposo , Dieta Occidental , Suplementos Dietéticos
3.
Food Funct ; 15(6): 3141-3157, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38439638

RESUMEN

Four major types of resistant starch (RS1-4) are present in foods, all of which can alter the microbiome and are fermented in the cecum and colon to produce short-chain fatty acids (SCFAs). Type 4 RSs are chemically modified starches, not normally found in foods, but have become a popular food additive as their addition increases fiber content. Multiple studies, in humans and rodents, have explored how different RS4 affect post-prandial glucose metabolism, but fewer studies have examined the effects of RS4 consumption on the microbiome. In addition, many RS studies conducted in rodents use high-fat diets that do not approximate what is typically consumed by humans. To address this, mice were fed a Total Western Diet (TWD), based on National Health and Nutrition Examination Survey (NHANES) data that mimics the macro and micronutrient composition of a typical American diet, for six weeks, and then supplemented with 0, 2, 5, or 10% of the RS4, Versafibe 1490™ (VF), a phosphorylated and cross-linked potato starch, for an additional three weeks. The cecal contents were analyzed for SCFA content and microbiota composition. Butyrate production was increased while branched chain SCFA production decreased. The alpha-diversity of the microbiome decreased in mice fed the TWD with 10% VF 1490 added while the beta-diversity plot showed that the 5% and 10% VF groups were distinct from mice fed the TWD. Similarly, the largest changes in relative abundance of various genera were greatest in mice fed the 10% VF diet. To examine the effect of VF consumption on tissue gene expression, cecal and distal colon tissue mRNA abundance were analyzed by RNASeq. Gene expression changes were more prevalent in the cecum than the colon and in mice fed the 10% VF diet, but the number of changes was substantially lower than we previously observed in mice fed the TWD supplemented with native potato starch (RPS). These results provide additional evidence that the structure of the RS is a major factor determining its effects on the microbiome and gene expression in the cecum and colon.


Asunto(s)
Ciego , Almidón Resistente , Solanum tuberosum , Animales , Ratones , Ciego/metabolismo , Ciego/microbiología , Dieta Occidental , Expresión Génica , Microbiota , Encuestas Nutricionales , Almidón Resistente/metabolismo , Solanum tuberosum/química
4.
PeerJ ; 12: e17110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525281

RESUMEN

Background: The prevalence of inflammatory bowel diseases is increasing, especially in developing countries, with adoption of Western-style diet. This study aimed to investigate the effects of two emulsifiers including lecithin and carboxymethyl cellulose (CMC) on the gut microbiota, intestinal inflammation and the potential of inulin as a means to protect against the harmful effects of emulsifiers. Methods: In this study, male C57Bl/6 mice were divided into five groups (n:6/group) (control, CMC, lecithin, CMC+inulin, and lecithin+inulin). Lecithin and CMC were diluted in drinking water (1% w/v) and inulin was administered daily at 5 g/kg for 12 weeks. Histological examination of the ileum and colon, serum IL-10, IL-6, and fecal lipocalin-2 levels were analyzed. 16S rRNA gene V3-V4 region amplicon sequencing was performed on stool samples. Results: In the CMC and lecithin groups, shortening of the villus and a decrease in goblet cells were observed in the ileum and colon, whereas inulin reversed this effect. The lipocalin level, which was 9.7 ± 3.29 ng in the CMC group, decreased to 4.1 ± 2.98 ng with the administration of inulin. Bifidobacteria and Akkermansia were lower in the CMC group than the control, while they were higher in the CMC+inulin group. In conclusion, emulsifiers affect intestinal health negatively by disrupting the epithelial integrity and altering the composition of the microbiota. Inulin is protective on their harmful effects. In addition, it was found that CMC was more detrimental to microbiota composition than lecithin.


Asunto(s)
Microbioma Gastrointestinal , Inulina , Masculino , Ratones , Animales , Inulina/farmacología , Lecitinas/farmacología , ARN Ribosómico 16S/genética , Dieta Occidental
5.
Elife ; 122024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38412016

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the intestinal microbiota and disruption of microbiota-host interactions contribute to the pathology of NAFLD. We previously demonstrated that gut microbiota-derived tryptophan metabolite indole-3-acetate (I3A) was decreased in both cecum and liver of high-fat diet-fed mice and attenuated the expression of inflammatory cytokines in macrophages and Tnfa and fatty acid-induced inflammatory responses in an aryl-hydrocarbon receptor (AhR)-dependent manner in hepatocytes. In this study, we investigated the effect of orally administered I3A in a mouse model of diet-induced NAFLD. Western diet (WD)-fed mice given sugar water (SW) with I3A showed dramatically decreased serum ALT, hepatic triglycerides (TG), liver steatosis, hepatocyte ballooning, lobular inflammation, and hepatic production of inflammatory cytokines, compared to WD-fed mice given only SW. Metagenomic analysis show that I3A administration did not significantly modify the intestinal microbiome, suggesting that I3A's beneficial effects likely reflect the metabolite's direct actions on the liver. Administration of I3A partially reversed WD-induced alterations of liver metabolome and proteome, notably, decreasing expression of several enzymes in hepatic lipogenesis and ß-oxidation. Mechanistically, we also show that AMP-activated protein kinase (AMPK) mediates the anti-inflammatory effects of I3A in macrophages. The potency of I3A in alleviating liver steatosis and inflammation clearly demonstrates its potential as a therapeutic modality for preventing the progression of steatosis to non-alcoholic steatohepatitis (NASH).


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Inflamación , Dieta Occidental/efectos adversos , Citocinas , Suplementos Dietéticos , Acetatos , Indoles/farmacología
6.
Food Funct ; 15(3): 1250-1264, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38194248

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases worldwide. NAFLD is caused by numerous factors, including the genetic susceptibility, oxidative stress, unhealthy diet, and gut microbiota dysbiosis. Among these, gut microbiota is a key factor and plays an important role in the development of NAFLD. Therefore, modulating the composition and structure of gut microbiota might provide a new intervention strategy for NAFLD. Highland barley ß-glucan (HBG) is a polysaccharide that can interact with gut microbiota after entering the lower gastrointestinal tract and subsequently improves NAFLD. Therefore, a Western diet was used to induce NAFLD in mouse models and the intervention effects and underlying molecular mechanisms of HBG on NAFLD mice based on gut microbiota were explored. The results indicated that HBG could regulate the composition of gut microbiota in NAFLD mice. In particular, HBG increased the abundance of short-chain fatty acids (SCFA)-producing bacteria (Prevotella-9, Bacteroides, and Roseburia) as well as SCFA contents. The increase in SCFA contents might activate the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, thereby improving the liver lipid metabolism disorder and reducing liver lipid deposition.


Asunto(s)
Microbioma Gastrointestinal , Hordeum , Enfermedad del Hígado Graso no Alcohólico , beta-Glucanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , beta-Glucanos/farmacología , Dieta Occidental/efectos adversos , Hígado/metabolismo , Suplementos Dietéticos , Lípidos/farmacología , Ratones Endogámicos C57BL , Dieta Alta en Grasa
7.
Metabolism ; 153: 155795, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38253121

RESUMEN

BACKGROUND AND AIMS: The incidence of statin-induced new-onset diabetes (NOD) is increasing but its underlying mechanisms remain unclear. We aimed to investigate the effects of various doses of atorvastatin (ATO)-induced autophagy on the development of NOD. METHODS AND RESULTS: The isolated rat islets and MIN6 cells-treated with ATO, exhibited impaired glucose-stimulated insulin secretion, reduced insulin content, and induced apoptosis. Additionally, autophagy was induced at all doses (in vitro: 5, 10, 20 µM; in vivo: 10, 15, 20 mg/kg) in ATO-treated MIN6 cells or western diet (WD)-fed mice. In contrast to normal glucose-tolerant mice administered a low-dose (10 mg/kg) ATO, those treated with high-doses (15 or 20 mg/kg) exhibited impaired glucose tolerance. Furthermore, high-dose ATO-treated mice showed decreased ß-cell mass and increased apoptosis compared to that of vehicle-treated mice. We also observed that the number of vesicophagous cells in the pancreas of 20 mg/kg ATO-treated WD-fed mice was higher than in vehicle-treated WD-fed mice. Inhibiting autophagy using 3-methyladenine (3-MA) and siAtg5 improved glucose tolerance in vivo and in vitro by preventing apoptotic ß-cell death and restoring insulin granules. CONCLUSION: These results indicate that high doses of ATO induced hyperactivated autophagy in pancreatic cells, leading to impaired insulin storage, decreased cell viability, and reduced functional cell mass, ultimately resulting in NOD development.


Asunto(s)
Diabetes Mellitus , Dieta Occidental , Ratones , Ratas , Animales , Atorvastatina/farmacología , Dieta Occidental/efectos adversos , Glucosa/farmacología , Insulina/farmacología , Autofagia
8.
Mol Metab ; 80: 101864, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159883

RESUMEN

OBJECTIVE: Maternal exposure during pregnancy is a strong determinant of offspring health outcomes. Such exposure induces changes in the offspring epigenome resulting in gene expression and functional changes. In this study, we investigated the effect of maternal Western hypercaloric diet (HCD) programming during the perinatal period on neuronal plasticity and cardiometabolic health in adult offspring. METHODS: C57BL/6J dams were fed HCD for 1 month prior to mating with regular diet (RD) sires and kept on the same diet throughout pregnancy and lactation. At weaning, offspring were maintained on either HCD or RD for 3 months resulting in 4 treatment groups that underwent cardiometabolic assessments. DNA and RNA were extracted from the hypothalamus to perform whole genome methylation, mRNA, and miRNA sequencing followed by bioinformatic analyses. RESULTS: Maternal programming resulted in male-specific hypertension and hyperglycemia, with both males and females showing increased sympathetic tone to the vasculature. Surprisingly, programmed male offspring fed HCD in adulthood exhibited lower glucose levels, less insulin resistance, and leptin levels compared to non-programmed HCD-fed male mice. Hypothalamic genes involved in inflammation and type 2 diabetes were targeted by differentially expressed miRNA, while genes involved in glial and astrocytic differentiation were differentially methylated in programmed male offspring. These data were supported by our findings of astrogliosis, microgliosis and increased microglial activation in programmed males in the paraventricular nucleus (PVN). Programming induced a protective effect in male mice fed HCD in adulthood, resulting in lower protein levels of hypothalamic TGFß2, NF-κB2, NF-κBp65, Ser-pIRS1, and GLP1R compared to non-programmed HCD-fed males. Although TGFß2 was upregulated in male mice exposed to HCD pre- or post-natally, only blockade of the brain TGFß receptor in RD-HCD mice improved glucose tolerance and a trend to weight loss. CONCLUSIONS: Our study shows that maternal HCD programs neuronal plasticity in the offspring and results in male-specific hypertension and hyperglycemia associated with hypothalamic inflammation in mechanisms and pathways distinct from post-natal HCD exposure. Together, our data unmask a compensatory role of HCD programming, likely via priming of metabolic pathways to handle excess nutrients in a more efficient way.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Hiperglucemia , Hipertensión , MicroARNs , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Humanos , Ratones , Animales , Masculino , Dieta Occidental , Diabetes Mellitus Tipo 2/metabolismo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratones Endogámicos C57BL , Epigénesis Genética , Hipotálamo/metabolismo , Inflamación/genética , Inflamación/metabolismo , Hiperglucemia/metabolismo , Glucosa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Cardiovasculares/metabolismo
9.
Food Res Int ; 173(Pt 2): 113450, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803779

RESUMEN

In this study, we aimed to evaluate the impact of consuming refined mackerel oil (MO) from rest raw material on hepatic fat accumulation, glucose tolerance, and metabolomic changes in the liver from male C57BL/6N mice. The mice were fed either a Western diet (WD) or a chow diet, with 30 g or 60 g MO per kg of diet (3% or 6%) for 13 weeks. Body weight, energy intake, and feed efficiency were monitored throughout the experiment. A glucose tolerance test was conducted after 11 weeks, and metabolomic analyses of the liver were performed at termination. Inclusion of MO in the WD, but not in the chow diet, led to increased liver weight, hepatic lipid accumulation, elevated fasting blood glucose, reduced glucose tolerance, and insulin sensitivity. Hepatic levels of eicosapentaenoic and docosahexaenoic acid increased, but no changes in levels of saturated and monounsaturated fatty acids were observed. The liver metabolomic profile was different between mice fed a WD with or without MO, with a reduction in choline ether lipids, phosphatidylcholines, and sphingomyelins in mice fed MO. This study demonstrates that supplementing the WD, but not the chow diet, with refined MO accelerates accumulation of hepatic fat droplets and negatively affects blood glucose regulation. The detrimental effects of supplementing a WD with MO were accompanied by increased fat digestibility and overall energy intake, and lower levels of choline and choline-containing metabolites in liver tissue.


Asunto(s)
Dieta Occidental , Perciformes , Ratones , Masculino , Animales , Dieta Occidental/efectos adversos , Glucemia/metabolismo , Colina/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Ácidos Grasos Monoinsaturados
10.
Clin Nutr ; 42(11): 2258-2269, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37826992

RESUMEN

BACKGROUND & AIMS: The effect of walnut-related modulation of gut microbiota composition on microbiota functionality is unknown. The aim was to characterize the effect of a walnut-enriched diet (WD), compared to a fatty acid-matched diet devoid of walnuts (WFMD) and a diet where oleic acid replaces alpha-linolenic acid (ORAD), on bacterial gene expression. METHODS: A 3-period, randomized, crossover, controlled-feeding study was conducted. Participants were provided a 2-week run-in standard western diet (SWD; 50% kcal carbohydrate, 16% protein, 34% fat, 12% SFA). Following the SWD in random sequence order, participants were provided the WD, WFMD, and ORAD (48% carbohydrate; 17% protein; fat 35%; 7% SFA). The WD contained 18% of energy from walnuts (57 g/d/2100 kcal). The WFMD and ORAD were devoid of walnuts; liquid non-tropical plant oils were included in these diets. Metatranscriptomic analyses were performed as an exploratory outcome. RESULTS: The analytical sample included 35 participants (40% female) with a mean ± SD age of 43 ± 10 y and BMI of 30.3 ± 4.9 kg/m2. The ⍺-diversity of taxa actively expressing genes, assessed by observed species (p = 0.27) and Pielou's Evenness (p = 0.09), did not differ among the diets. The ⍺-diversity of actively expressed genes was greater following the WD compared to the WFMD and ORAD as assessed by the observed genes and Pielou's Evenness metrics (p < 0.05). ß-Diversity of the actively expressed genes differed following the WD compared to the WFMD (p = 0.001) and ORAD (p = 0.001); ß-diversity did not differ between the WFMD and ORAD. Active composition analyses showed increased Gordonibacter (p < 0.001) activity following the WD vs. the ORAD. Greater expression of many genes was observed following the WD compared to the WFMD and ORAD. Following the WD, greater expression of metabolism-related genes encoding glycine amidinotransferase (GATM; K00613) and arginine deiminase (K01478) was observed compared to the WFMD. Greater expression of glycine amidinotransferase (GATM; K00613) by Gordonibacter was also observed following the WD vs. the WFMD and ORAD. CONCLUSION: Our results suggest walnut intake may increase endogenous production of homoarginine through gut microbiota-mediated upregulation of GATM, which is a novel mechanism by which walnuts may lower cardiovascular disease risk. However, given the exploratory nature replication is needed. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov (NCT02210767).


Asunto(s)
Microbioma Gastrointestinal , Juglans , Humanos , Microbioma Gastrointestinal/genética , Nueces , Dieta , Dieta Occidental , Carbohidratos , Estudios Cruzados
11.
EMBO Mol Med ; 15(11): e18367, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37859621

RESUMEN

Clinical and preclinical studies established that supplementing diets with ω3 polyunsaturated fatty acids (PUFA) can reduce hepatic dysfunction in nonalcoholic steatohepatitis (NASH) but molecular underpinnings of this action were elusive. Herein, we used multi-omic network analysis that unveiled critical molecular pathways involved in ω3 PUFA effects in a preclinical mouse model of western diet induced NASH. Since NASH is a precursor of liver cancer, we also performed meta-analysis of human liver cancer transcriptomes that uncovered betacellulin as a key EGFR-binding protein upregulated in liver cancer and downregulated by ω3 PUFAs in animals and humans with NASH. We then confirmed that betacellulin acts by promoting proliferation of quiescent hepatic stellate cells, inducing transforming growth factor-ß2 and increasing collagen production. When used in combination with TLR2/4 agonists, betacellulin upregulated integrins in macrophages thereby potentiating inflammation and fibrosis. Taken together, our results suggest that suppression of betacellulin is one of the key mechanisms associated with anti-inflammatory and anti-fibrotic effects of ω3 PUFA on NASH.


Asunto(s)
Ácidos Grasos Omega-3 , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Ácidos Grasos Omega-3/metabolismo , Dieta Occidental , Betacelulina/metabolismo , Multiómica , Fibrosis , Neoplasias Hepáticas/patología , Hígado/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
12.
Ann Surg ; 278(6): 954-960, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37522222

RESUMEN

OBJECTIVE: To determine the timeframe and associated changes in the microenvironment that promote the development of a diet-induced local-regional recurrence in a mouse model of colorectal surgery. BACKGROUND: Postoperative recurrence and metastasis occur in up to 30% of patients undergoing attempted resection for colorectal cancer (CRC). The underlying mechanisms that drive the development of postoperative recurrences are poorly understood. Preclinical studies have demonstrated a diet and microbial-driven pathogenesis of local-regional recurrence, yet the precise mechanisms remain undefined. METHODS: BALB/C mice were fed a western diet (WD) or standard diet (SD), underwent a colon resection and anastomosis, given an Enterococcus faecalis enema on postoperative day (POD) 1, and subjected to a CT26 cancer cell enema (mimicking shed cancer cells) on POD2. Mice were sacrificed between POD3 and POD7 and cancer cell migration was tracked. Dynamic changes in gene expression of anastomotic tissue that were associated with cancer cell migration was assessed. RESULTS: Tumor cells were identified in mice fed either a SD or WD in both anastomotic and lymphatic tissue as early as on POD3. Histology demonstrated that these tumor cells were viable and replicating. In WD-fed mice, the number of tumor cells increased over the early perioperative period and was significantly higher than in mice fed a SD. Microarray analysis of anastomotic tissue found that WD-fed mice had 11 dysregulated genes associated with tumorigenesis. CONCLUSIONS: A WD promotes cancer cells to permeate a healing anastomosis and migrate into anastomotic and lymphatic tissue forming viable tumor nodules. These data offer a novel recurrence pathogenesis by which the intestinal microenvironment promotes a CRC local-regional recurrence.


Asunto(s)
Neoplasias Colorrectales , Cirugía Colorrectal , Humanos , Ratones , Animales , Dieta Occidental , Ratones Endogámicos BALB C , Recurrencia Local de Neoplasia , Anastomosis Quirúrgica , Modelos Animales de Enfermedad , Neoplasias Colorrectales/patología , Fuga Anastomótica , Microambiente Tumoral
13.
Gut Microbes ; 15(1): 2221095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305942

RESUMEN

Impacts of dietary fiber on intestinal inflammation are complex, but some specific semi-purified fibers, particularly psyllium, can protect humans and rodents against colitis. Mechanisms underlying such protection are not fully understood but may involve activation of the FXR bile acid receptor. Obesity and its associated consequences, referred to as metabolic syndrome, are associated with, and promoted by, low-grade inflammation in a variety of tissues including the intestine. Hence, we examined whether psyllium might ameliorate the low-grade intestinal inflammation that occurs in diet-induced obesity and, moreover, the extent to which it might ameliorate adiposity and/or dysglycemia in this disease model. We observed that enriching a high-fat diet with psyllium provided strong protection against the low-grade gut inflammation and metabolic consequences that were otherwise induced by the obesogenic diet. Such protection was fully maintained in FXR-deficient mice, indicating that distinct mechanisms mediate psyllium's protection against colitis and metabolic syndrome. Nor did psyllium's protection associate with, or require, fermentation or IL-22 production, both of which are key mediators of beneficial impacts of some other dietary fibers. Psyllium's beneficial impacts were not evident in germfree mice but were observed in Altered Schaedler Flora mice, in which psyllium modestly altered relative and absolute abundance of the small number of taxa present in these gnotobiotic mice. Thus, psyllium protects mice against diet-induced obesity/metabolic syndrome by a mechanism independent of FXR and fermentation but nonetheless requires the presence of at least a minimal microbiota.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Síndrome Metabólico , Psyllium , Humanos , Animales , Ratones , Síndrome Metabólico/prevención & control , Dieta Occidental , Obesidad/prevención & control , Fibras de la Dieta , Inflamación
14.
Nutrients ; 15(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37242285

RESUMEN

The areca nut is often consumed as a chewing food in the Asian region. Our previous study revealed that the areca nut is rich in polyphenols with high antioxidant activity. In this study, we further assessed the effects and molecular mechanisms of the areca nut and its major ingredients on a Western diet-induced mice dyslipidemia model. Male C57BL/6N mice were divided into five groups and fed with a normal diet (ND), Western diet (WD), WD with areca nut extracts (ANE), areca nut polyphenols (ANP), and arecoline (ARE) for 12 weeks. The results revealed that ANP significantly reduced WD-induced body weight, liver weight, epididymal fat, and liver total lipid. Serum biomarkers showed that ANP ameliorated WD-enhanced total cholesterol and non-high-density lipoprotein (non-HDL). Moreover, analysis of cellular signaling pathways revealed that sterol regulatory element-binding protein 2 (SREBP2) and enzyme 3-hydroxy-3-methylglutaryld coenzyme A reductase (HMGCR) were significantly downregulated by ANP. The results of gut microbiota analysis revealed that ANP increased the abundance of beneficial bacterium Akkermansias and decreased the abundance of the pathogenic bacterium Ruminococcus while ARE shown the opposite result to ANP. In summary, our data indicated that areca nut polyphenol ameliorated WD-induced dyslipidemia by increasing the abundance of beneficial bacteria in the gut microbiota and reducing the expressions of SREBP2 and HMGCR while areca nut ARE inhibited this improvement potential.


Asunto(s)
Areca , Enfermedad del Hígado Graso no Alcohólico , Masculino , Ratones , Animales , Areca/química , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Nueces , Dieta Occidental/efectos adversos , Ratones Endogámicos C57BL , Arecolina/farmacología , Extractos Vegetales/farmacología
15.
Food Res Int ; 169: 112927, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254353

RESUMEN

Alternative feed ingredients for farmed salmon are warranted due to increasing pressure on wild fish stocks. As locally farmed blue mussels may represent an environmentally sustainable substitute with a lower carbon footprint, we aimed to test the potential and safety of substituting fish meal with blue mussel meal in feed for Atlantic salmon. Salmon were fed diets in which fish meal was partially replaced with blue mussel meal in increments, accounting for up to 13.1 % of the ingredients. Fillets from the salmon were subsequently used to prepare obesity-promoting western diets for a 13-weeks mouse feeding trial. In a second mouse trial, we tested the effects of inclusion of up to 8% blue mussel meal directly in a meat-based western diet. Partial replacement of fish meal with blue mussel meal in fish feed preserved the n-3 polyunsaturated fatty acid (PUFA) content in salmon fillets. The observed blue mussel-induced changes in the fatty acid profiles in salmon fillets did not translate into similar changes in the livers of mice that consumed the salmon, and no clear dose-dependent responses were found. The relative levels of the marine n-3 fatty acids, EPA, and DHA were not reduced, and the n-3/n-6 PUFA ratios in livers from all salmon-fed mice were unchanged. The inclusion of blue mussel meal in a meat-based western diet led to a small, but dose-dependent increase in the n-3/n-6 PUFA ratios in mice livers. Diet-induced obesity, glucose intolerance, and hepatic steatosis were unaffected in both mice trials and no blue mussel-induced adverse effects were observed. In conclusion, our results suggest that replacing fish meal with blue mussel meal in salmon feed will not cause adverse effects in those who consume the salmon fillets.


Asunto(s)
Ácidos Grasos Omega-3 , Mytilus edulis , Salmo salar , Animales , Ratones , Dieta Occidental , Ácidos Grasos/metabolismo , Mytilus edulis/metabolismo , Obesidad , Salmo salar/metabolismo , Alimentos Marinos
16.
Biomed Pharmacother ; 163: 114826, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37148862

RESUMEN

Gyejibongnyeong-hwan (GBH), a traditional Chinese medicine, is used in clinical practice to treat blood stasis in metabolic diseases. Herein, we examined the effects of GBH on dyslipidemia and investigated the underlying mechanisms by focusing on modulation of the gut microbiota-bile acid axis by GBH. We utilized a Western diet-induced dyslipidemia mouse model and divided animals into the following four groups (n = 5 each): the normal chow diet, vehicle control (WD), simvastatin (Sim, 10 mg/kg/day simvastatin; positive control), and GBH (GBH, 300 mg/kg/day) groups. The drugs were administered for 10 weeks, and morphological changes in the liver and aorta were analyzed. The mRNA expression of genes related to cholesterol metabolism, gut microbiota, and bile acid profiles were also evaluated. The GBH group showed significantly lower levels of total cholesterol, accumulation of lipids, and inflammatory markers in the liver and aorta of Western diet-fed mice. Low-density lipoprotein cholesterol levels were significantly lower in the GBH group than in the WD group (P < 0.001). The expression of cholesterol excretion-associated genes such as liver X receptor alpha and ATP-binding cassette subfamily G member 8, as well as the bile acid synthesis gene cholesterol 7 alpha-hydroxylase, which lowers cholesterol in circulation, was increased. Furthermore, GBH inhibited the intestinal farnesoid X receptor (FXR)-fibroblast growth factor 15 signaling pathway through the interactions of gut microbiota with bile acids acting as FXR ligands, which included chenodeoxycholic acid and lithocholic acid. Overall, GBH improved dyslipidemia induced by a Western diet by modulating the gut microbiota-bile acid axis.


Asunto(s)
Dislipidemias , Microbioma Gastrointestinal , Ratones , Animales , Ácidos y Sales Biliares/metabolismo , Dieta Occidental/efectos adversos , Hígado/metabolismo , Colesterol/metabolismo , Dislipidemias/tratamiento farmacológico , Dislipidemias/metabolismo , Simvastatina/farmacología , Ratones Endogámicos C57BL
17.
Int J Food Sci Nutr ; 74(2): 234-246, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37016780

RESUMEN

Trimethylamine N-oxide (TMAO), a gut microbiota-dependent metabolite, has been shown to aggravate cardiovascular disease. However, the mechanisms of TMAO in the setting of cardiovascular disease progress remain unclear. Here, we aim to investigate the effects of TMAO on atherosclerosis (AS) development and the underlying mechanisms. Apoe -/- mice received choline or TMAO supplementation in a normal diet and a western diet for 12 weeks. Choline or TMAO supplementation in both normal diet and western diet significantly promoted plaque progression in Apoe-/- mice. Besides, serum lipids levels and inflammation response in the aortic root were enhanced by choline or TMAO supplementation. In particular, choline or TMAO supplementation in the western diet changed intestinal microbiota composition and bile acid metabolism. Therefore, choline or TMAO supplementation may promote AS by modulating gut microbiota in mice fed with a western diet and by other mechanisms in mice given a normal diet, even choline or TMAO supplementation in a normal diet can promote AS.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Ratones , Animales , Dieta Occidental/efectos adversos , Colina/metabolismo , Colina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Metilaminas , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Suplementos Dietéticos , Apolipoproteínas E/genética
18.
Semin Immunol ; 67: 101756, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37018910

RESUMEN

The intestinal microbiota composition and associated bioactivities are sensitive to various modifier cues such as stress, inflammation, age, life-style and nutrition, which in turn are associated with susceptibility to developing cancer. Among these modifiers, diet has been shown to influence both microbiota composition as well as being an important source of microbial-derived compounds impacting the immunological, neurological and hormonal systems. Thus, it is necessary to take a holistic view when considering effect of diet on health and diseases. In this review, we focus on the interplay between western diet, the microbiota and cancer development by dissecting key components of the diet and leveraging data from human interventions and pre-clinical studies to better understand this relationship. We highlight key progress as well as stressing limitations in this field of research.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Dieta Occidental , Dieta , Carcinogénesis
19.
Nutrients ; 15(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36771318

RESUMEN

The Western diet (WD) predisposes to bodyweight gain and obesity and is linked to mitochondrial dysfunction, oxidative damage, inflammation, and multisystem disease, even affecting the reproductive organs, fertility, and pregnancy outcomes. In this study, we investigated the effects of multi-ingredient supplementation (MIS) with antioxidants, phytonutrients, and vitamins ('Fertility Enhancer'; FE) on white adipose tissue (WAT) expansion, nonalcoholic fatty liver disease (NAFLD), and infertility in WD-fed C57BL/6J mice. Five-month-old male (M) and female (F) mice were fed a low-fat diet (LF) or a high fat/sucrose WD (HF) for six weeks, followed by six weeks of LF (3.64 kcal/g), HF (4.56 kcal/g), or HF combined with FE (4.50 kcal/g). A sub-set of animals were sacrificed at 12 weeks, while the remainder were harem-mated in a 1:2 male-to-female ratio, and singly housed during the gestational period. Two-way, factorial ANOVA analysis revealed a main effect of diet on bodyweight (BW), total body fat, % body fat, white adipose tissue mass, and liver lipid content (all p < 0.001), driven by the anti-obesogenic effects of the 'Fertility Enhancer'. Similarly, a main effect of diet was found on PGC1-α mRNA levels (p < 0.05) and mitochondrial protein content (p < 0.001) in perigonadal WAT, with PGC1-α induction and higher complex II and complex III expression in FE vs. HF animals. Copulatory plug counts were higher in FE vs. HE couples (30% vs. 6%), resulting in more litters (4 vs. 0) and higher copulatory success (67% vs. 0%). Although the trends of all histology outcomes were suggestive of a benefit from the FE diet, only the number of atretic follicles and testicular mass were significant. Ovarian IL-1ß mRNA induction was significantly attenuated in the FE group (p < 0.05 vs. HF) with CASP1 attenuation trending lower (p = 0.09 vs. HF), which is indicative of anti-inflammatory benefits of the 'Fertility Enhancer.' We conclude that supplementation with specific phytonutrients, antioxidants, and vitamins may have utility as an adjunctive therapy for weight management, fatty liver disease, and infertility in overweight and obese couples.


Asunto(s)
Infertilidad , Enfermedad del Hígado Graso no Alcohólico , Masculino , Femenino , Animales , Ratones , Dieta Occidental , Ratones Endogámicos C57BL , Obesidad/metabolismo , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Vitaminas , ARN Mensajero/metabolismo
20.
J Nutr Biochem ; 114: 109224, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36403701

RESUMEN

Increased fructose intake from sugar-sweetened beverages and highly processed sweets is a well-recognized risk factor for the development of obesity and its complications. Fructose strongly supports lipogenesis on a normal chow diet by providing both, a substrate for lipid synthesis and activation of lipogenic transcription factors. However, the negative health consequences of dietary sugar are best observed with the concomitant intake of a HFD. Indeed, the most commonly used obesogenic research diets, such as "Western diet", contain both fructose and a high amount of fat. In spite of its common use, how the combined intake of fructose and fat synergistically supports development of metabolic complications is not fully elucidated. Here we present the preponderance of evidence that fructose consumption decreases oxidation of dietary fat in human and animal studies. We provide a detailed review of the mitochondrial ß-oxidation pathway. Fructose affects hepatic activation of fatty acyl-CoAs, decreases acylcarnitine production and impairs the carnitine shuttle. Mechanistically, fructose suppresses transcriptional activity of PPARα and its target CPT1α, the rate limiting enzyme of acylcarnitine production. These effects of fructose may be, in part, mediated by protein acetylation. Acetylation of PGC1α, a co-activator of PPARα and acetylation of CPT1α, in part, account for fructose-impaired acylcarnitine production. Interestingly, metabolic effects of fructose in the liver can be largely overcome by carnitine supplementation. In summary, fructose decreases oxidation of dietary fat in the liver, in part, by impairing acylcarnitine production, offering one explanation for the synergistic effects of these nutrients on the development of metabolic complications, such as NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fructosa/metabolismo , PPAR alfa/metabolismo , Hígado/metabolismo , Carnitina/metabolismo , Dieta Occidental/efectos adversos , Grasas de la Dieta/farmacología , Dieta Alta en Grasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA