Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 802
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Invest Ophthalmol Vis Sci ; 65(3): 36, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38551585

RESUMEN

Purpose: Symptomatic vitreous opacifications, so-called floaters, are difficult to objectively assess majorly limiting the possibility of in vitro studies. Forward light scattering was found previously to be increased in eyes with symptomatic floaters. Using an objective setup to measure forward light scattering, we studied the effects of enzymatically digesting the components of the vitreous body on straylight to develop an in vitro model of vitreous opacifications. Methods: Fifty-seven porcine vitreous bodies were digested using hyaluronidase, collagenase, trypsin, and bromelain, as well as using a combination of hyaluronidase + collagenase and hyaluronidase + bromelain. A modified C-Quant setup was used to objectively assess forward light scattering. Results: Depletion of hyaluronic acid majorly increased vitreous straylight (mean increase 34.4 deg2/sr; P = 0.01), whereas primarily digesting the vitreous gel with collagenase or trypsin did not significantly affect straylight. When collagenase or bromelain is applied in hyaluronic acid depleted vitreous gels, the increase in forward light scattering is reversed partially. Conclusions: The age-related loss of hyaluronic acid primarily drives the increase in vitreous gel straylight induced by conglomerates of collagen. This process can be reversed partially by digesting collagen. This in vitro model allows the objective quantification and statistical comparison of straylight burden caused by vitreous opacities and, thus, can serve as a first testing ground for pharmacological therapies, as demonstrated with bromelain.


Asunto(s)
Bromelaínas , Luz , Animales , Porcinos , Hialuronoglucosaminidasa/farmacología , Ácido Hialurónico/farmacología , Tripsina , Envejecimiento , Colágeno/farmacología , Colagenasas/farmacología , Dispersión de Radiación
2.
Med Phys ; 51(3): 1653-1673, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38323878

RESUMEN

BACKGROUND: Dual-energy (DE) detection of bone marrow edema (BME) would be a valuable new diagnostic capability for the emerging orthopedic cone-beam computed tomography (CBCT) systems. However, this imaging task is inherently challenging because of the narrow energy separation between water (edematous fluid) and fat (health yellow marrow), requiring precise artifact correction and dedicated material decomposition approaches. PURPOSE: We investigate the feasibility of BME assessment using kV-switching DE CBCT with a comprehensive CBCT artifact correction framework and a two-stage projection- and image-domain three-material decomposition algorithm. METHODS: DE CBCT projections of quantitative BME phantoms (water containers 100-165 mm in size with inserts presenting various degrees of edema) and an animal cadaver model of BME were acquired on a CBCT test bench emulating the standard wrist imaging configuration of a Multitom Rax twin robotic x-ray system. The slow kV-switching scan protocol involved a 60 kV low energy (LE) beam and a 120 kV high energy (HE) beam switched every 0.5° over a 200° angular span. The DE CBCT data preprocessing and artifact correction framework consisted of (i) projection interpolation onto matched LE and HE projections views, (ii) lag and glare deconvolutions, and (iii) efficient Monte Carlo (MC)-based scatter correction. Virtual non-calcium (VNCa) images for BME detection were then generated by projection-domain decomposition into an Aluminium (Al) and polyethylene basis set (to remove beam hardening) followed by three-material image-domain decomposition into water, Ca, and fat. Feasibility of BME detection was quantified in terms of VNCa image contrast and receiver operating characteristic (ROC) curves. Robustness to object size, position in the field of view (FOV) and beam collimation (varied 20-160 mm) was investigated. RESULTS: The MC-based scatter correction delivered > 69% reduction of cupping artifacts for moderate to wide collimations (> 80 mm beam width), which was essential to achieve accurate DE material decomposition. In a forearm-sized object, a 20% increase in water concentration (edema) of a trabecular bone-mimicking mixture presented as ∼15 HU VNCa contrast using 80-160 mm beam collimations. The variability with respect to object position in the FOV was modest (< 15% coefficient of variation). The areas under the ROC curve were > 0.9. A femur-sized object presented a somewhat more challenging task, resulting in increased sensitivity to object positioning at 160 mm collimation. In animal cadaver specimens, areas of VNCa enhancement consistent with BME were observed in DE CBCT images in regions of MRI-confirmed edema. CONCLUSION: Our results indicate that the proposed artifact correction and material decomposition pipeline can overcome the challenges of scatter and limited spectral separation to achieve relatively accurate and sensitive BME detection in DE CBCT. This study provides an important baseline for clinical translation of musculoskeletal DE CBCT to quantitative, point-of-care bone health assessment.


Asunto(s)
Médula Ósea , Tomografía Computarizada de Haz Cónico , Humanos , Médula Ósea/diagnóstico por imagen , Estudios de Factibilidad , Tomografía Computarizada de Haz Cónico/métodos , Algoritmos , Fantasmas de Imagen , Edema , Cadáver , Agua , Dispersión de Radiación , Procesamiento de Imagen Asistido por Computador/métodos
3.
Phys Med Biol ; 68(17)2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37487498

RESUMEN

Objective. The aim of this study was to investigate the feasibility of improving the image quality and accuracy of cone beam computed tomography (CBCT) by replacing the conventional wide cone angle x-ray tube with a distributed x-ray source array positioned in the axial direction.Approach. The multisource CBCT (ms-CBCT) design was experimentally simulated using a benchtop scanner with a carbon nanotube x-ray tube and a flat-panel detector. The source was collimated and translated in the axial direction to simulate a source array with a reduced cone angle for each beam. An adjacent scatter ratio subtraction (ASRS) method was implemented for residual scatter reduction. Several phantoms were imaged using the ms-CBCT and conventional CBCT configurations under otherwise similar conditions. The Requirements of the ms-CBCT design on the x-ray source and detector were evaluated.Main results. Compared to the conventional CBCT, the ms-CBCT design with 8 sources and ASRS significantly improved the image quality and accuracy, including: (1) reducing the cupping artifact from 15% to 3.5%; (2) reducing the spatial nonuniformity of the CT Hounsfield unit values from 38.0 to 9.2; (3) improving the contrast-to-noise ratio of the low contrast objects (acrylic and low density polyethylene inserts) against the water-equivalent background by ∼20% and (4) reducing the root-mean-square error of the HU values by 70%, from 420.1 to 124.4. The imaging dose and scanning time used by the current clinical CBCT for maxillofacial imaging can be achieved by current source and detector technologies.Significance. The ms-CBCT design significantly reduces the scatter and improves the image quality and accuracy compared to the conventional CBCT.


Asunto(s)
Tomografía Computarizada de Haz Cónico Espiral , Estudios de Factibilidad , Tomografía Computarizada de Haz Cónico/métodos , Fantasmas de Imagen , Fluoroscopía , Dispersión de Radiación
4.
Med Phys ; 50(6): 3435-3444, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36748167

RESUMEN

BACKGROUND: Scatter radiation is a traditional problem in cone-beam computed tomography (CBCT). Accordingly, numerous methods have been researched for scatter reduction in terms of software- or hardware-based solutions. The concept of a two-dimensional antiscatter grid (2D-ASG) has been shown to provide a solution to the scatter reduction in CBCT. However, the use of an ASG makes it challenging to use in clinical CBCT systems because it causes Moire artifacts of the image. PURPOSE: We have developed a Moire-free 2D-ASG that was designed to solve the Moire artifact and the scatter radiation problems. We provide the experimental results pertaining to the image quality measurements from the evaluation of the 2D-ASG compared with those obtained from a one-dimensional antiscatter grid (1D-ASG) and no antiscatter grid (No-ASG) to demonstrate the quantitative extent of the improvements. METHODS: The 2D-ASG, fabricated based on a sawing process with a graphite body, was prepared to evaluate image quality improvements. Projection images for Pro-CT MK II phantom were acquired using the CBCT testbed of sample rotation type and reconstructed by Feldkamp-Davis-Kress (FDK) algorithm without any filters. We measured the contrast-to-noise ratio (CNR) and uniformity index for the cupping artifacts of the 2D-ASG, 1D-ASG, and No-ASG cases. RESULTS: 2D-ASG considerably reduced the cupping artifacts owing to the scatter reduction compared with the 1D-ASG and No-ASG cases. The cupping artifacts were reduced by 85% in the 2D-ASG compared with No-ASG, while the cupping artifacts were reduced by 63% in 1D-ASG compared with No-ASG. The 2D-ASG also yielded a CNR improvement. The average CNR improvements for eight insert materials were 47% in the 2D-ASG compared with No-ASG, while the CNR was improved by 36% in the 1D-ASG compared with No-ASG. CONCLUSIONS: We demonstrated that the Moire-free 2D-ASG improved the image quality by removing scatter radiation in CBCT compared with 1D-ASG and No-ASG. We believe that the Moire-free 2D-ASG can become one of the effective ways to solve the scatter radiation problem in CBCT images because it provides usability and has the potential to have synergistic effects on other methods, such as bow-tie filter and scatter correction.


Asunto(s)
Algoritmos , Programas Informáticos , Tomografía Computarizada de Haz Cónico/métodos , Dispersión de Radiación , Fantasmas de Imagen , Artefactos , Procesamiento de Imagen Asistido por Computador/métodos
5.
Med Phys ; 50(4): 2022-2036, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36565012

RESUMEN

BACKGROUND: Accurate correction of x-ray scatter in dedicated breast computed tomography (bCT) imaging may result in improved visual interpretation and is crucial to achieve quantitative accuracy during image reconstruction and analysis. PURPOSE: To develop a deep learning (DL) model to correct for x-ray scatter in bCT projection images. METHODS: A total of 115 patient scans acquired with a bCT clinical system were segmented into the major breast tissue types (skin, adipose, and fibroglandular tissue). The resulting breast phantoms were divided into training (n = 110) and internal validation cohort (n = 5). Training phantoms were augmented by a factor of four by random translation of the breast in the image field of view. Using a previously validated Monte Carlo (MC) simulation algorithm, 12 primary and scatter bCT projection images with a 30-degree step were generated from each phantom. For each projection, the thickness map and breast location in the field of view were also calculated. A U-Net based DL model was developed to estimate the scatter signal based on the total input simulated image and trained single-projection-wise, with the thickness map and breast location provided as additional inputs. The model was internally validated using MC-simulated projections and tested using an external data set of 10 phantoms derived from images acquired with a different bCT system. For this purpose, the mean relative difference (MRD) and mean absolute error (MAE) were calculated. To test for accuracy in reconstructed images, a full bCT acquisition was mimicked with MC-simulations and then assessed by calculating the MAE and the structural similarity (SSIM). Subsequently, scatter was estimated and subtracted from the bCT scans of three patients to obtain the scatter-corrected image. The scatter-corrected projections were reconstructed and compared with the uncorrected reconstructions by evaluating the correction of the cupping artifact, increase in image contrast, and contrast-to-noise ratio (CNR). RESULTS: The mean MRD and MAE across all cases (min, max) for the internal validation set were 0.04% (-1.1%, 1.3%) and 2.94% (2.7%, 3.2%), while for the external test set they were -0.64% (-1.6%, 0.2%) and 2.84% (2.3%, 3.5%), respectively. For MC-simulated reconstruction slices, the computed SSIM was 0.99 and the MAE was 0.11% (range: 0%, 0.35%) with a single outlier slice of 2.06%. For the three patient bCT reconstructed images, the correction increased the contrast by a mean of 25% (range: 20%, 30%), and reduced the cupping artifact. The mean CNR increased by 0.32 after scatter correction, which was not found to be significant (95% confidence interval: [-0.01, 0.65], p = 0.059). The time required to correct the scatter in a single bCT projection was 0.2 s on an NVIDIA GeForce GTX 1080 GPU. CONCLUSION: The developed DL model could accurately estimate scatter in bCT projection images and could enhance contrast and correct for cupping artifact in reconstructed patient images without significantly affecting the CNR. The time required for correction would allow its use in daily clinical practice, and the reported accuracy will potentially allow quantitative reconstructions.


Asunto(s)
Aprendizaje Profundo , Humanos , Rayos X , Tomografía Computarizada por Rayos X/métodos , Mama/diagnóstico por imagen , Simulación por Computador , Algoritmos , Fantasmas de Imagen , Dispersión de Radiación , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada de Haz Cónico
6.
Med Phys ; 50(1): 240-258, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36215176

RESUMEN

BACKGROUND: Cone-beam computed tomography (CBCT) systems acquire volumetric data more efficiently than fan-beam or multislice CT, particularly when the anatomy of interest resides within the axial field-of-view of the detector and data can be acquired in one rotation. For such systems, scattered radiation remains a source of image quality degradation leading to increased noise, image artifacts, and CT number inaccuracies. PURPOSE: Recent advances in metal additive manufacturing allow the production of highly focused antiscatter grids (2D-ASGs) that can be used to reduce scatter intensity, while preserving primary radiation transmission. We present the first implementation of a large-area, 2D-ASG for flat-panel CBCT, including grid-line artifact removal and related improvements in image quality. METHODS: A 245 × 194 × 10 mm 2D-ASG was manufactured from chrome-cobalt alloy using laser powder-bed fusion (LPBF) (AM-400; Renishaw plc, New Mills Wotton-under-Edge, UK). The 2D-ASG had a square profile with a pitch of 9.09 lines/cm and 10:1 grid-ratio. The nominal 0.1 mm grid septa were focused to a 732 mm x-ray source to optimize primary x-ray transmission and reduce grid-line shadowing at the detector. Powder-bed fusion ensured the structural stability of the ASG with no need for additional interseptal support. The 2D-ASG was coupled to a 0.139-mm element pitch flat-panel detector (DRX 3543, Carestream Health) and proper alignment was confirmed by consistent grid-line shadow thickness across the whole detector array. A 154-mm diameter CBCT image-quality-assurance phantom was imaged using a rotary stage and a ceiling-mounted, x-ray unit (Proteus XR/a, GE Medical Systems, 80kVp, 0.5mAs). Grid-line artifacts were removed using a combination of exposure-dependent gain correction and spatial-frequency, Fourier filtering. Projections were reconstructed using a Parker-weighted, FDK algorithm and voxels were spatially averaged to 357 × 357 × 595 µm to improve the signal-to-noise characteristics of the CBCT reconstruction. Finally, in order to compare image quality with and without scatter, the phantom was scanned again under the same CBCT conditions but with no 2D-ASG. No additional antiscatter (i.e., air-gap, bowtie filtration) strategies were used to evaluate the effects in image quality caused by the 2D-ASG alone. RESULTS: The large-area, 2D-ASG prototype was successfully designed and manufactured using LPBF. CBCT image-quality improvements using the 2D-ASG included: an overall 14.5% CNR increase across the volume; up to 48.8% CNR increase for low-contrast inserts inside the contrast plate of the QA phantom; and a 65% reduction of cupping artifact in axial profiles of water-filled cross sections of the phantom. Advanced image processing strategies to remove grid line artifacts did not affect the spatial resolution or geometric accuracy of the system. CONCLUSIONS: LPBF can be used to manufacture highly efficient, 2D-focused ASGs that can be easily coupled to clinical, flat-panel detectors. The implementation of ASGs in CBCT leads to reduced scatter-related artifacts, improved CT number accuracy, and enhanced CNR with no increased equivalent dose to the patient. Further improvements to image quality might be achieved with a combination of scatter-correction algorithms and iterative-reconstruction strategies. Finally, clinical applications where other scatter removal strategies are unfeasible might now achieve superior soft-tissue visualization and quantitative capabilities.


Asunto(s)
Algoritmos , Tomografía Computarizada de Haz Cónico , Humanos , Polvos , Tomografía Computarizada de Haz Cónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Impresión Tridimensional , Dispersión de Radiación , Artefactos
7.
Sci Rep ; 12(1): 14300, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995952

RESUMEN

This work reports the optical properties of porcine pancreatic tissue in the broad wavelength range of 600-1100 nm. Absorption and reduced scattering coefficients (µa and µs') of the ex vivo pancreas were obtained by means of Time-domain Diffuse Optical Spectroscopy. We have investigated different experimental conditions-including compression, repositioning, spatial sampling, temporal stability-the effect of the freezing procedure (fresh vs frozen-thawed pancreas), and finally inter-sample variability. Good repeatability under different experimental conditions was obtained (median coefficient of variation less than 8% and ~ 16% for µa and µs', respectively). Freezing-thawing the samples caused an irreversible threefold reduction of µs' and no effect on µa. The absorption and reduced scattering spectra averaged over different samples were in the range of 0.12-0.74 cm-1 and 12-21 cm-1 with an inter-sample variation of ~ 10% and ~ 40% for µa and µs', respectively. The calculated effective transport coefficient (µeff) for fresh pancreatic tissue shows that regions between 800-900 nm and 1050-1100 nm are similar and offer the lowest tissue attenuation in the considered range (i.e., µeff ranging from 2.4 to 2.7 cm-1). These data, describing specific light-pancreas interactions in the therapeutic optical window for the first time, provide pivotal information for planning of light-based thermotherapies (e.g., laser ablation) and instruction of light transport models for biophotonic applications involving this organ.


Asunto(s)
Hipertermia Inducida , Fototerapia , Animales , Páncreas , Dispersión de Radiación , Análisis Espectral/métodos , Porcinos
8.
Carbohydr Polym ; 291: 119521, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35698365

RESUMEN

Polygalacturonic acid (PGA), being the backbone of pectins, governs their aggregation that is widely applied in industry. The PGA aggregation was studied by dynamic and static light scattering within a limited space of sodium polygalacturonate nanoparticles obtained by nanoprecipitation (drop-wise addition of alkaline solution of PGA to an ethanol bath). With increasing buffer's pH from 4.0 to 9.1, the colloids changed their form from elongated to spherical one, as indicated by decreasing the structure-sensitive ratio Rg/Rh from 1.7 to 1.1. Molecular mass-per-unit-length determined in Holtzer coordinates decreased from 5000 to 1600 Da nm-1 with increasing pH, suggesting partial disintegration of helical bundles due to electrostatic repulsion. Kratky plots also pointed out partial disintegration of the PGA junctions with increasing pH. Nonmonotonic dependence of the colloidal radius of gyration Rg on [NaCl] characterized the osmotic regime characteristic of annealed polyelectrolytes and thus confirmed the star-like structure of junctions.


Asunto(s)
Nanopartículas , Coloides/química , Pectinas , Dispersión de Radiación
9.
Mol Pharm ; 19(6): 1882-1891, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35506592

RESUMEN

Nanomedicines including lipid- and polymer-based nanoparticles and polymer-drug conjugates enable targeted drug delivery for the treatment of numerous diseases. Quantitative analysis of components in nanomedicines is routinely performed to characterize the products to ensure quality and property consistency but has been mainly focused on the active pharmaceutical ingredients (APIs) in academic publications. It has been increasingly recognized that excipients in nanomedicines are critical in determining the product quality, stability, consistency, and safety. APIs are often analyzed by high-performance liquid chromatography (HPLC), and it would be convenient if the same method can be applied to excipients to robustly quantify all components in nanomedicines. Here, we report the development of a HPLC method that combined an evaporative light scattering (ELS) detector with an UV-vis detector to simultaneously analyze drugs and excipients in nanomedicines. This method was tested on diverse nanodrug delivery systems, including a niosomal nanoparticle encapsulating a phytotherapeutic, a liposome encapsulating an immune boosting agent, and a PEGylated peptide. This method can be utilized for a variety of applications, such as monitoring drug loading, studying drug release, and storage stability. The information obtained from the analyses is of importance for nanomedicine formulation development.


Asunto(s)
Excipientes , Luz , Cromatografía Líquida de Alta Presión/métodos , Excipientes/química , Liposomas , Polímeros , Dispersión de Radiación
10.
Med Phys ; 49(7): 4566-4584, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35390181

RESUMEN

BACKGROUND: The image quality of cone beam CT (CBCT) scans severely suffers from scattered radiation if no countermeasures are taken. Scatter artifacts may induce cupping and streak artifacts and lead to a reduced image contrast and wrong CT values of the reconstructed volumes. Established software-based approaches for a correction of scattered radiation typically rely on prior knowledge of the CT system, scan parameters, the scanned object, or all of the aforementioned. PURPOSE: This study proposes a simple and effective postprocessing software-based correction method of scatter artifacts in CBCT scans without specific prior knowledge. METHODS: We propose the empirical scatter correction (ESC), which generates scatter-like basis images from each projection image by convolution operations. A linear combination of these basis images is subtracted from the original projection image. The logarithm is taken and an FDK reconstruction is performed. The coefficients needed for the linear combination are determined automatically by a downhill simplex algorithm such that the resulting reconstructed images show no scatter artifacts. We demonstrate the potential of ESC by correcting simulated volumes with Monte Carlo scatter artifacts, a head phantom scan performed on our table-top CBCT, and a pelvis scan from a Varian Edge CBCT scanner. RESULTS: ESC is able to improve the image quality of CBCT scans, which is shown on the basis of our simulations and on measured data. For a simulated head CT, the CT value difference to the scatter-free reference image was as low as -6 HU after using ESC, whereas the uncorrected data deviated by more than -200 HU from the reference data. Simulations of thorax and abdomen CT scans show that although scatter artifacts are not fully removed, anatomical features which were hard to discover prior to the correction become clearly visible and better segmentable with ESC. Similar results are obtained in the phantom measurement, where a comparison to a slit scan of our head phantom shows only small differences. The CT values in soft tissue are improved in this measurement, as well. In soft tissue areas with severe scatter artifacts, the CT values agree well with those of the slit scan (difference to slit scan: 35 HU corrected and -289 HU uncorrected). Scatter artifacts in measured patient data can also be reduced using the proposed ESC. The results are comparable to those achieved with designated correction algorithms installed on the Varian Edge CBCT system. CONCLUSIONS: ESC allows to reduce artifacts caused by patient scatter solely based on the projection data.


Asunto(s)
Artefactos , Tomografía Computarizada de Haz Cónico Espiral , Algoritmos , Tomografía Computarizada de Haz Cónico/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Dispersión de Radiación
11.
Molecules ; 26(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34885827

RESUMEN

A method based on high performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) was developed for the quantitative analysis of three active compounds and chemical fingerprint analyses of saccharides in Morindae officinalis radix. Ten batches of Morindae officinalis radix were collected from different plantations in the Guangdong region of China and used to establish the fingerprint. The samples were separated with a COSMOIL Sugar-D column (4.6 mm × 250 mm, 5 µm) by using gradient elution with water (A) and acetonitrile (B). In addition, Trapped-Ion-Mobility (tims) Time-Of-Flight (tims TOF) was used to identify saccharides of Morindae officinalis radix. Fingerprint chromatogram presented 26 common characteristic peaks in the roots of Morinda officinalis How, and the similarities were more than 0.926. In quantitative analysis, the three compounds showed good regression (r = 0.9995-0.9998) within the test ranges, and the recoveries of the method were in the range of 96.7-101.7%. The contents of sucrose, kestose and nystose in all samples were determined as 1.21-7.92%, 1.02-3.37%, and 2.38-6.55%, respectively. The developed HPLC fingerprint method is reliable and was validated for the quality control and identification of Morindae officinalis radix and can be successfully used to assess the quality of Morindae officinalis radix.


Asunto(s)
Medicamentos Herbarios Chinos , Oligosacáridos , Dispersión de Radiación , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Modelos Lineales , Oligosacáridos/análisis , Oligosacáridos/aislamiento & purificación , Análisis de Componente Principal , Reproducibilidad de los Resultados
12.
Analyst ; 146(24): 7601-7610, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34783335

RESUMEN

In this study, Monte Carlo simulations were created to investigate the distribution of Raman signals in tissue phantoms and to validate the arctk code that was used. The aim was to show our code is capable of replicating experimental results in order to use it to advise similar future studies and to predict the outcomes. The experiment performed to benchmark our code used large volume liquid tissue phantoms to simulate the scattering properties of human tissue. The scattering agent used was Intralipid (IL), of various concentrations, filling a small quartz tank. A thin sample of PTFE was made to act as a distinct layer in the tank; this was our Raman signal source. We studied experimentally, and then reproduced via simulations, the variation in Raman signal strength in a transmission geometry as a function of the optical properties of the scattering agent and the location of the Raman material in the volume. We have also found that a direct linear extrapolation of scattering coefficients between concentrations of Intralipid is an incorrect assumption at lower concentrations when determining the optical properties. By combining experimental and simulation results, we have calculated different estimates of these scattering coefficients. The results of this study give insight into light propagation and Raman transport in scattering media and show how the location of maximum Raman signal varies as the optical properties change. The success of arctk in reproducing observed experimental signal behaviour will allow us in future to inform the development of noninvasive cancer screening applications (such as breast and prostate cancers) in vivo.


Asunto(s)
Aceite de Soja , Espectrometría Raman , Emulsiones , Humanos , Masculino , Método de Montecarlo , Fantasmas de Imagen , Fosfolípidos , Dispersión de Radiación
13.
Opt Express ; 29(18): 29423-29438, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34615052

RESUMEN

We propose a new modeling approach for scatter estimation and descattering in polyenergetic X-ray computed tomography (CT) based on fitting models to local neighborhoods of a training set. X-ray CT is widely used in medical and industrial applications. X-ray scatter, if not accounted for during reconstruction, creates a loss of contrast in CT reconstructions and introduces severe artifacts including cupping, shading, and streaks. Even when these qualitative artifacts are not apparent, scatter can pose a major obstacle in obtaining quantitatively accurate reconstructions. Our approach to estimating scatter is, first, to generate a training set of 2D radiographs with and without scatter using particle transport simulation software. To estimate scatter for a new radiograph, we adaptively fit a scatter model to a small subset of the training data containing the radiographs most similar to it. We compared local and global (fit on full data sets) versions of several X-ray scatter models, including two from the recent literature, as well as a recent deep learning-based scatter model, in the context of descattering and quantitative density reconstruction of simulated, spherically symmetrical, single-material objects comprising shells of various densities. Our results show that, when applied locally, even simple models provide state-of-the-art descattering, reducing the error in density reconstruction due to scatter by more than half.


Asunto(s)
Artefactos , Simulación por Computador , Procesamiento de Imagen Asistido por Computador , Modelos Teóricos , Dispersión de Radiación , Algoritmos , Aprendizaje Profundo
14.
Opt Express ; 29(20): 32179-32195, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34615295

RESUMEN

Full-field swept-source optical coherence tomography (FF-SS-OCT) is an emerging technology with potential applications in ophthalmic imaging, microscopy, metrology, and other domains. Here we demonstrate a novel method of multiplexing FF-SS-OCT signals using carrier modulation (CM). The principle of CM could be used to inspect various properties of the scattered light, e.g. its spectrum, polarization, Doppler shift, or distribution in the pupil. The last of these will be explored in this work, where CM was used to acquire images passing through two different optical pupils. The two pupils contained semicircular optical windows with perpendicular orientations, with each window permitting measurement of scattering anisotropy in one dimension by inducing an optical delay between the images formed by the two halves of the pupil. Together, the two forms of multiplexing permit measurement of differential scattering anisotropy in the x and y dimensions simultaneously. To demonstrate the feasibility of this technique our carrier multiplexed directional FF-OCT (CM-D-FF-OCT) system was used to acquire images of a microlens array, human hair, onion skin and in vivo human retina. The results of these studies are presented and briefly discussed in the context of future development and application of this technique.


Asunto(s)
Luz , Dispersión de Radiación , Tomografía de Coherencia Óptica/métodos , Anisotropía , Artefactos , Estudios de Factibilidad , Análisis de Fourier , Cabello/diagnóstico por imagen , Humanos , Interferometría , Cebollas , Retina/diagnóstico por imagen , Células Fotorreceptoras Retinianas Conos/fisiología , Semiconductores , Tomografía de Coherencia Óptica/instrumentación , Tomografía de Coherencia Óptica/tendencias
15.
Molecules ; 26(9)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34062981

RESUMEN

In this work, a new ultra-performance liquid chromatograph-evaporative light-scattering detector (UPLC-ELSD) method for quantitation of glycidyl esters (GE) contents in edible oils is presented. The method features complete separation of five GE species within 20 min by a C18 column and gradient elution with a mobile phase consisting of 85% and 2.5% methanol aqueous solutions. The coefficients of regression (R2) were all ≥0.9999 for the linear-quadratic regression curves of GE species in a concentration range of 5~80 µg/mL. The intraday and interday recoveries (%) of GE species in solvent were in a range of 81.3~107.3%, and the intraday and interday coefficients of variation (CVs, %) were all ≤8.6%. The average recovery (%) of GE species spiked in extra-virgin olive oil samples ranged from 88.3~107.8% and the intermediate precision (CV, %) of ≤14% indicated acceptable accuracy and precision. The method exhibited limit of quantification (LOQ) for each GE species (0.6 µg glycidol equivalents/g oil). The method was applied to determine GE concentrations of six commercial oil samples, and total glycidol equivalents were consistent with data obtained by GC-MS method. This UPLC-ELSD method could be adopted for precursory screening and research purposes to improve food safety when MS detectors are unavailable.


Asunto(s)
Cromatografía de Fase Inversa , Ésteres/análisis , Aceites de Plantas/química , Dispersión de Radiación , Cromatografía Líquida de Alta Presión , Ésteres/química , Cromatografía de Gases y Espectrometría de Masas , Límite de Detección , Estándares de Referencia , Análisis de Regresión , Reproducibilidad de los Resultados , Solventes , Factores de Tiempo
16.
Biomolecules ; 11(2)2021 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573343

RESUMEN

Green synthesis of metal nanoparticles using plant extracts as capping and reducing agents for the biomedical applications has received considerable attention. Moreover, emergence and spread of multidrug resistance among bacterial pathogens has become a major health concern and lookout for novel alternative effective drugs has gained momentum. In current study, we synthesized gold nanoparticles using the seed extract of Trachyspermum ammi (TA-AuNPs), assessed its efficacy against drug resistant biofilms of Listeria monocytogenes and Serratia marcescens, and evaluated its anticancer potential against HepG2 cancer cell lines. Microwave-assisted green synthesis of gold nanoparticles was carried out and characterization was done using UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Most nanoparticles were observed as spherical and spheroidal with few anisotropies with an average crystalline size of 16.63 nm. Synthesized TA-AuNPs demonstrated significant biofilm inhibitory activity against L. monocytogenes (73%) as well as S. marcescens (81%). Exopolysaccharide (EPS), motility, and CSH, key elements that facilitate the formation and maintenance of biofilm were also inhibited significantly at the tested sub-minimum inhibitory concentrations (sub-MICs). Further, TA-AuNPs effectively obliterated preformed mature biofilms of S. marcescens and L. monocytogenes by 64% and 58%, respectively. Induction of intracellular ROS production in TA-AuNPs treated bacterial cells could be the plausible mechanism for the reduced biofilm formation in test pathogens. Administration of TA-AuNPs resulted in the arrest of cellular proliferation in a concentration-dependent manner. TA-AuNPs decrease the intracellular GSH in HepG2 cancer cell lines, cells become more prone to ROS generation, hence induce apoptosis. Thus, this work proposes a new eco-friendly and rapid approach for fabricating NPs which can be exploited for multifarious biomedical applications.


Asunto(s)
Antineoplásicos/farmacología , Apiaceae/metabolismo , Oro/química , Nanopartículas del Metal/química , Especies Reactivas de Oxígeno , Semillas/metabolismo , Anisotropía , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Supervivencia Celular , Glutatión Transferasa/metabolismo , Tecnología Química Verde , Células Hep G2 , Humanos , Luz , Peroxidación de Lípido , Listeria monocytogenes/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Microondas , Extractos Vegetales/farmacología , Polisacáridos Bacterianos/química , Dispersión de Radiación , Serratia marcescens/efectos de los fármacos , Sales de Tetrazolio/química , Tiazoles/química , Difracción de Rayos X
17.
Zhongguo Zhong Yao Za Zhi ; 45(22): 5511-5517, 2020 Nov.
Artículo en Chino | MEDLINE | ID: mdl-33350213

RESUMEN

Evaporative light scattering detector(ELSD) and charged aerosol detector(CAD) methods were established in this study for the content determination of four kinds of sugars in Zhusheyong Yiqi Fumai(YQFM), and the factors affecting the accuracy of CAD methods were discussed. HPLC-ELSD chromatographic separation was performed on a Shodex Asahipak NH2 P-50 column with acetonitrile-water(75∶25)as the mobile phase, with a flow rate of 0.8 mL·min~(-1), drift tube temperature of 80 ℃. The analysis by HPLC-CAD was performed on the same column with acetonitrile-water as mobile phase for gradient elution, with a flow rate of 0.8 mL·min~(-1), a neb temperature of 45 ℃, and power function(PF) of 1.3. The samples of YQFM were detected by ELSD and CAD respectively. It was found that YQFM was composed of fructose, glucose, sucrose and maltose. The linear relationship of the two methods was good, and the recoveries, reproducibility and stability of these four kinds of sugars measured by the two methods satisfied the requirements of methodology. Both CAD and ELSD detectors were accurate and reliable in detecting saccharides components in YQFM. In addition, it was revealed in this study for the first time that the PF parameter of CAD had an important influence on the accuracy of sugar determination and acted as the key parameter of CAD method. It was also found that for CAD, a non-linear detector, there was no significant difference between the results of linear regression and logarithmic regression.


Asunto(s)
Carbohidratos , Azúcares , Aerosoles , Cromatografía Líquida de Alta Presión , Luz , Reproducibilidad de los Resultados , Dispersión de Radiación
18.
J Appl Clin Med Phys ; 21(12): 166-177, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33136307

RESUMEN

PURPOSE: Cone beam computed tomography (CBCT) offers advantages such as high ray utilization rate, the same spatial resolution within and between slices, and high precision. It is one of the most actively studied topics in international computed tomography (CT) research. However, its application is hindered owing to scatter artifacts. This paper proposes a novel scatter artifact removal algorithm that is based on a convolutional neural network (CNN), where contextual loss is employed as the loss function. METHODS: In the proposed method, contextual loss is added to a simple CNN network to correct the CBCT artifacts in the pelvic region. The algorithm aims to learn the mapping from CBCT images to planning CT images. The 627 CBCT-CT pairs of 11 patients were used to train the network, and the proposed algorithm was evaluated in terms of the mean absolute error (MAE), average peak signal-to-noise ratio (PSNR) and so on. The proposed method was compared with other methods to illustrate its effectiveness. RESULTS: The proposed method can remove artifacts (including streaking, shadowing, and cupping) in the CBCT image. Furthermore, key details such as the internal contours and texture information of the pelvic region are well preserved. Analysis of the average CT number, average MAE, and average PSNR indicated that the proposed method improved the image quality. The test results obtained with the chest data also indicated that the proposed method could be applied to other anatomies. CONCLUSIONS: Although the CBCT-CT image pairs are not completely matched at the pixel level, the method proposed in this paper can effectively correct the artifacts in the CBCT slices and improve the image quality. The average CT number of the regions of interest (including bones, skin) also exhibited a significant improvement. Furthermore, the proposed method can be applied to enhance the performance on such applications as dose estimation and segmentation.


Asunto(s)
Artefactos , Tomografía Computarizada de Haz Cónico Espiral , Algoritmos , Tomografía Computarizada de Haz Cónico , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Dispersión de Radiación
19.
IET Nanobiotechnol ; 14(7): 617-622, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33010138

RESUMEN

This study aimed to develop sorafenib loaded magnetic microspheres for the treatment of hepatocellular carcinoma. To achieve this goal, superparamagnetic iron oxide nanoparticles (SPIONs) were synthesised and encapsulated in alginate microspheres together with an antineoplastic agent, sorafenib. In the study, firstly SPIONs were synthesised and characterised by dynamic light scattering, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. Then, alginate-SPIONs microspheres were developed, and further characterised by electron spin resonance spectrometer and vibrating sample magnetometer. Besides the magnetic properties of SPIONs, alginate microspheres with SPIONs were also found to have magnetic properties. The potential use of microspheres in hyperthermia treatment was then investigated and an increase of about 4°C in the environment was found out. Drug release studies and cytotoxicity tests were performed after sorafenib was encapsulated into the magnetic microspheres. According to release studies, sorafenib has been released from microspheres for 8 h. Cytotoxicity tests showed that alginate-SPION-sorafenib microspheres were highly effective against cancerous cells and promising for cancer therapy.


Asunto(s)
Alginatos/química , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Microesferas , Sorafenib/química , Animales , Antineoplásicos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Férricos/química , Células Hep G2 , Humanos , Hipertermia , Técnicas In Vitro , Luz , Magnetismo , Nanopartículas de Magnetita/química , Nanopartículas del Metal/química , Ratones , Neoplasias/metabolismo , Tamaño de la Partícula , Polvos , Dispersión de Radiación , Temperatura , Espectroscopía de Absorción de Rayos X
20.
Molecules ; 25(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937751

RESUMEN

Nanoparticles (NPs) have unique properties compared to their bulk counterparts, and they have potentials for various applications in many fields of life science. Green-synthesized NPs have garnered considerable interest due to their inherent features such as rapidity, eco-friendliness and cost-effectiveness. Zinc oxide nanoparticles (ZnO NPs) were synthesized using an aqueous extract of Kalanchoe blossfeldiana as a reducing agent. The resulting nanoparticles were characterized via X-ray diffraction (XRD), dynamic light scattering (DLS), UV-Vis spectroscopy, photoluminescence (PL), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The antimicrobial potential of the synthesized ZnO NPs against bacterial and fungal strains was examined by the disk diffusion method, and they showed a promising antibacterial and antifungal potential. The catalytic activity of the synthesized ZnO NPs in reducing methylene blue (MB) and eosin was studied via UV-Vis spectroscopy. The decolorization percentages of the MB and Eosin Y dyes were 84% and 94%, respectively, which indicate an efficient degradation of the ZnO NPs. In addition, the cytotoxic activity of the ZnO NPs on the HeLa cell line was evaluated via in vitro assay. The MTT assay results demonstrate a potent cytotoxic effect of the ZnO NPs against the HeLa cancer cell line.


Asunto(s)
Antiinfecciosos/farmacología , Nanopartículas del Metal/química , Óxido de Zinc/química , Óxido de Zinc/farmacología , Antiinfecciosos/química , Catálisis , Ensayos de Selección de Medicamentos Antitumorales , Tecnología Química Verde , Células HeLa , Humanos , Kalanchoe/química , Luz , Luminiscencia , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Fotoquímica/métodos , Extractos Vegetales/química , Sustancias Reductoras/química , Dispersión de Radiación , Espectrofotometría Ultravioleta , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA