Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Int Immunopharmacol ; 128: 111565, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262161

RESUMEN

Activation of NOD-like receptor protein 3 (NLRP3) inflammasome exacerbates liver inflammation and fibrosis in nonalcoholic steatohepatitis (NASH), suggesting that development of inflammasome inhibitor can become leading candidate to ameliorate NASH. Panax ginseng (P. ginseng) contains numerous bioactive natural components to reduce inflammation. This study aims to identify inhibitory components of P. ginseng for NLRP3 inflammasome activation. We separated polar and non-polar fractions of P. ginseng and tested modulation of NLRP3 inflammasome, and then identified pure component for inflammasome inhibitor which ameliorates diet-induced NASH. Non-polar P. ginseng fractions obtained from ethyl acetate solvent attenuated IL-1ß secretion and expression of active caspase-1. We revealed that panaxydol (PND) is pure component to inhibit NLRP3 inflammasome activation. PND blocked inflammasome cytokines release, pyroptotic cell death, caspase-1 activation and specking of inflammasome complex. Inhibitory effect of PND was specific to NLRP3-dependent pathway via potential interaction with ATP binding motif of NLRP3. Moreover, in vivo studies showed that PND plays beneficial roles to reduce tissue inflammations through disruption of NLRP3 inflammasome and to ameliorate the development of NASH. These results provide new insight of natural products, panaxydol, for NLRP3 inflammasome inhibitor and could offer potential therapeutic candidate for reliving NASH.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Diinos , Alcoholes Grasos , Enfermedad del Hígado Graso no Alcohólico , Panax , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR , Panax/metabolismo , Inflamación , Caspasas , Ratones Endogámicos C57BL
2.
Artículo en Inglés | MEDLINE | ID: mdl-36088746

RESUMEN

Falcarinol is a polyacetylene which is found in carrots and known to have anti-neoplastic properties in rodents. Research in the bioactivity of falcarinol in humans require methods for quantification of falcarinol in human serum. Here we report the development of an LC-MS/MS method and its use to measure serum falcarinol concentrations in humans following intake of a carrot product. Falcarinol was measured by LC-MS/MS using the m/z 268 to m/z 182 mass transition. Six calibrator levels (0.2-20 ng/mL) and 3 control levels (0.4, 2 and 8 ng/mL) were prepared by addition of falcarinol to human serum pools. Linearity of the developed method was good with a mean R2 of 0.9942. Within-day, between-day and total coefficients of variation were 6.9-13.1%, 4.1-5.0% and 8.1-14.0%, respectively. The limits of detection and quantitation were 0.1 and 0.2 ng/mL, respectively, matrix effects 84.2%, recovery 101.4-105.4% and carry-over -0.24-0.07%. Serum falcarinol concentrations were measured in 18 healthy volunteers prior to and at 9 time-points following intake of a carrot product. Falcarinol concentrations peaked at the 1-hour time-point after intake in 15 out of 18 volunteers and declined according to a single exponential decay function with an aggregate t½ of 1.5 h. In conclusion, an LC-MS/MS method for quantification of falcarinol in human serum with acceptable performance was developed and used to measure falcarinol concentrations following intake of a carrot product.


Asunto(s)
Daucus carota , Cromatografía Liquida , Diinos , Alcoholes Grasos , Humanos , Extractos Vegetales , Polímero Poliacetilénico , Poliinos , Espectrometría de Masas en Tándem
3.
Sci Total Environ ; 852: 158502, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36058332

RESUMEN

Mosquitoes' current insecticide resistance status in available public health insecticides is a serious threat to mosquito control initiatives. Microbe-based control agents provide an alternative to conventional pesticides and insecticides, as they can be more targeted than synthetic insecticides. The present study was focused on identifying and investigating the mosquitocidal potential of Cladophialophora bantiana, an endophytic fungus isolated from Opuntia ficus-indica. The Cladophialophora species was identified through phylogenetic analysis of the rDNA sequence. The isolated fungus was first evaluated for its potential to produce metabolites against Aedes aegpti and Culex quinquefasciatus larvae in the 1-4th instar. The secondary metabolites of mycelium extract were assessed at various test doses (100, 200, 300, 400, and 500 µg/mL) in independent bioassays for each instar of selected mosquito larvae. After 48 h of exposure, A. aegypti expressed LC50 values of 13.069, 18.085, 9.554, and 11.717 µg/mL and LC90 = 25.702, 30.860, 17.275, and 19.601 µg/mL; followed by C. quinquefasciatus LC50 = 14.467, 11.766, 5.934, and 7.589 µg/mL, and LC90 = 29.529, 20.767, 11.192, and 13.296 µg/mL. The mean % of ovicidal bioassay was recorded 120 h after exposure. The hatchability (%) was proportional to mycelia metabolite concentration. The enzymatic level of acetylcholinesterase in fungal mycelial metabolite treated 4th instar larvae indicated a dose-dependent pattern. The GC-MS profile of C. bantiana extracts identified five of the most abundant compounds, namely cyclobutane, trans-3-undecene-1,5-diyne, 1-bromo-2-chloro, propane, 1,2,3-trichloro-2-methyl-, 5,5,10,10-tetrachlorotricyclo, and phenol, which had the killing effect in mosquitoes. Furthermore, the C. bantiana fungus ethyl acetate extracts had a strong larvicidal action on A. aegypti and C. quinquefasciatus. Finally, the toxicity test on zebrafish embryos revealed the induction of malformations only at concentrations above 1 mg/mL. Therefore, our study pioneered evidence that C. bantiana fungal metabolites effectively control A. aegypti and C. qunquefasciastus and show less lethality in zebrafish embryos at concentrations up to 500 µg/mL.


Asunto(s)
Aedes , Anopheles , Culex , Ciclobutanos , Insecticidas , Animales , Pez Cebra , Insecticidas/toxicidad , Acetilcolinesterasa , Propano/farmacología , Filogenia , Ciclobutanos/farmacología , Extractos Vegetales/farmacología , Control de Mosquitos , Larva , Fenoles , ADN Ribosómico , Diinos/farmacología , Hojas de la Planta
4.
J Integr Neurosci ; 21(4): 109, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35864761

RESUMEN

BACKGROUND: Peripheral nerve regeneration is a coordinated process of Schwann cell (SC) reprogramming and intrinsic neuronal growth program activation. Panaxydol (PND) is a strong biologically active traditional Chinese medicine monomer extracted from Panax notoginseng rhizomes. In vitro, PND protects neurons and SCs from injury and stimulates the expression and secretion of neurotrophic factors (NTFs) by SCs. We hypothesized that PND may also promote peripheral nerve regeneration in adult animals. METHODS: PND (10 mg/kg body weight) was injected intraperitoneally into the Sprague-Dawley (SD) rats for two consecutive weeks after sciatic nerve transection. The morphology of the repaired sciatic nerve was evaluated after 16 weeks, and sensory and motor function recovery was evaluated using functional and behavioral techniques. RESULTS: PND was biologically safe at an injection dose of 10 mg/kg/day. After 14 days, it significantly increased the myelination of regenerated nerve fibers, and promoted sensory and motor function recovery. In the early stage of injury, PND significantly upregulated the mRNA expression of brain-derived neurotrophic factor (BDNF) and its receptors in distal injured nerves, which may represent a possible mechanism by which PND promotes nerve regeneration in vivo. CONCLUSIONS: Our study demonstrated that PND leads to sensory and motor recovery in a sciatic nerve transection model rat. Furthermore, we showed that BDNF mRNA level was significantly increased in the injured distal nerve, potentially contributing to the functional recovery. Further research is warrantied to examine whether direct injection is a more efficient method to increase BDNF expression compared to an exogenous BDNF administration.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Panax notoginseng , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diinos , Alcoholes Grasos , Regeneración Nerviosa/fisiología , Panax notoginseng/genética , Panax notoginseng/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Células de Schwann/metabolismo , Nervio Ciático/lesiones
5.
Am J Chin Med ; 50(1): 295-311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34931585

RESUMEN

Human oral squamous cell carcinomas (OSCCs) have high cancer mortality and a 5-year survival rate lower than that of most other carcinomas. New therapeutic strategies are required for the treatment and prevention against OSCCs. An approach to cancer therapy using plant-derived natural compounds has been actively in progress as a trend. Falcarindiol (FALC), or its isolated form Ostericum koreanum Kitagawa (O. koreanum), is present in many food and dietary plants, especially in carrots, and this compound has a variety of beneficial effects. However, biological activity of FALC has not been reported in OSCCs yet. This study aimed to demonstrate the antitumor effects of FALC against OSCCs, YD-10B cells. In this study, FALC was selected as a result of screening for compounds isolated from various natural products in YD-10B cells. FALC suppressed cell growth, and FALC-induced apoptotic cell death was mainly accompanied by the dephosphorylation of PI3K, AKT, mTOR, and p70S6K. The apoptotic cell death was also associated with autophagy as evidenced by the expression of Beclin-1, the conversion of LC3-II, and the formation of autophagosome. FALC-induced autophagy was accompanied by MAPKs including ERK1/2 and p38. Furthermore, FALC caused the antimetastatic effects by inhibiting the migration and invasion of YD-10B cells. Taken together, the findings suggest the potential value of FALC as a novel candidate for therapeutic strategy against OSCCs.


Asunto(s)
Muerte Celular Autofágica , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Apoptosis , Autofagia , Línea Celular Tumoral , Proliferación Celular , Diinos , Alcoholes Grasos , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa , Serina-Treonina Quinasas TOR/metabolismo
6.
Immunopharmacol Immunotoxicol ; 43(6): 778-789, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34618611

RESUMEN

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is an extreme form of non-alcoholic fatty liver disease. The present study concentrated on the role of Capillin, a polyacetylene compound isolated from Artemisia capillaris Thunb., in NASH development. MATERIALS AND METHODS: Palmitic acid (PA) was treated with FL83B hepatocytes, and high-fat diet was given to mouse to construct the NASH model in vivo. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, flow cytometry, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay were carried out to measure the viability and apoptosis of FL83B hepatocytes. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to measure the mRNA expressions of infiltration markers (Cd11c, Ccr2, and Ly6c), fibrosis genes (Tgfß1, Col1a1, and Timp1), and alpha-smooth muscle actin (α-SMA). Western blot, immunofluorescence, and Enzyme-linked immunosorbent assay (ELISA) were implemented to examine the proteins of Caspase-3, Bcl2, Nrf2, HO-1, NLRP3, ASC, and Caspase-1, the ROS level, and oxidative stress markers (MDA, GSH-ST, SOD, and GSH-Px), and the lipid peroxidation level, respectively. Moreover, HE staining was manipulated to observe the histopathological changes in liver tissue. RESULTS: Capillin hampered PA-mediated hepatocytes apoptosis and enhanced cell viability. Furthermore, Capillin suppressed PA-mediated oxidative stress in hepatocytes, promoted Nrf2/HO-1 expression, and repressed NLRP3-ASC-Caspase1 inflammasome. The in vivo studies indicated that Capillin vigorously improves liver fat accumulation, oxidative stress, and liver injury in NASH mice. Mechanistically, Capillin repressed NLRP3-ASC-Caspase1 inflammasome and up-regulated the Nrf2-HO-1 pathway in the liver. CONCLUSION: Capillin ameliorates hepatocyte injury by dampening oxidative stress and repressing NLRP3 inflammasome in NASH mice.


Asunto(s)
Diinos/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Animales , Dieta Alta en Grasa/efectos adversos , Diinos/farmacología , Relación Dosis-Respuesta a Droga , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo/fisiología , Extractos Vegetales/farmacología
7.
Molecules ; 26(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34641440

RESUMEN

Quorum sensing (QS) is employed by the opportunistic pathogen Pseudomonas aeruginosa to regulate physiological behaviors and virulence. QS inhibitors (QSIs) are potential anti-virulence agents for the therapy of P. aeruginosa infection. During the screening for QSIs from Chinese herbal medicines, falcarindiol (the major constituent of Notopterygium incisum) exhibited QS inhibitory activity. The subinhibitory concentration of falcarindiol exerted significant inhibitory effects on the formation of biofilm and the production of virulence factors such as elastase, pyocyanin, and rhamnolipid. The mRNA expression of QS-related genes (lasB, phzH, rhlA, lasI, rhlI, pqsA, and rhlR) was downregulated by falcarindiol while that of lasR was not affected by falcarindiol. The transcriptional activation of the lasI promoter was inhibited by falcarindiol in the P. aeruginosa QSIS-lasI selector. Further experiments confirmed that falcarindiol inhibited the las system using the reporter strain Escherichia coli MG4/pKDT17. Electrophoretic mobility shift assay (EMSA) showed that falcarindiol inhibited the binding of the transcription factor LasR and the lasI promoter region. Molecular docking showed that falcarindiol interacted with the Tyr47 residue, leading to LasR instability. The decrease of LasR-mediated transcriptional activation was responsible for the reduction of downstream gene expression, which further inhibited virulence production. The inhibition mechanism of falcarindiol to LasR provides a theoretical basis for its medicinal application.


Asunto(s)
Apiaceae/química , Diinos/farmacología , Alcoholes Grasos/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum , Diinos/aislamiento & purificación , Alcoholes Grasos/aislamiento & purificación , Fitoquímicos/aislamiento & purificación
8.
Biomed Pharmacother ; 138: 111387, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33721753

RESUMEN

Panaxynol (PAL) mainly comes from Umbelliferae plants, which has anti-inflammatory and neuroprotective activities. Lipopolysaccharide (LPS)-induced depression in mice was a classic model for studying the effects of drugs on depression in mice. The purpose of this study was to investigate the mechanism and effect of PAL on depression by LPS induced in mice. In the tail suspension test (TST) and forced swimming test (FST) results, PAL significantly reduced the immobility time of mice. In the result of the open field test (OFT) and the elevated plus maze test (EPM), improved their exploration ability. According to the results of ELISA, PAL could significantly reduce the tumor necrosis factor-α (TNF-α) and interleukin- 6 (IL-6) levels in serum. Increase the superoxide dismutase (SDO) level and decrease the malondialdehyde (MDA) level in hippocampus. According to Western blotting analysis results, PAL increased the protein expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB), decreased the nuclear transport of nuclear factor kappa-Bp65 (NF-κBp65) and phosphorylation of inhibitor of NF-κB (IκB-α). Meanwhile, PAL also inhibited the production of nitric oxide in BV-2 microglia and decreased the level of inflammatory factors. PAL also reduced levels of oxidative stress and inhibited protein expression in the NF-κB/IκB-α inflammatory pathway and increased the protein expression of BDNF/TrkB, thereby inhibiting the over-activation of BV-2 microglia. In conclusion, according to the results of the behavioral text, it is proved that PAL could effectively alleviate LPS induced depression behavior in mice. The mechanism may be that the anti-inflammatory and anti-oxidative stress effects of PAL reduce the release of inflammatory factors in the mouse brain. Meanwhile, PAL could improve brain neurotrophic factors, inhibit the excessive activation of BV-2 microglia, and further inhibit the depressive state of the mice.


Asunto(s)
Antidepresivos/farmacología , Diinos/farmacología , Alcoholes Grasos/farmacología , Microglía/efectos de los fármacos , Inhibidor NF-kappaB alfa/antagonistas & inhibidores , FN-kappa B/antagonistas & inhibidores , Extractos Vegetales/farmacología , Animales , Antidepresivos/uso terapéutico , Línea Celular , Depresión/tratamiento farmacológico , Depresión/metabolismo , Depresión/psicología , Diinos/uso terapéutico , Relación Dosis-Respuesta a Droga , Alcoholes Grasos/uso terapéutico , Inmovilización/métodos , Inmovilización/fisiología , Inmovilización/psicología , Masculino , Ratones , Ratones Endogámicos ICR , Microglía/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Extractos Vegetales/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Resultado del Tratamiento
9.
Nutr Res ; 80: 89-105, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32738564

RESUMEN

Unlike polyphenols, which are widely available in the diet, polyacetylenes are available only from the Apiaceae family vegetables, including carrot, parsnip, fennel, celery, and many herbs (parsley, lovage, etc). The aim of this study was to investigate the hypothesis that polyacetylene falcarinol (FA) reduces intestinal inflammation and examine its similarity of effect to isothiocyanate R-sulforaphane during the late phase of acute inflammation. To this end, 3-month-old male CB57BL/6 mice were fed twice daily for 1 week with 5 mg/kg of FA, sulforaphane, or vehicle before receiving an intraperitoneal injection of 5 mg/kg endotoxin (lipopolysaccharide [LPS]) to induce modest acute inflammation. The expression of intestinal and hepatic heme oxygenase-1 at the mRNA and protein levels, circulating cytokines, as well as intestinal and mesenteric n-6 and n-3 fatty acid lipid mediators was compared 24 hours after LPS administration to examine its effects on the late phase of inflammation. Intestinal nuclear factor (erythroid-derived 2)-like 2 target enzyme heme oxygenase-1 was upregulated 8.42-fold at the mRNA level and 10.7-fold at the protein level by FA-supplemented diet. However, the FA-supplemented diet produced a unique type-2 plasma cytokine skew after LPS treatment. Plasma cytokines interleukin (IL)-4, IL-13, IL-9, and IL-10 were upregulated, reflecting the cytokine profile of reduced type 1 inflammation. A detailed lipidomic analysis of n-6 and n-3 fatty acid pro- and anti-inflammatory pathways in the mesentery and intestinal mucosa showed that FA diet was more similar to the control groups than to other LPS treated groups. In this study, we demonstrated that FA-supplemented diet produced a unique immunomodulatory effect not observed with sulforaphane in late phases of inflammation. These results support the hypothesis that FA may have role as a dietary immunosuppressant in patients with inflammatory gastrointestinal as well as other inflammatory disorders that may be alleviated by increasing consumption of carrot or other FA-containing food sources.


Asunto(s)
Citocinas/sangre , Suplementos Dietéticos , Diinos/administración & dosificación , Alcoholes Grasos/administración & dosificación , Hemo-Oxigenasa 1/genética , Inflamación/metabolismo , Intestinos/enzimología , Proteínas de la Membrana/genética , Animales , Ácidos Grasos Insaturados/metabolismo , Factor Estimulante de Colonias de Granulocitos/sangre , Factor Estimulante de Colonias de Granulocitos y Macrófagos/sangre , Hemo-Oxigenasa 1/metabolismo , Factores Inmunológicos/administración & dosificación , Inflamación/genética , Isotiocianatos/administración & dosificación , Yeyuno/metabolismo , Lipopolisacáridos , Hígado/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Mesenterio/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Fitoquímicos/administración & dosificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Bazo/metabolismo , Sulfóxidos/administración & dosificación , Regulación hacia Arriba
10.
Nutrients ; 12(6)2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32575883

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory bowel disease that affects millions of people worldwide and increases the risk of colorectal cancer (CRC) development. We have previously shown that American ginseng (AG) can treat colitis and prevent colon cancer in mice. We further fractionated AG and identified the most potent fraction, hexane fraction (HAG), and the most potent compound in this fraction, panaxynol (PA). Because (1) oxidative stress plays a significant role in the pathogenesis of colitis and associated CRC and (2) nuclear factor erythroid-2-related factor 2 (Nrf2) is the master regulator of antioxidant responses, we examined the role of Nrf2 as a mechanism by which AG suppresses colitis. Through a series of in vitro and in vivo Nrf2 knockout mouse experiments, we found that AG and its components activate the Nrf2 pathway and decrease the oxidative stress in macrophages (mΦ) and colon epithelial cells in vitro. Consistent with these in vitro results, the Nrf2 pathway is activated by AG and its components in vivo, and Nrf2-/- mice are resistant to the suppressive effects of AG, HAG and PA on colitis. Results from this study establish Nrf2 as a mediator of AG and its components in the treatment of colitis.


Asunto(s)
Antioxidantes/farmacología , Colitis Ulcerosa/metabolismo , Diinos/farmacología , Alcoholes Grasos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Panax/química , Extractos Vegetales/farmacología , Animales , Antioxidantes/uso terapéutico , Colitis , Colitis Ulcerosa/tratamiento farmacológico , Diinos/uso terapéutico , Alcoholes Grasos/uso terapéutico , Células HCT116 , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Fitoterapia , Extractos Vegetales/uso terapéutico
11.
Phytochem Anal ; 31(2): 183-190, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31343078

RESUMEN

INTRODUCTION: (3S)-16,17-Didehydrofalcarinol (1) has been isolated from Tridax procumbens and has proved to have notorious bioactivity against Leishmania mexicana. In this study, hexane fractions obtained from the methanol extract of each plant part (roots, stems, leaves, flowers, and fruits) of T. procumbens collected monthly during a year were analysed in order to determine the quantity of 1 associated with biotic variables. OBJECTIVE: The aim of this study was to find the season of the year in which the bioactive metabolite 1 is at the highest concentration and to correlate it with temperature, length of day light, and rainfall. METHODS: Hexane fractions were obtained by liquid-liquid extraction and an accurate quantitation of 1 was performed using gas chromatography with a flame ionisation detector (GC-FID) employing pelargonic acid vanillyl amide (2) as internal standard. Partial validation was based on linearity and precision. RESULTS: Our results indicated that the total content of 1 has significant variation (P ≤ 0.05) during the different collecting months. The total content of the metabolite reached its highest level in the roots of the plant during June in the rainfall season (0.0358 ± 0.001 mg/g), and its lowest values in February and March during the drought season (0.0015 ± 0.000 and 0.0008 ± 0.000 mg/g, respectively). CONCLUSION: Our study provided evidence that the content of 1 in roots is strongly influenced by the variables of the harvesting season, also indicating that the biosynthesis of the active metabolite is enhanced during the warm and rainy months.


Asunto(s)
Extractos Vegetales , Polímero Poliacetilénico , Diinos , Alcoholes Grasos , Estaciones del Año , Distribución Tisular
12.
Biomolecules ; 9(12)2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31861234

RESUMEN

Polyacetylenic compounds isolated from Panax species are comprised of non-polar C17 compounds, exhibiting anti-inflammatory, antitumor, and antifungal activities. Panaxynol represents the major component of the essential oils of ginseng. We investigated whether panaxynol isolated from Panax vietnamensis (Vietnamese ginseng, VG) could prevent cisplatin-induced renal damage induced in vitro and in vivo. Cisplatin-induced apoptotic cell death was observed by staining with annexin V conjugated with Alexa Fluor 488, and western blotting evaluated the molecular mechanism. Panaxynol at concentrations above 0.25 µM prevented cisplatin-induced LLC-PK1 porcine renal proximal tubular cell death. LLC-PK1 cells treated with cisplatin demonstrated an increase in apoptotic cell death, whereas pretreatment with 2 and 4 µM panaxynol decreased this effect. Cisplatin demonstrated a marked increase in the phosphorylation of c-Jun N-terminal kinase (JNK), P38, and cleaved caspase-3. However, pretreatment with 2 and 4 µM panaxynol reversed the upregulated phosphorylation of JNK, P38, and the expression of cleaved caspase-3. We confirmed that the protective effect of panaxynol isolated from P. vietnamensis in LLC-PK1 cells was at least partially mediated by reducing the cisplatin-induced apoptotic damage. In the animal study, panaxynol treatment ameliorated body weight loss and blood renal function markers and downregulated the mRNA expression of inflammatory mediators.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Cisplatino/farmacología , Diinos/farmacología , Alcoholes Grasos/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Panax/química , Sustancias Protectoras/farmacología , Lesión Renal Aguda/inducido químicamente , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Nitrógeno de la Urea Sanguínea , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Creatinina/sangre , Diinos/química , Diinos/aislamiento & purificación , Alcoholes Grasos/química , Alcoholes Grasos/aislamiento & purificación , Túbulos Renales Proximales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Sustancias Protectoras/química , Sustancias Protectoras/aislamiento & purificación , Porcinos
13.
Am J Chin Med ; 47(6): 1381-1404, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31488036

RESUMEN

Oplopanax elatus (Nakai) Nakai is an oriental herb, the polyyne-enriched fraction of which (PEFO) showed anticolorectal cancer (anti-CRC) effects. Other concomitant components, which are inevitably bio-transformed by gut microbiota after oral administration, might be interfere with the pharmacodynamics of polyynes. However, the influence of human gut microbiota on molecules from O. elatus possessing anticancer activity are yet unknown. In this study, the compounds in PEFO and PEFO incubated with human gut microbiota were analyzed and tentatively identified by HPLC-DAD-QTOF-MS. Two main polyynes ((3S,8S)-falcarindiol and oplopandiol) were not significantly decomposed, but some new unknown molecules were discovered during incubation. However, the antiproliferative effects of PEFO incubated with human gut microbiota for 72 h (PEFO I) were much lower than that of PEFO on HCT-116, SW-480, and HT-29 cells. Furthermore, PEFO possessed better anti-CRC activity in vivo, and significantly induced apoptosis of the CRC cells, which was associated with activation of caspase-3 according to the Western-blot results (P<0.05). These results suggest anticolorectal cancer activity of polyynes might be antagonized by some bio-converted metabolites after incubation with human gut microbiota. Therefore, it might be better for CRC prevention if the polyynes could be orally administrated as purified compounds.


Asunto(s)
Neoplasias Colorrectales/patología , Neoplasias Colorrectales/prevención & control , Diinos/metabolismo , Alcoholes Grasos/metabolismo , Microbioma Gastrointestinal/fisiología , Oplopanax/química , Administración Oral , Animales , Antineoplásicos Fitogénicos , Apoptosis/efectos de los fármacos , Biotransformación , Caspasa 3/metabolismo , Cromatografía Líquida de Alta Presión , Diinos/administración & dosificación , Diinos/aislamiento & purificación , Diinos/farmacología , Alcoholes Grasos/administración & dosificación , Alcoholes Grasos/aislamiento & purificación , Alcoholes Grasos/farmacología , Células HT29 , Humanos , Masculino , Ratones Endogámicos BALB C , Espectrometría de Masas en Tándem , Células Tumorales Cultivadas
14.
Fitoterapia ; 138: 104355, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31520650

RESUMEN

The secondary metabolite pattern of Eryngium tricuspidatum has been found to be dominated by C17 acetylene oxylipins, according to the chemistry reported in the literature for the genus Eryngium. Two new oxylipins, 11-acetoxy-falcarindiol (4) and 1,2-dihydro-11-acetoxy-falcarindiol (5) have been isolated, along with main related polyacetylenes 1-3 and the already known monoterpene aldehydes 6-10, from the petroleum ether extract of roots. The structure and the absolute configuration of compounds 4 and 5 have been determined by spectroscopic methods as well as by comparison with related known compounds. Polyacetylenes 1-4 inhibited significantly the in vitro growth of a series of cancer cell lines, ranging from 0.3 to 29 µM, whereas 5 was inactive.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Eryngium/química , Raíces de Plantas/química , Polímero Poliacetilénico/farmacología , Argelia , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Diinos/aislamiento & purificación , Diinos/farmacología , Alcoholes Grasos/aislamiento & purificación , Alcoholes Grasos/farmacología , Humanos , Estructura Molecular , Oxígeno , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Polímero Poliacetilénico/aislamiento & purificación , Metabolismo Secundario
15.
Z Naturforsch C J Biosci ; 74(5-6): 145-150, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-30721147

RESUMEN

Phytochemical investigation of Polyscias guilfoylei leaves extract (PGE) led to the isolation of nine compounds, that is, ent-labda-8(17),13-diene-15,18-diol (1), stigmasterol (2), spinasterol (3), N-(1,3-dihydroxyoctadecan-2-yl) palmitamide (4), panaxydiol (5), 3-O-ß-d-glucopyranosylstigmasta-5,22-diene-3-ß-ol (6), (8Z)-2-(2 hydroxypentacosanoylamino) octadeca-8-ene-1,3,4-triol (7), 4-hydroxybenzoic acid (8), and tamarixetin 3,7-di-O-α-L-rhamnopyranoside (9). Compound 4 is reported in this study for the first time in nature whereas compound 9 is reported for the second time. Structural elucidation of the compounds was carried out using Nuclear Magnetic Resonance and Electrospray Ionization coupled with Mass Spectrometry spectroscopic analyses. PGE and compounds 4 and 9 exhibited weak cytotoxicity against both MCF-7 and HCT-116 cell lines using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide assay. The antimicrobial activity of PGE and compounds 4 and 9 was evaluated using the agar diffusion method. Escherichia coli was the most susceptible Gram-negative bacteria toward PGE with a minimum inhibitory concentration value of 9.76 µg/mL, whereas compounds 4 and 9 did not show any antimicrobial activity. Compound 4 exhibited promising inhibition of histamine release using U937 human monocytes with an IC50 value of 38.65 µg/mL.


Asunto(s)
Antiinfecciosos/química , Antineoplásicos/química , Araliaceae/química , Antagonistas de los Receptores Histamínicos/química , Extractos Vegetales/química , Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Disacáridos/química , Disacáridos/farmacología , Diinos/química , Diinos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Células HCT116 , Antagonistas de los Receptores Histamínicos/farmacología , Humanos , Células MCF-7 , Extractos Vegetales/farmacología , Hojas de la Planta/química , Quercetina/análogos & derivados , Quercetina/química , Quercetina/farmacología , Estigmasterol/análogos & derivados , Estigmasterol/farmacología
16.
Nutr Cancer ; 71(2): 301-311, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30661403

RESUMEN

Natural falcarinol-type (FC-type) polyacetylenes are known to show anticancer activities. We studied the bioactivity of synthetic FC, 1,2-dihydrofalcarinol (FCH) and 3-acetoxyfalcarinol (FCA) and compared them with the natural bioactive polyacetylene [9,17-octadecadiene-12,14-diyne-1,11,16-triol,1-acetate] (DCA) isolated from Devil's club (DC) Oplopanax horridus. Antiproliferation activity of these polyacetylenes, along with DC inner stem bark 70% ethanol and water extracts, was tested on human pancreatic ductal adenocarcinoma cell lines PANC-1 and BxPC-3. Chemically synthesized FC and FCA showed consistent IC50 (50% inhibition concentration) and higher potency than DCA. FC and DCA's mechanism of action investigated by antibody array on apoptosis-associated genes, and cellular features confirmed by microscopy demonstrated that both compounds modulated genes related to pro-apoptosis, antiapoptosis, apoptosis, cell cycle, stress related, and death receptors. FC-type polyacetylenes with a terminal double bond (FC, FCA, and DCA) are potent inhibitors of pancreatic cancer cell proliferation compared to FCH with a terminal single bond. Liquid chromatography mass spectrometry confirmed the presence of FC and FCH in the inner stem bark of DC. For potential applications of FC-type polyacetylenes as anticancer agents, preparing them by chemical synthesis may provide an advantage over the labor intensive extraction process from raw plant material.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Diinos/farmacología , Alcoholes Grasos/farmacología , Oplopanax/química , Neoplasias Pancreáticas/tratamiento farmacológico , Polímero Poliacetilénico/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias Pancreáticas/patología , Corteza de la Planta/química , Extractos Vegetales/farmacología
17.
Phytother Res ; 33(3): 584-590, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30506753

RESUMEN

Acne is a chronic inflammatory disease of the skin that occurs when bacteria abnormally grow in hair follicles. The most common treatment is antibiotics, but they are limited due to antibiotic resistance. The purpose of this study was to identify the active ingredients of the antimicrobial effects of red ginseng (Panax ginseng C.A. Meyer), compare it to existing antibacterial substances, and determine its potential efficacy as a natural drug product. The hydrophobic fraction in red ginseng ethanol extract (RGEF) showed the same or better antimicrobial activity against Propionibacterium acnes than benzoyl peroxide or azelaic acid. In addition, the antimicrobial component derived from red ginseng selectively showed a high antimicrobial effect on P. acnes. Nuclear magnetic resonance spectroscopic analysis showed that the active antimicrobial substance in this fraction was panaxynol and panaxydol. Twenty subjects who had acne symptoms were treated with cream containing 3 mg/g of RGEF for 4 weeks. It was found that oxidized sebum contents and redness of the skin were reduced, and symptoms of the early to middle stage of acne were effectively improved. This study showed that red ginseng extract containing panaxynol and panaxydol can effectively control the symptoms of acne.


Asunto(s)
Acné Vulgar/tratamiento farmacológico , Antibacterianos/farmacología , Panax/química , Extractos Vegetales/farmacología , Adulto , Antibacterianos/aislamiento & purificación , Fraccionamiento Químico , Cromatografía Líquida de Alta Presión , Cosméticos , Diinos/aislamiento & purificación , Diinos/farmacología , Alcoholes Grasos/aislamiento & purificación , Alcoholes Grasos/farmacología , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Piel/efectos de los fármacos , Crema para la Piel/química , Adulto Joven
18.
Oxid Med Cell Longev ; 2018: 3153527, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30420908

RESUMEN

Nuclear factor- (erythroid-derived 2) like 2 (Nrf2) is a transcription factor that regulates the expression of a battery of antioxidant, anti-inflammatory, and cytoprotective enzymes including heme oxygenase-1 (Hmox1, Ho-1) and NADPH:quinone oxidoreductase-1 (Nqo1). The isothiocyanate sulforaphane (SF) is widely understood to be the most effective natural activator of the Nrf2 pathway. Falcarinol (FA) is a lesser studied natural compound abundant in medicinal plants as well as dietary plants from the Apiaceae family such as carrot. We evaluated the protective effects of FA and SF (5 mg/kg twice per day in CB57BL/6 mice) pretreatment for one week against acute intestinal and systemic inflammation. The phytochemical pretreatment effectively reduced the magnitude of intestinal proinflammatory gene expression (IL-6, Tnfα/Tnfαr, Infγ, STAT3, and IL-10/IL-10r) with FA showing more potency than SF. FA was also more effective in upregulating Ho-1 at mRNA and protein levels in both the mouse liver and the intestine. FA but not SF attenuated plasma chemokine eotaxin and white blood cell growth factor GM-CSF, which are involved in the recruitment and stabilization of first-responder immune cells. Phytochemicals generally did not attenuate plasma proinflammatory cytokines. Plasma and intestinal lipid peroxidation was also not significantly changed 4 h after LPS injection; however, FA did reduce basal lipid peroxidation in the mesentery. Both phytochemical pretreatments protected against LPS-induced reduction in intestinal barrier integrity, but FA additionally reduced inflammatory cell infiltration even below negative control.


Asunto(s)
Dieta , Diinos/uso terapéutico , Alcoholes Grasos/uso terapéutico , Hemo-Oxigenasa 1/biosíntesis , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Intestinos/patología , Isotiocianatos/uso terapéutico , Animales , Citocinas/sangre , Diinos/química , Diinos/farmacología , Inducción Enzimática/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/genética , Inflamación/patología , Isotiocianatos/química , Isotiocianatos/farmacología , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Sulfóxidos
19.
Biol Pharm Bull ; 41(11): 1701-1707, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30381670

RESUMEN

Panaxydol, a polyacetylenic compound derived from Panax ginseng has been reported to suppress the growth of cancer cells. However, the molecular mechanisms underlying cell cycle arrest by this compound in non-small cell lung cancer (NSCLC) are unknown. Our study found that panaxydol treatment induced cell cycle arrest at G1 phase in NSCLC cells. The cell cycle arrest was accompanied by down-regulation of the protein expression of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D1 and cyclin E, and decrease in the phosphorylation of retinoblastoma (Rb) protein. Furthermore, up-regulation of cyclin-dependent kinase inhibitor (CDKI) p21CIP1/WAF1 and p27KIP1 was observed in panaxydol-treated NSCLC cells. In addition, panaxydol also induced accumulation of intracellular Ca2+ ([Ca2+]i). (Acetyloxy)methyl 2-({2-[(acetyloxy)methoxy]-2-oxoethyl}[2-(2-{2-[bis({2-[(acetyloxy)methoxy]-2-oxoethyl})amino]phenoxy}ethoxy)phenyl]amino)acetate (BAPTA-AM), the Ca2+ chelator, attenuated not only panaxydol-induced accumulation of [Ca2+]i, but also G1 cell cycle arrest and decrease of CDK6 and cyclin D1 protein expression level. These results demonstrated that the anti-proliferative effects of panaxydol were caused by cell cycle arrest, which is closely linked to the up-regulation of [Ca2+]i and represents a promising approach for the treatment of lung cancer.


Asunto(s)
Calcio/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Diinos/farmacología , Alcoholes Grasos/farmacología , Fase G1/efectos de los fármacos , Neoplasias Pulmonares/patología , Panax/química , Fitoterapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Ciclina E/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Diinos/uso terapéutico , Alcoholes Grasos/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas Oncogénicas/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteína de Retinoblastoma/metabolismo , Regulación hacia Arriba
20.
Pestic Biochem Physiol ; 150: 59-65, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30195388

RESUMEN

In the search for antifungal lead compounds from natural resources, Notopterygium incisum, a medicine plant only distributed in China, showed antifungal potential against apple fruit pathogens. Based on the bioassay-guided isolation, chromatography fraction 6 of the ethyl acetate partition exhibited significant in vitro and in vivo antifungal activities against apple fruit pathogens. Furthermore, nine antifungal secondary metabolites, including five linear furocoumarins (1-5), two phenylethyl esters (6-7), one falcarindiol (8), and one sesquiterpenoid (9), were isolated and elucidated from fraction 6. Compound 5 is a new metabolite, and 9 isolated from the genus Notopterygium for the first time. The purified compounds (1-9) were firstly reported to exhibit antifungal activities against apple fruit pathogens of Colletotrichum gloeosporioides and Botryosphaeria dothidea with the MIC values ranging from 8 to 250 mg L-1, especially 8 of 16 and 8 mg L-1, respectively. Moreover, 8 could inhibit the spore germination and new sporulation of B. dothidea, as well as enhance the membrane permeabilization of B. dothidea spores. This was the first investigation for the antifungal components against apple fruit pathogens from Notopterygium incisum, which has great potential to be developed into bio-fungicides.


Asunto(s)
Apiaceae/química , Hongos/efectos de los fármacos , Malus/microbiología , Extractos Vegetales/farmacología , Apiaceae/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Diinos/farmacología , Alcoholes Grasos/farmacología , Hongos/fisiología , Fungicidas Industriales/farmacología , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Espectrometría de Masa por Ionización de Electrospray , Esporas Fúngicas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA