Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202294

RESUMEN

Dihydroorotase (DHOase) is the third enzyme in the de novo biosynthesis pathway for pyrimidine nucleotides, and an attractive target for potential anticancer chemotherapy. By screening plant extracts and performing GC-MS analysis, we identified and characterized that the potent anticancer drug plumbagin (PLU), isolated from the carnivorous plant Nepenthes miranda, was a competitive inhibitor of DHOase. We also solved the complexed crystal structure of yeast DHOase with PLU (PDB entry 7CA1), to determine the binding interactions and investigate the binding modes. Mutational and structural analyses indicated the binding of PLU to DHOase through loop-in mode, and this dynamic loop may serve as a drug target. PLU exhibited cytotoxicity on the survival, migration, and proliferation of 4T1 cells and induced apoptosis. These results provide structural insights that may facilitate the development of new inhibitors targeting DHOase, for further clinical anticancer chemotherapies.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Productos Biológicos/farmacología , Vías Biosintéticas/efectos de los fármacos , Dihidroorotasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Naftoquinonas/farmacología , Pirimidinas/biosíntesis , Antineoplásicos Fitogénicos/química , Sitios de Unión , Productos Biológicos/química , Dominio Catalítico , Dihidroorotasa/química , Dihidroorotasa/genética , Inhibidores Enzimáticos/química , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Mutación , Naftoquinonas/química , Unión Proteica , Relación Estructura-Actividad
2.
Cells ; 9(2)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085644

RESUMEN

Enterovirus 71 (EV71) infection is an endemic disease in Southeast Asia and China. We have previously shown that EV71 virus causes functional changes in mitochondria. It is speculative whether EV71 virus alters the host cell metabolism to its own benefit. Using a metabolomics approach, we demonstrate that EV71-infected Vero cells had significant changes in metabolism. Glutathione and its related metabolites, and several amino acids, such as glutamate and aspartate, changed significantly with the infectious dose of virus. Other pathways, including glycolysis and tricarboxylic acid cycle, were also altered. A change in glutamine/glutamate metabolism is critical to the viral infection. The presence of glutamine in culture medium was associated with an increase in viral replication. Dimethyl α-ketoglutarate treatment partially mimicked the effect of glutamine supplementation. In addition, the immunoblot analysis revealed that the expression of glutamate dehydrogenase (GDH) and trifunctional carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) increased during infection. Knockdown of expression of glutaminase (GLS), GDH and CAD drastically reduced the cytopathic effect (CPE) and viral replication. Furthermore, we found that CAD bound VP1 to promote the de novo pyrimidine synthesis. Our findings suggest that virus may induce metabolic reprogramming of host cells to promote its replication through interactions between viral and host cell proteins.


Asunto(s)
Dihidroorotasa/metabolismo , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/metabolismo , Glutamato Deshidrogenasa/metabolismo , Glutaminasa/metabolismo , Interacciones Huésped-Patógeno/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Animales , Chlorocebus aethiops , Efecto Citopatogénico Viral/efectos de los fármacos , Efecto Citopatogénico Viral/genética , Dihidroorotasa/genética , Infecciones por Enterovirus/virología , Técnicas de Silenciamiento del Gen , Glutamato Deshidrogenasa/genética , Ácido Glutámico/metabolismo , Glutaminasa/genética , Glutamina/metabolismo , Glutamina/farmacología , Glucólisis/genética , Ácidos Cetoglutáricos/farmacología , Interferencia de ARN , Transfección , Células Vero
3.
Gene ; 537(2): 312-21, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24361203

RESUMEN

The oomycete Phytophthora infestans, causal agent of the tomato and potato late blight, generates important economic and environmental losses worldwide. As current control strategies are becoming less effective, there is a need for studies on oomycete metabolism to help identify promising and more effective targets for chemical control. The pyrimidine pathways are attractive metabolic targets to combat tumors, virus and parasitic diseases but have not yet been studied in Phytophthora. Pyrimidines are involved in several critical cellular processes and play structural, metabolic and regulatory functions. Here, we used genomic and transcriptomic information to survey the pyrimidine metabolism during the P. infestans life cycle. After assessing the putative gene machinery for pyrimidine salvage and de novo synthesis, we inferred genealogies for each enzymatic domain in the latter pathway, which displayed a mosaic origin. The last two enzymes of the pathway, orotate phosphoribosyltransferase and orotidine-5-monophosphate decarboxylase, are fused in a multi-domain enzyme and are duplicated in some P. infestans strains. Two splice variants of the third gene (dihydroorotase) were identified, one of them encoding a premature stop codon generating a non-functional truncated protein. Relative expression profiles of pyrimidine biosynthesis genes were evaluated by qRT-PCR during infection in Solanum phureja. The third and fifth genes involved in this pathway showed high up-regulation during biotrophic stages and down-regulation during necrotrophy, whereas the uracil phosphoribosyl transferase gene involved in pyrimidine salvage showed the inverse behavior. These findings suggest the importance of de novo pyrimidine biosynthesis during the fast replicative early infection stages and highlight the dynamics of the metabolism associated with the hemibiotrophic life style of pathogen.


Asunto(s)
Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Phytophthora infestans/patogenicidad , Pirimidinas/biosíntesis , Empalme Alternativo , Clonación Molecular , Dihidroorotasa/genética , Dihidroorotasa/metabolismo , Orotato Fosforribosiltransferasa/genética , Orotato Fosforribosiltransferasa/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/genética , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Filogenia , Pirimidinas/metabolismo , Solanum/microbiología
4.
Amino Acids ; 44(4): 1181-91, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23287969

RESUMEN

Bacterial allantoinase (ALLase) and dihydroorotase (DHOase) are members of the cyclic amidohydrolase family. ALLase and DHOase possess similar binuclear metal centers in the active site in which two metals are bridged by a post-translationally carboxylated lysine. In this study, we determined the effects of carboxylated lysine and metal binding on the activities of ALLase and DHOase. Although DHOase is a metalloenzyme, purified DHOase showed high activity without additional metal supplementation in a reaction mixture or bacterial culture. However, unlike DHOase, ALLase had no activity unless some specific metal ions were added to the reaction mixture or culture. Substituting the metal binding sites H59, H61, K146, H186, H242, or D315 with alanine completely abolished the activity of ALLase. However, the K146C, K146D and K146E mutants of ALLase were still active with about 1-6% activity of the wild-type enzyme. These ALLase K146 mutants were found to have 1.4-1.7 mol metal per mole enzyme subunit, which may indicate that they still contained the binuclear metal center in the active site. The activity of the K146A mutant of the ALLase and the K103A mutant of DHOase can be chemically rescued by short-chain carboxylic acids, such as acetic, propionic, and butyric acids, but not by ethanol, propan-1-ol, and imidazole, in the presence of Co2+ or Mn2+ ions. However, the activity was still ~10-fold less than that of wild-type ALLase. Overall, these results indicated that the 20 natural basic amino acid residues were not sufficiently able to play the role of lysine. Accordingly, we proposed that during evolution, the post-translational modification of carboxylated lysine in the cyclic amidohydrolase family was selected for promoting binuclear metal center self-assembly and increasing the nucleophilicity of the hydroxide at the active site for enzyme catalysis. This kind of chemical rescue combined with site-directed mutagenesis may also be used to identify a binuclear metal center in the active site for other metalloenzymes.


Asunto(s)
Amidohidrolasas/metabolismo , Proteínas Bacterianas/química , Ácidos Carboxílicos/metabolismo , Dihidroorotasa/metabolismo , Klebsiella pneumoniae/enzimología , Lisina/metabolismo , Metales/metabolismo , Salmonella typhimurium/enzimología , Amidohidrolasas/química , Amidohidrolasas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dihidroorotasa/química , Dihidroorotasa/genética , Cinética , Klebsiella pneumoniae/química , Klebsiella pneumoniae/genética , Lisina/química , Lisina/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Procesamiento Proteico-Postraduccional , Salmonella typhimurium/química , Salmonella typhimurium/genética
5.
Biochem Biophys Res Commun ; 427(3): 473-7, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22975353

RESUMEN

BACKGROUND: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. MATERIALS AND METHODS: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44°C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) γH2AX immunostaining to detect γH2AX foci as an indication for DNA double strand breaks. RESULTS: (1) Heat exposure at 42 or 44°C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44°C for 30 min induces DNA double strand breaks in HCT116 cells as shown by γH2AX immunostaining. CONCLUSION: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and telomere functions are denatured. To our knowledge, this is the first study to provide direct evidence of hyperthermia induced gene amplification.


Asunto(s)
Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Calor/efectos adversos , Hipertermia Inducida/efectos adversos , Neoplasias/genética , Neoplasias/terapia , Ácido Anhídrido Hidrolasas/genética , Aspartato Carbamoiltransferasa/genética , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacología , Roturas del ADN de Doble Cadena , Dihidroorotasa/genética , Células HCT116 , Humanos , Ácido Fosfonoacético/análogos & derivados , Ácido Fosfonoacético/farmacología , Acilfosfatasa
6.
Plant Physiol ; 138(4): 1926-38, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16024685

RESUMEN

Pyrimidines are particularly important in dividing tissues as building blocks for nucleic acids, but they are equally important for many biochemical processes, including sucrose and cell wall polysaccharide metabolism. In recent years, the molecular organization of nucleotide biosynthesis in plants has been analyzed. Here, we present a functional analysis of the pyrimidine de novo synthesis pathway. Each step in the pathway was investigated using transgenic plants with reduced expression of the corresponding gene to identify controlling steps and gain insights into the phenotypic and metabolic consequences. Inhibition of expression of 80% based on steady-state mRNA level did not lead to visible phenotypes. Stepwise reduction of protein abundance of Asp transcarbamoylase or dihydro orotase resulted in a corresponding inhibition of growth. This was not accompanied by pleiotropic effects or by changes in the developmental program. A more detailed metabolite analysis revealed slightly different responses in roots and shoots of plants with decreased abundance of proteins involved in pyrimidine de novo synthesis. Whereas in leaves the nucleotide and amino acid levels were changed only in the very strong inhibited plants, the roots show a transient increase of these metabolites in intermediate plants followed by a decrease in the strong inhibited plants. Growth analysis revealed that elongation rates and number of organs per plant were reduced, without large changes in the average cell size. It is concluded that reduced pyrimidine de novo synthesis is compensated for by reduction in growth rates, and the remaining nucleotide pools are sufficient for running basic metabolic processes.


Asunto(s)
Nicotiana/enzimología , Pirimidinas/biosíntesis , Solanum tuberosum/enzimología , Aspartato Carbamoiltransferasa/genética , Aspartato Carbamoiltransferasa/metabolismo , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/metabolismo , Dihidroorotasa/genética , Dihidroorotasa/metabolismo , Dihidroorotato Oxidasa/genética , Dihidroorotato Oxidasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Modelos Químicos , Datos de Secuencia Molecular , Estructura Molecular , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Orotato Fosforribosiltransferasa/genética , Orotato Fosforribosiltransferasa/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/genética , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente , Pirimidinas/química , Especificidad de la Especie
7.
J Appl Microbiol ; 92(3): 517-25, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11872128

RESUMEN

AIMS: To investigate the regulation of de novo pyrimidine biosynthesis in the polyhydroxyalkanoate-producing bacterium Pseudomonas oleovorans at the level of enzyme synthesis and at the level of aspartate transcarbamoylase activity. METHODS AND RESULTS: The effect of pyrimidine supplementation on the pyrimidine biosynthetic pathway enzyme activities was analysed relative to carbon source. Two uracil auxotrophs of P. oleovorans were isolated that were deficient for aspartate transcarbamoylase or dihydroorotase activity. Pyrimidine limitation of these auxotrophs increased the de novo pathway activities to varying degrees depending on the pathway mutation and the carbon source utilized. At the level of aspartate transcarbamoylase activity, pyrophosphate and uridine ribonucleotides were found to be strongly inhibitory of the Ps. oleovorans enzyme. CONCLUSIONS: Pyrimidine biosynthesis is regulated in Ps. oleovorans. Taxonomically, the regulation of the pyrimidine biosynthetic pathway appeared dissimilar from previously studied Pseudomonas species. SIGNIFICANCE AND IMPACT OF THE STUDY: New insights regarding the regulation of nucleic acid metabolism are provided that could prove significant during the genetic manipulation of Ps. oleovorans to increase the synthesis of polyhydroxyalkanoates.


Asunto(s)
Pseudomonas/enzimología , Pirimidinas/biosíntesis , Aspartato Carbamoiltransferasa/genética , Aspartato Carbamoiltransferasa/metabolismo , Medios de Cultivo , Dihidroorotasa/genética , Dihidroorotasa/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Glucosa/metabolismo , Poliésteres/metabolismo , Pseudomonas/genética , Pseudomonas/crecimiento & desarrollo , Ácido Succínico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA