Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Expert Opin Drug Metab Toxicol ; 17(2): 171-178, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33215946

RESUMEN

INTRODUCTION: Hyperoxic lung injury is a condition that can occur in patients in need of supplemental oxygen, such as premature infants with bronchopulmonary dysplasia or adults with acute respiratory distress syndrome. Cytochrome P450 (CYP) enzymes play critical roles in the metabolism of endogenous and exogenous compounds. AREAS COVERED: Through their complex pathways, some subfamilies of these enzymes may contribute to or protect against hyperoxic lung injury. Oxidative stress from reactive oxygen species (ROS) production is most likely a major contributor of hyperoxic lung injury. CYP1A enzymes have been shown to protect against hyperoxic lung injury while CYP1B enzymes seem to contribute to it. CYP2J2 enzymes help protect against hyperoxic lung injury by triggering EET production, thereby, increasing antioxidant enzymes. The metabolism of arachidonic acid to ω-terminal hydroxyeicosatetraenoic acid (20-HETEs) by CYP4A and CYP4F enzymes could impact hyperoxic lung injury via the vasodilating effects of 20-HETE. CYP2E1 and CYP2A enzymes may contribute to the oxidative stress in the lungs caused by ethanol- and nicotine-metabolism, respectively. EXPERT OPINION: Overall, the CYP enzymes, depending upon the isoform, play a contributory or protective role in hyperoxic lung injury, and are, therefore, ideal candidates for developing drugs that can treat oxygen-mediated lung injury.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Hiperoxia/complicaciones , Lesión Pulmonar/etiología , Adulto , Animales , Displasia Broncopulmonar/enzimología , Displasia Broncopulmonar/fisiopatología , Humanos , Hiperoxia/enzimología , Recién Nacido , Recien Nacido Prematuro , Lesión Pulmonar/enzimología , Lesión Pulmonar/fisiopatología , Estrés Oxidativo/fisiología , Síndrome de Dificultad Respiratoria/enzimología , Síndrome de Dificultad Respiratoria/fisiopatología
2.
Exp Lung Res ; 41(1): 12-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25275819

RESUMEN

The aim of the study was to investigate the effects of substance P (SP) in hyperoxia-induced lung injury in newborn rats. Thirty-two rat pups were randomly divided into four groups: normoxia/saline, normoxia/SP, hyperoxia/saline and hyperoxia/SP. In a separate set of experiments, the neonatal rat pups were exposed to 21% or >95% O2 for 14 days with or without intraperitoneal administration of SP. On day 14, the animals were sacrificed and the lungs were processed for histology and biochemical analysis. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used for the detection of apoptosis. Antioxidant capacity was assessed by glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), oxidative stress was assessed by determining the extent of formation of malondialdehyde (MDA), activities of NADPH oxidase activity, and formation of reactive oxygen species (ROS). The activity of phospho-p38 (p-p38) and -ERK1/2 (p-ERK1/2) proteins and expression of NF-E2-related factor 2 (NRF2) were detected by Western blot, and the expression of p-p38 was detected by immunofluorescence analysis. Compared with the hyperoxia treatment, the lung damage was significantly ameliorated following the SP treatment. Furthermore, the lungs from the pups exposed to hyperoxia TUNEL-positive nuclei increased markedly and decreased significantly after SP treatment. The levels of MDA decreased and that of GSH-Px and SOD increased following the SP treatment. The SP treatment significantly suppressed the activity of NADPH oxidase and reduced ROS production. SP stimulation may result in blocking p38 MAPK and ERK signaling pathways, and the activities of p-p38 and p-ERK, and expression of NRF2 decreased following the SP treatment. These findings indicate that SP can ameliorate hyperoxic lung injury through decreasing cell apoptosis, elevating antioxidant activities, and attenuating oxidative stress.


Asunto(s)
Displasia Broncopulmonar/prevención & control , Hiperoxia/complicaciones , Neurotransmisores/uso terapéutico , Sustancia P/uso terapéutico , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/enzimología , Displasia Broncopulmonar/etiología , Evaluación Preclínica de Medicamentos , Edema/etiología , Edema/prevención & control , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Glutatión Peroxidasa/metabolismo , Hiperoxia/enzimología , Pulmón/enzimología , Malondialdehído/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neurotransmisores/farmacología , Embarazo , Distribución Aleatoria , Ratas Sprague-Dawley , Sustancia P/farmacología , Superóxido Dismutasa/metabolismo
3.
Am J Respir Cell Mol Biol ; 48(5): 578-88, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23328640

RESUMEN

The pathological hallmarks of bronchopulmonary dysplasia (BPD), a chronic lung disease of premature infants, include inflammation, arrested alveolarization, and dysregulated angiogenesis. Severe BPD is often complicated by pulmonary hypertension (PH) that significantly increases morbidity and mortality. Glycogen synthase kinase (GSK)-3ß plays a pivotal role in embryonic development, cell proliferation and survival, and inflammation by modulating multiple signaling pathways, particularly the nuclear transcription factor, NF-κB, and Wnt/ß-catenin pathways. Aberrant GSK-3ß signaling is linked to BPD. We tested the hypothesis that inhibition of GSK-3ß is beneficial in preventing hyperoxia-induced neonatal lung injury, an experimental model of BPD. Newborn rats were exposed to normoxia or hyperoxia (90% oxygen), and received daily intraperitoneal injections of placebo (DMSO) or SB216763, a specific pharmacological inhibitor of GSK-3ß, for 14 days. Hyperoxia exposure in the presence of the placebo increased GSK-3ß phosphorylation, which was correlated with increased inflammation, decreased alveolarization and angiogenesis, and increased pulmonary vascular remodeling and PH. However, treatment with SB216763 decreased phosphorylation of NF-κB p65, expression of monocyte chemotactic protein-1, and lung inflammation during hyperoxia. Furthermore, treatment with the GSK-3ß inhibitor also improved alveolarization and angiogenesis, and decreased pulmonary vascular remodeling and PH. These data indicate that GSK-3ß signaling plays an important role in the pathogenesis of hyperoxia-induced neonatal lung injury, and that inhibition of GSK-3ß is beneficial in preventing inflammation and protecting alveolar and vascular structures during hyperoxia. Thus, targeting GSK-3ß signaling may offer a novel strategy to prevent and treat preterm infants with BPD.


Asunto(s)
Displasia Broncopulmonar/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Hiperoxia/tratamiento farmacológico , Indoles/administración & dosificación , Maleimidas/administración & dosificación , Inhibidores de Proteínas Quinasas/administración & dosificación , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/enzimología , Displasia Broncopulmonar/etiología , Evaluación Preclínica de Medicamentos , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Hiperoxia/complicaciones , Hiperoxia/enzimología , Hipertensión Pulmonar/enzimología , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/prevención & control , Recién Nacido , Inyecciones Intraperitoneales , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/patología , Fosforilación , Neumonía/tratamiento farmacológico , Neumonía/enzimología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor de Transcripción ReIA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA