Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Photobiomodul Photomed Laser Surg ; 42(4): 306-313, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38546858

RESUMEN

Background: This investigation set out to compare the impacts of low-level diode laser (LLDL) and red light-emitting diode (LED) on the survival of human dental pulp stem cells (hDPSCs) and osteogenic/odontogenic differentiation. Methods and materials: In this ex vivo experimental study, the experimental groups underwent the irradiation of LLDL (4 J/cm2 energy density) and red LED in the osteogenic medium. Survival of hDPSCs was assessed after 24 and 48 h (n = 9) using the methyl thiazolyl tetrazolium (MTT) assay. The assessment of osteogenic/odontogenic differentiation was conducted using alizarin red staining (ARS; three repetitions). The investigation of osteogenic and odontogenic gene expression was performed at two time points, specifically 24 and 48 h (n = 12). This analysis was performed utilizing real-time reverse-transcription polymerase chain reaction (RT-PCR). The groups were compared at each time point using SPSS version 24. To analyze the data, the Mann-Whitney U test, analysis of variance, Tukey's test, and t-test were utilized. Results: The MTT assay showed that LLDL significantly decreased the survival of hDPSCs after 48 h, compared with other groups (p < 0.05). The qualitative results of ARS revealed that LLDL and red LED increased the osteogenic differentiation of hDPSCs. LLDL and red LED both upregulated the expression of osteogenic/odontogenic genes, including bone sialoprotein (BSP), alkaline phosphatase (ALP), dentin matrix protein 1 (DMP1), and dentin sialophosphoprotein (DSPP), in hDPSCs. The LLDL group exhibited a higher level of gene upregulation (p < 0.0001). Conclusions: The cell survival of hDPSCs was reduced, despite an increase in osteogenic/odontogenic activity. Clinical relevance: Introduction of noninvasive methods in regenerative endodontic treatments.


Asunto(s)
Diferenciación Celular , Supervivencia Celular , Pulpa Dental , Láseres de Semiconductores , Terapia por Luz de Baja Intensidad , Odontogénesis , Osteogénesis , Células Madre , Humanos , Pulpa Dental/citología , Pulpa Dental/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Osteogénesis/efectos de la radiación , Células Madre/efectos de la radiación , Células Madre/citología , Supervivencia Celular/efectos de la radiación , Odontogénesis/efectos de la radiación , Células Cultivadas , Luz Roja
2.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108257

RESUMEN

Low-level laser therapy (LLLT) is a treatment that is increasingly used in orthopedics practices. In vivo and in vitro studies have shown that low-level laser therapy (LLLT) promotes angiogenesis, fracture healing and osteogenic differentiation of stem cells. However, the underlying mechanisms during bone formation remain largely unknown. Factors such as wavelength, energy density, irradiation and frequency of LLLT can influence the cellular mechanisms. Moreover, the effects of LLLT are different according to cell types treated. This review aims to summarize the current knowledge of the molecular pathways activated by LLLT and its effects on the bone healing process. A better understanding of the cellular mechanisms activated by LLLT can improve its clinical application.


Asunto(s)
Terapia por Luz de Baja Intensidad , Osteogénesis , Curación de Fractura , Células Madre , Diferenciación Celular/efectos de la radiación
3.
Lasers Med Sci ; 37(9): 3681-3692, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36227520

RESUMEN

The effect of near infrared (NIR) laser irradiation on proliferation and osteogenic differentiation of buccal fat pad-derived stem cells and the role of transient receptor potential (TRP) channels was investigated in the current research. After stem cell isolation, a 940 nm laser with 0.1 W, 3 J/cm2 was used in pulsed and continuous mode for irradiation in 3 sessions once every 48 h. The cells were cultured in the following groups: non-osteogenic differentiation medium/primary medium (PM) and osteogenic medium (OM) groups with laser-irradiated (L +), without irradiation (L -), laser treated + Capsazepine inhibitor (L + Cap), and laser treated + Skf96365 inhibitor (L + Skf). Alizarin Red staining and RT-PCR were used to assess osteogenic differentiation and evaluate RUNX2, Osterix, and ALP gene expression levels. The pulsed setting showed the best viability results (P < 0.05) and was used for osteogenic differentiation evaluations. The results of Alizarin red staining were not statistically different between the four groups. Osterix and ALP expression increased in the (L +) group. This upregulation abrogated in the presence of Capsazepine, TRPV1 inhibitor (L + Cap); however, no significant effect was observed with Skf96365 (L + Skf).


Asunto(s)
Tejido Adiposo , Células Madre , Canales de Potencial de Receptor Transitorio , Humanos , Tejido Adiposo/efectos de la radiación , Diferenciación Celular/genética , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Células Cultivadas , Osteogénesis/genética , Osteogénesis/efectos de la radiación , Células Madre/efectos de la radiación , Canales de Potencial de Receptor Transitorio/metabolismo , Rayos Infrarrojos
4.
Lasers Med Sci ; 37(9): 3509-3516, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36066778

RESUMEN

Low-level laser therapy (LLLT) also known as photobiomodulation is a treatment to change cellular biological activity. The exact effects of LLLT remain unclear due to the different irradiation protocols. The purpose of this study was to investigate the effects of LLLT by three different irradiation methods on the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. BMSCs were inoculated in 24-well plates and then irradiated or not (control) with a laser using three different irradiation methods. The irradiation methods were spot irradiation, covering irradiation, and scanning irradiation according to different spot areas (0.07 cm2 or 1.96 cm2) and irradiation areas (0.35 cm2 or 1.96 cm2), respectively. The laser was applied three times at energy densities of 4 J/cm2. The cell proliferation by CCK-8. ALP activity assay, alizarin red, and quantitative real-time polymerase chain reaction (RT-PCR) were performed to assess osteogenic differentiation and mineralization. Increases in cell proliferation was obvious following irradiation, especially for covering irradiation. The ALP activity was significantly increased in irradiated groups compared with non-irradiated control. The level of mineralization was obviously improved following irradiation, particularly for covering irradiation. RT-PCR detected significantly higher expression of ALP, OPN, OCN, and RUNX-2 in the group covering than in the others, and control is the lowest. The presented results indicate that the biostimulative effects of LLLT on BMSCs was influenced by t he irradiation method, and the covering irradiation is more favorable method to promote the proliferation and osteogenic differentiation of BMSCs.


Asunto(s)
Terapia por Luz de Baja Intensidad , Células Madre Mesenquimatosas , Osteogénesis/genética , Osteogénesis/efectos de la radiación , Células de la Médula Ósea , Células Madre Mesenquimatosas/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Células Cultivadas
5.
Lasers Med Sci ; 37(3): 1993-2003, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34787763

RESUMEN

This study aims to evaluate the impact of red LED irradiation on the viability, proliferation, colonogenic potential, markers expression along with osteogenic and chondrogenic differentiation of dental pulp stem cells. DPSCs were isolated from sound human permanent teeth using enzymatic digestion method and seeded with regular culture media. Cells at P4 were irradiated using red LED Light (627 nm, 2 J/cm2) and examined for growth kinetics, and multilineage differentiation using the appropriate differentiation media. The irradiated groups showed an increase in cellular growth rates, cell viability, clonogenic potential, and decrease in population doubling time compared to the control group. Cells of the irradiated groups showed enhanced differentiation towards osteogenic and chondrogenic lineages as revealed by histochemical staining using alizarin red and alcian blue stains. Photobiomodulation is an emerging promising element of tissue engineering triad besides stem cells, scaffolds, and growth factors.


Asunto(s)
Terapia por Luz de Baja Intensidad , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Células Cultivadas , Pulpa Dental , Humanos , Cinética , Osteogénesis/efectos de la radiación , Células Madre
6.
Eur Rev Med Pharmacol Sci ; 25(20): 6319-6325, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34730212

RESUMEN

OBJECTIVE: To evaluate the effect of near infra-red gallium-aluminium-arsenide (GaAlAs) diode laser (805 nm) irradiation on proliferation and differentiation of rat femoral bone marrow-derived mesenchymal stem cells (BMSCs) cultured in osteogenic medium. MATERIALS AND METHODS: BMSCs were obtained from femurs of 60 Sprague Dawley rats (200 gm). The control group comprised isolated BMSCs supplemented with an osteogenic differentiation medium. On the other hand, in the experimental group, the BMSCs were irradiated with a near-infrared laser in addition to an osteogenic differentiation medium. The experimental group was irradiated with a soft tissue laser comprising of allium-aluminium-arsenic (Ga-Al-Ar) Diode at a near-infrared wavelength of 805 nm in continuous mode. The different output powers applied were 0.5 W, 1.0 W, 1.5 W and 2.0 W respectively. Various energy levels of 1, 4, 7 and 10 J were used for irradiation. Alkaline phosphatase (ALP) assay and Alizarin staining were performed to confirm osteogenic differentiation. Statistical analysis was done using a one-way ANOVA and a p-value of <0.05 was considered significant. RESULTS: According to our findings, 1.27 J/cm2 was the optimal energy density value that significantly increased the BMSC proliferation at the output of 1.5 W with the power density of 1.27 W/cm2. On 1.27 J/cm2, there was a significant difference compared to the control group on the first day, and the osteogenic differentiation increased significantly on the 4th day compared to the 1st day. CONCLUSIONS: According to our findings, 1.27 J/cm2 was the optimal energy density value that significantly increased the BMSC proliferation at the output of 1.5 W with the power density of 1.27 W/cm2.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Células Madre Mesenquimatosas/efectos de la radiación , Animales , Láseres de Semiconductores , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de la radiación , Ratas , Ratas Sprague-Dawley
7.
J Photochem Photobiol B ; 225: 112349, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34742031

RESUMEN

PURPOSE: To investigate the safety of photobiomodulation therapy (PBM) in tumors and its potential as a radiosensitizer when combined with radiotherapy. METHODS: We have performed in vitro experiments in A431 cells to assess proliferation and cell cycle after PBM, as well as clonogenic assay and H2AX-gamma immunolabeling to quantify double strand breaks after the combination of PBM and radiation. In vivo experiments in xenografts included Kaplan-Meier survival analysis, optical coherence tomography (OCT) and histological analysis. RESULTS: PBM did not induce proliferation in vitro, but increased the G2/M fraction by 27% 24h after illumination, resulting in an enhancement of 30% in radiation effect in the clonogenic assay. The median survival of the PBM-RT group increased by 4 days and the hazard ratio was 0.417 (CI 95%: 0.173-1.006) when compared to radiation alone. OCT analysis over time demonstrated that PBM increases tumor necrosis due to radiation, and histological analysis showed that illumination increased cell differentiation and angiogenesis, which may play a role in the synergetic effect of PBM and radiation. CONCLUSION: PBM technique may be one of the most appropriate approaches for radiosensitizing tumors while protecting normal tissue because of its low cost and low training requirements for staff.


Asunto(s)
Terapia por Luz de Baja Intensidad/métodos , Neoplasias/terapia , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Humanos , Ratones , Neoplasias/irrigación sanguínea , Neoplasias/patología , Neovascularización Patológica/terapia
8.
Sci Rep ; 11(1): 19114, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34580378

RESUMEN

Bone fracture is a growing public health burden and there is a clinical need for non-invasive therapies to aid in the fracture healing process. Previous studies have demonstrated the utility of electromagnetic (EM) fields in promoting bone repair; however, its underlying mechanism of action is unclear. Interestingly, there is a growing body of literature describing positive effects of an EM field on mitochondria. In our own work, we have previously demonstrated that differentiation of osteoprogenitors into osteoblasts involves activation of mitochondrial oxidative phosphorylation (OxPhos). Therefore, it was reasonable to propose that EM field therapy exerts bone anabolic effects via stimulation of mitochondrial OxPhos. In this study, we show that application of a low intensity constant EM field source on osteogenic cells in vitro resulted in increased mitochondrial membrane potential and respiratory complex I activity and induced osteogenic differentiation. In the presence of mitochondrial inhibitor antimycin A, the osteoinductive effect was reversed, confirming that this effect was mediated via increased OxPhos activity. Using a mouse tibial bone fracture model in vivo, we show that application of a low intensity constant EM field source enhanced fracture repair via improved biomechanical properties and increased callus bone mineralization. Overall, this study provides supporting evidence that EM field therapy promotes bone fracture repair through mitochondrial OxPhos activation.


Asunto(s)
Curación de Fractura/efectos de la radiación , Fracturas Óseas/terapia , Magnetoterapia/métodos , Mitocondrias/efectos de la radiación , Animales , Diferenciación Celular/efectos de la radiación , Línea Celular , Fracturas Óseas/patología , Humanos , Potencial de la Membrana Mitocondrial/efectos de la radiación , Ratones , Mitocondrias/fisiología , Osteoblastos/fisiología , Osteoblastos/efectos de la radiación , Osteogénesis/efectos de la radiación , Fosforilación Oxidativa/efectos de la radiación
9.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299204

RESUMEN

BACKGROUND: bone tissue regeneration remains a current challenge. A growing body of evidence shows that mitochondrial dysfunction impairs osteogenesis and that this organelle may be the target for new therapeutic options. Current literature illustrates that red and near-infrared light can affect the key cellular pathways of all life forms through interactions with photoacceptors within the cells' mitochondria. The current study aims to provide an understanding of the mechanisms by which photobiomodulation (PBM) by 900-nm wavelengths can induce in vitro molecular changes in pre-osteoblasts. METHODS: The PubMed, Scopus, Cochrane, and Scholar databases were used. The manuscripts included in the narrative review were selected according to inclusion and exclusion criteria. The new experimental set-up was based on irradiation with a 980-nm laser and a hand-piece with a standard Gaussian and flat-top beam profile. MC3T3-E1 pre-osteoblasts were irradiated at 0.75, 0.45, and 0.20 W in continuous-wave emission mode for 60 s (spot-size 1 cm2) and allowed to generate a power density of 0.75, 0.45, and 0.20 W/cm2 and a fluence of 45, 27, and 12 J/cm2, respectively. The frequency of irradiation was once, three times (alternate days), or five times (every day) per week for two consecutive weeks. Differentiation, proliferation, and cell viability and their markers were investigated by immunoblotting, immunolabelling, fluorescein-FragELTM-DNA, Hoechst staining, and metabolic activity assays. RESULTS AND CONCLUSIONS: The 980-nm wavelength can photobiomodulate the pre-osteoblasts, regulating their metabolic schedule. The cellular signal activated by 45 J/cm2, 0.75 W and 0.75 W/cm2 consist of the PI3K/Akt/Bcl-2 pathway; differentiation markers were not affected, nor do other parameters seem to stimulate the cells. Our previous and present data consistently support the window effect of 980 nm, which has also been described in extracted mitochondria, through activation of signalling PI3K/Akt/Bcl-2 and cyclin family, while the Wnt and Smads 2/3-ß-catenin pathway was induced by 55 J/cm2, 0.9 W and 0.9 W/cm2.


Asunto(s)
Osteoblastos/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Cráneo/citología , Animales , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Rayos Láser , Terapia por Luz de Baja Intensidad/métodos , Ratones , Osteoblastos/metabolismo , Osteoblastos/efectos de la radiación , Osteogénesis , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal , Cráneo/metabolismo , Cráneo/efectos de la radiación
10.
Sci Rep ; 11(1): 13067, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158600

RESUMEN

The plasticity and proliferative capacity of stem cells decrease with aging, compromising their tissue regenerative potential and therapeutic applications. This decline is directly linked to mitochondrial dysfunction. Here, we present an effective strategy to reverse aging of mouse bone marrow mesenchymal stem cells (BM-MSCs) by restoring their mitochondrial functionality using photobiomodulation (PBM) therapy. Following the characterization of young and aged MSCs, our results show that a near-infrared PBM treatment delivering 3 J/cm2 is the most effective modality for improving mitochondrial functionality and aging markers. Furthermore, our results unveil that young and aged MSCs respond differently to the same modality of PBM: whereas the beneficial effect of a single PBM treatment dissipates within 7 h in aged stem cells, it is lasting in young ones. Nevertheless, by applying three consecutive treatments at 24-h intervals, we were able to obtain a lasting rejuvenating effect on aged MSCs. Our findings are of particular significance for improving autologous stem cell transplantation in older individuals who need such therapies most.


Asunto(s)
Senescencia Celular/efectos de la radiación , Terapia por Luz de Baja Intensidad , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de la radiación , Envejecimiento/fisiología , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de la radiación , Linaje de la Célula/efectos de la radiación , Proliferación Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación
11.
Lasers Med Sci ; 36(1): 139-146, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32607713

RESUMEN

Phototherapy is an effective therapeutic option in the treatment of vitiligo; however, responses varied among the different types. The underlying mechanism has scarcely been investigated. To investigate and compare the effects of phototherapy on the mutation of melanocyte lineage differentiated from human scalp-derived neural crest stem cells (HS-NCSCs) with p75 neurotrophin receptor expression positive and p75 neurotrophin receptor expression negative group in vitro, the HS-NCSCs were isolated from fetal scalp tissue, which is identified by immunofluorescent staining. The p75(+) and p75(-) cells from HS-NCSCs were isolated by magnetic cell sorting, respectively. The embryonic neural crest stem cell biomarkers were detected by RT-PCR. Narrow-band UVB (NB-UVB) was used to irradiate the cells. Cell proliferation was evaluated by cell count. Tyrosinase, Tyrp1, and Tyrp2 gene expression were measured by quantitative RT-PCR. Tyrosinase and GRCR protein levels were investigated by Western blot analysis. The electrophoretic strip showed that Sox2, Oct4, Sox10, and Nestin of p75(+) HS-NCSCs were brighter than the p75(-) HS-NCSCs. After the same dose radiation with NB-UVB, the cell proliferation of p75(+) group showed less inhibitory rate compared with the p75(-) HS-NCSCs. The tyrosinase mRNA and protein expression of differentiated melanocytes increased significantly in the group of p75(+) HS-NCSCs compared with the p75(-) group. The melanocytic mutation of p75(+) HS-NCSCs increased significantly compared with the p75(-) HS-NCSCs under NB-UVB, which indicated there were more melanocyte precursors in the differentiated cells from p75(+) HS-NCSCs. This may provide new insights for the different repigmentation efficacy of segmental and non-segmental vitiligo.


Asunto(s)
Linaje de la Célula/efectos de la radiación , Melanocitos/citología , Melanocitos/efectos de la radiación , Cresta Neural/citología , Fototerapia , Receptor de Factor de Crecimiento Nervioso/metabolismo , Cuero Cabelludo/citología , Células Madre/citología , Biomarcadores/metabolismo , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Humanos , Melanocitos/metabolismo , Mutación/genética , Células Madre/efectos de la radiación , Terapia Ultravioleta
12.
J Cell Physiol ; 236(2): 921-930, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32583437

RESUMEN

Stem cell transplantation has shown promising regenerative effects against neural injury, and photobiomodulation (PBM) can aid tissue recovery. This study aims to evaluate the therapeutic effect of human umbilical cord mesenchymal stem cells (hUCMSCs) and laser alone or combined on spinal cord injury (SCI). The animals were divided into SCI, hUCMSCs, laser treatment (LASER) and combination treatment (hUCMSCs + LASER) groups. Cell-enriched grafts of hUCMSCs (1 × 106 cells/ml) were injected at the site of antecedent trauma in SCI model rats. A 2 cm2 damaged area was irradiated with 630 nm laser at 100 mW/cm2 power for 20 min. Locomotion was evaluated using Basso-Beattie-Bresnahan (BBB) scores, and neurofilament repair were monitored by histological staining and diffusion tensor imaging (DTI). First, after SCI, the motor function of each group was restored with different degrees, the combination treatment significantly increased the BBB scores compared to either monotherapy. In addition, Nissl bodies were more numerous, and the nerve fibers were longer and thicker in the combination treatment group. Consistent with this, the in situ expression of NF-200 and glial fibrillary acidic protein in the damaged area was the highest in the combination treatment group. Finally, DTI showed that the combination therapy optimally improved neurofilament structure and arrangement. These results may show that the combination of PBM and hUCMSCs transplantation is a feasible strategy for reducing secondary damage and promoting functional recovery following SCI.


Asunto(s)
Células Madre Mesenquimatosas/fisiología , Traumatismos de la Médula Espinal/radioterapia , Traumatismos de la Médula Espinal/terapia , Animales , Diferenciación Celular/efectos de la radiación , Células Cultivadas , Imagen de Difusión Tensora/métodos , Humanos , Filamentos Intermedios/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Actividad Motora/efectos de la radiación , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de la radiación , Médula Espinal/efectos de la radiación , Cordón Umbilical/efectos de la radiación
13.
Lasers Med Sci ; 36(3): 541-553, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32514865

RESUMEN

The purposes of this study are to evaluate the effects of photobiomodulation (PBM) with laser and LED on rat calvaria osteoblasts (rGO lineage), cultured in osteogenic (OST) or regular (REG) medium, after induction of a quiescent state and to test if PBM is capable of osteogenic induction and if there is a sum of effects when combining OST medium with PBM. Before irradiation, the cells were put in a quiescent state (1% FBS) 24 h, when red (AlGaInP-660 nm) and infrared laser (GaAlAs-808 nm) and LED (637 ± 15 nm) were applied. The groups were as follows: red laser (RL3-5 J/cm2, 3 s and RL5-8.3 J/cm2, 5 s, 1.66 W/cm2); infrared laser (IrL3-5 J/cm2, 3 s and IrL5-8.3 J/cm2, 5 s); LED (LED3-3 s and LED5-5 s, 0.02 J/cm2, 0.885 W/cm2); positive (C+, 10% FBS) and negative control (C-, 1% FBS). For alkaline phosphatase (ALP) and mineralization assays, the cells were cultured in REG (DMEM 10% FBS) and OST medium (DMEM 10% FBS, 50 µg/mL ascorbic acid, 10 mM ß-glycerophosphate). Statistical analysis was performed using ANOVA and Tukey's tests (p < 0.05). RL5 and LED5 increased proliferation, in vitro wound closure, ALP, and mineralization in rGO cells (p < 0.05). PBM with red laser and LED induced mineralization by itself, without osteogenic medium, not observed for infrared laser (p < 0.05). A sum of effects was observed in osteogenic medium and PBM by infrared, red laser, and LED (5 s). Red laser and LED increased proliferation, migration, and secretory phases in rGO cells in a dose-dependent manner. PBM with red laser and LED promotes osteogenic induction by itself. PBM with infrared laser and osteogenic medium potentializes mineralization.


Asunto(s)
Rayos Láser , Terapia por Luz de Baja Intensidad , Osteoblastos/efectos de la radiación , Osteogénesis/efectos de la radiación , Cráneo/efectos de la radiación , Fosfatasa Alcalina/metabolismo , Animales , Calcificación Fisiológica/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Ratas
14.
Acc Chem Res ; 53(12): 2777-2790, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33258577

RESUMEN

T cells, a key component in adaptive immunity, are central to many immunotherapeutic modalities aimed at treating various diseases including cancer, infectious diseases, and autoimmune disorders. The past decade has witnessed tremendous progress in immunotherapy, which aims at activation or suppression of the immune responses for disease treatments. Most strikingly, cancer immunotherapy has led to curative responses in a fraction of patients with relapsed or refractory cancers. However, extending those clinical benefits to a majority of cancer patients remains challenging. In order to improve both efficacy and safety of T cell-based immunotherapies, significant effort has been devoted to modulating biochemical signals to enhance T cell proliferation, effector functions, and longevity. Such strategies include discovery of new immune checkpoints, design of armored chimeric antigen receptor (CAR) T cells, and targeted delivery of stimulatory cytokines and so on.Despite the intense global research effort in developing novel cancer immunotherapies, a major dimension of the interactions between cancer and the immune system, its biomechanical aspect, has been largely underappreciated. Throughout their lifecycle, T cells constantly survey a multitude of organs and tissues and experience diverse biomechanical environments, such as shear force in the blood flow and a broad range of tissue stiffness. Furthermore, biomechanical properties of tissues or cells may be altered in disease and inflammation. Biomechanical cues, including both passive mechanical cues and active mechanical forces, have been shown to govern T cell development, activation, migration, differentiation, and effector functions. In other words, T cells can sense, respond to, and adapt to both passive mechanical cues and active mechanical forces.Biomechanical cues have been intensively studied at a fundamental level but are yet to be extensively incorporated in the design of immunotherapies. Nonetheless, the growing knowledge of T cell mechanobiology has formed the basis for the development of novel engineering strategies to mechanically modulate T cell immunity, a nascent field that we termed "mechanical immunoengineering". Mechanical immunoengineering exploits biomechanical cues (e.g., stiffness and external forces) to modulate T cell differentiation, proliferation, effector functions, etc., for diagnostic or therapeutic applications. It provides an additional dimension, complementary to traditional modulation of biochemical cues (e.g., antigen density and co-stimulatory signals), to tailor T cell immune responses and enhance therapeutic outcomes. For example, stiff antigen-presenting matrices have been shown to enhance T cell proliferation independently of the intensity of biochemical stimulatory signals. Current strategies of mechanical immunoengineering of T cells can be categorized into two major fields including passive mechanical cue-oriented and active force-oriented strategies. In this Account, we first present a brief overview of T cell mechanobiology. Next, we summarize recent advances in mechanical immunoengineering, discuss the roles of chemistry and material science in the development of these engineering strategies, and highlight potential therapeutic applications. Finally, we present our perspective on the future directions in mechanical immunoengineering and critical steps to translate mechanical immunoengineering strategies into therapeutic applications in the clinic.


Asunto(s)
Fenómenos Biomecánicos , Neoplasias/terapia , Linfocitos T/inmunología , Diferenciación Celular/efectos de la radiación , Humanos , Inmunoterapia , Rayos Láser , Nanopartículas de Magnetita/química , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo , Ondas Ultrasónicas
15.
Cancer Med ; 9(22): 8279-8300, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33107198

RESUMEN

We performed a systematic review of the current literature addressing the safety and efficacy of photobiomodulation therapy (PBMT) in cancer patients. In this systematic review, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used. In vitro, in vivo, and clinical studies, which investigated the effect of PBMT on cell proliferation/differentiation, tumor growth, recurrence rate, and/or overall survival were included. The Medline/PubMed, EMBASE, and Scopus databases were searched through April 2020. A total of 67 studies met the inclusion criteria with 43 in vitro, 15 in vivo, and 9 clinical studies identified. In vitro studies investigating the effect of PBMT on a diverse range of cancer cell lines demonstrated conflicting results. This could be due to the differences in used parameters and the frequency of PBM applications. In vivo studies and clinical trials with a follow-up period demonstrated that PBMT is safe with regards to tumor growth and patient advantage in the prevention and treatment of specific cancer therapy-related complications. Current human studies, supported by most animal studies, show safety with PBMT using currently recommended clinical parameters, including in Head & Neck cancer (HNC) in the area of PBMT exposure. A significant and growing literature indicates that PBMT is safe and effective, and may even offer a benefit in patient overall survival. Nevertheless, continuing research is indicated to improve understanding and provide further elucidation of remaining questions regarding PBM use in oncology.


Asunto(s)
Terapia por Luz de Baja Intensidad , Neoplasias/radioterapia , Animales , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Humanos , Terapia por Luz de Baja Intensidad/efectos adversos , Terapia por Luz de Baja Intensidad/mortalidad , Neoplasias/mortalidad , Neoplasias/patología , Resultado del Tratamiento , Carga Tumoral/efectos de la radiación
16.
Arch Biochem Biophys ; 685: 108333, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32194044

RESUMEN

This study summarizes the available evidence from systematic reviews on the in vitro effects of photobiomodulation on the proliferation and differentiation of human bone and stromal cells by appraising their methodological quality. Improvements for future studies are also highlighted, with particular emphasis on in vitro protocols and cell-related characteristics. Six reviews using explicit eligibility criteria and methods selected in order to minimize bias were included. There was no compelling evidence on the cellular mechanisms of action or treatment parameters of photobiomodulation; compliance with quality assessment was poor. A rigorous description of laser parameters (wavelength, power, beam spot size, power density, energy density, repetition rate, pulse duration or duty cycle, exposure duration, frequency of treatments, and total radiant energy), exposure conditions (methods to ensure a uniform irradiation and to avoid cross-irradiation, laser-cell culture surface distance, lid presence during irradiation) and cell-related characteristics (cell type or line, isolation and culture conditions, donor-related factors where applicable, tissue source, cell phenotype, cell density, number of cell passages in culture) should be included among eligibility criteria for study inclusion. These methodological improvements will maximize the contribution of in vitro studies on the effects of photobiomodulation on human bone and stromal cells to evidence-based translational research.


Asunto(s)
Terapia por Luz de Baja Intensidad , Osteocitos/metabolismo , Células del Estroma/metabolismo , Animales , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Humanos , Osteocitos/efectos de la radiación , Células del Estroma/efectos de la radiación , Revisiones Sistemáticas como Asunto
17.
Lasers Med Sci ; 35(2): 307-316, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31523781

RESUMEN

Photobiomodulation via a combination of different radiations can produce different effects on biological tissues, such as cell proliferation and differentiation, when compared to those produced via a single radiation. The present study aims to conduct a review of the literature addressing the results and applications of photobiomodulation induced by a combination of two or more radiations as well as their possible effects. PubMed was used to search for studies with restrictions on the year (< 50 years old) and language (English), including studies using human and animal models, either under healthy or pathologic conditions. Several studies have been conducted to evaluate the combination of different radiation effects on cells and biological tissues. Positive effects resulting from multiple-wavelength radiations could be attributed to different absorption levels because superficial and deep tissues could absorb different levels of radiations. Multiple-wavelength radiations from devices combining radiations emitted by low power lasers and light-emitting diodes could be a new approach for promoting photobiomodulation-induced beneficial effects.


Asunto(s)
Terapia por Luz de Baja Intensidad , Radiación , Absorción de Radiación , Animales , Bacterias/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Humanos
18.
Lasers Med Sci ; 35(2): 299-306, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31494789

RESUMEN

Differentiation potential of stem cells into various lineages makes these cells as promising sources to treat multiple diseases. In this regard, the use of different strategies and protocols to increase differentiation capacity is highly demanded. Low-level laser therapy, a relatively noninvasive technique, has the capacity to accelerate the healing of numerous injuries and a portion of restorative capacity could be correlated with the stem cell activation and differentiation. Several mechanisms have been diagnosed to participate in orientation of stem cells to functional mature cells. Among them, the status of DNA methylation orchestrates the maintenance of tissue-specific gene expression during the differentiation procedure. DNA methylation is a momentous event in embryogenesis and functional maturation. This review article highlighted the potency of laser irradiation (low-level intensities) in the differentiation of stem cells by modulation of methylation. The analysis of these modalities could help us to understand the underlying mechanisms participating in the therapeutic effects of photobiomodulation.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Epigénesis Genética/efectos de la radiación , Terapia por Luz de Baja Intensidad , Células Madre/citología , Células Madre/efectos de la radiación , Animales , Metilación de ADN/genética , Metilación de ADN/efectos de la radiación , Desmetilación/efectos de la radiación , Humanos , Células Madre/metabolismo
19.
Lasers Med Sci ; 35(3): 557-566, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31399862

RESUMEN

The probable positive effects of photobiomodulation therapy (PBMT) and oxytocin (OT) treatments together or alone were evaluated on cell viability along with the changes in the gene expression of Osteocalcin (OC), Osteoprotegerin (OPG), and Runt-related transcription factor 2 (Runx2) levels of sham (healthy)-Bone marrow mesenchymal stem cell(BMMSC) and ovariectomy-induced osteoporosis (OVX)-BMMSC. BMMSC was harvested from healthy and OVX rats and was cultured in osteogenic induction medium (OIM). There were five groups of BMMSCs: (1) sham -BMMSCs; (2) control -OVX-BMMSCs; (3) OT-treated-OVX-BMMSCs; (4) PBMT-treated-OVX-BMMSCs, and (5) OT + PBMT-OVX-BMMSCs. In all 5 groups, BMMSC viability and proliferation as well as gene expression of OC, OPG, and RUNX2 were evaluated. PBMT and PBMT + OT treatments showed a promising effect on the increased viability of OVX-BMMSC (ANOVA test; LSD test, p = 0.01, p = 0.002). The results of gene expression analysis revealed that the sham- BMMSCs responded optimally to OT treatment. It was also found that OVX-BMMSCs responded optimally to PBMT + OT and PBMT treatments at early and middle stages of osteogenic induction process. Nevertheless, they responded optimally to PBMT + OT and OT especially at the late stage of osteogenic induction process. PBMT and PBMT + OT treatments significantly increased viability of OVX-BMMSC in OIM in vitro. Both PBMT and PBMT + OT treatments could promote mineralization of OVX-BMMSC in the culture medium at early and middle stages of osteogenic induction process. Both OT and PBMT + OT treatments could promote mineralization of OVX-BMMSC in vitro at late stages of osteogenic induction process.


Asunto(s)
Calcificación Fisiológica/efectos de los fármacos , Calcificación Fisiológica/efectos de la radiación , Terapia por Luz de Baja Intensidad , Células Madre Mesenquimatosas/citología , Osteoporosis/patología , Osteoporosis/fisiopatología , Oxitocina/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Terapia Combinada , Femenino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/patología , Células Madre Mesenquimatosas/efectos de la radiación , Osteoporosis/tratamiento farmacológico , Osteoporosis/radioterapia , Oxitocina/uso terapéutico , Ratas
20.
J Photochem Photobiol B ; 202: 111704, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31743829

RESUMEN

Ultraviolet B (UVB) induces inflammation and causes skin aging. The signs of skin aging, such as wrinkles, discolored spots, loss of skin moisture, and disruption of the skin barrier, are mostly caused by inflammatory signaling among various skin layers. The cells on the outermost surface of the skin are keratinocytes; these cells protect the skin against environmental stress and play an important role in immunomodulation by secreting cytokines in response to environmental stress. In the present study, we found that UVB activates STAT1 to mediate inflammatory signaling, yet STAT1 (S272) and STAT (Y702) shows different responses against UVB exposure. Anhua drak tea is a post-fermented dark tea produced in Anhua and Xinhua country in Hunan province of China. Treatment with 2S,3R-6-methoxycarbonylgallocatechin (MCGE), an epigallocatechin gallate derivative isolated from black tea (Anhua dark tea), effectively suppresses STAT1 activation and inflammatory cytokines, and activates Nrf2 pathway to protect cells from reactive oxygen species production in UVB exposed keratinocyte cells (HaCaT). Interestingly, the effects of MCGE were independent on MAPK signaling pathway. Moreover, MCGE regulates inflammatory cytokines in monocyte-keratinocyte (THP-1, HaCaT) co-culture and macrophage differentiation models. These results suggest that MCGE potentially can be used as a photoprotective agent against UVB-induced inflammatory responses.


Asunto(s)
Catequina/análogos & derivados , Catequina/farmacología , Protectores contra Radiación/farmacología , Transducción de Señal/efectos de los fármacos , Té/química , Rayos Ultravioleta , Sitios de Unión , Catequina/química , Catequina/aislamiento & purificación , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de la radiación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Técnicas de Cocultivo , Citocinas/metabolismo , Humanos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de la radiación , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estructura Terciaria de Proteína , Protectores contra Radiación/química , Protectores contra Radiación/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT1/química , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/efectos de la radiación , Té/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA