Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560255

RESUMEN

Dysferlinopathy is an autosomal recessive muscular dystrophy resulting from mutations in the dysferlin gene. Absence of dysferlin in the sarcolemma and progressive muscle wasting are hallmarks of this disease. Signs of oxidative stress have been observed in skeletal muscles of dysferlinopathy patients, as well as in dysferlin-deficient mice. However, the contribution of the redox imbalance to this pathology and the efficacy of antioxidant therapy remain unclear. Here, we evaluated the effect of 10 weeks diet supplementation with the antioxidant agent N-acetylcysteine (NAC, 1%) on measurements of oxidative damage, antioxidant enzymes, grip strength and body mass in 6 months-old dysferlin-deficient Bla/J mice and wild-type (WT) C57 BL/6 mice. We found that quadriceps and gastrocnemius muscles of Bla/J mice exhibit high levels of lipid peroxidation, protein carbonyls and superoxide dismutase and catalase activities, which were significantly reduced by NAC supplementation. By using the Kondziela's inverted screen test, we further demonstrated that NAC improved grip strength in dysferlin deficient animals, as compared with non-treated Bla/J mice, without affecting body mass. Together, these results indicate that this antioxidant agent improves skeletal muscle oxidative balance, as well as muscle strength and/or resistance to fatigue in dysferlin-deficient animals.


Asunto(s)
Acetilcisteína/administración & dosificación , Antioxidantes/administración & dosificación , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Cinturas/dietoterapia , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Índice de Masa Corporal , Modelos Animales de Enfermedad , Humanos , Peroxidación de Lípido/efectos de los fármacos , Ratones , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Resultado del Tratamiento
2.
JCI Insight ; 3(18)2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30232282

RESUMEN

Zebrafish are a powerful tool for studying muscle function owing to their high numbers of offspring, low maintenance costs, evolutionarily conserved muscle functions, and the ability to rapidly take up small molecular compounds during early larval stages. Fukutin-related protein (FKRP) is a putative protein glycosyltransferase that functions in the Golgi apparatus to modify sugar chain molecules of newly translated proteins. Patients with mutations in the FKRP gene can have a wide spectrum of clinical symptoms with varying muscle, eye, and brain pathologies depending on the location of the mutation in the FKRP protein. Patients with a common L276I FKRP mutation have mild adult-onset muscle degeneration known as limb-girdle muscular dystrophy 2I (LGMD2I), whereas patients with more C-terminal pathogenic mutations develop the severe Walker-Warburg syndrome (WWS)/muscle-eye-brain (MEB) disease. We generated fkrp-mutant zebrafish that phenocopy WWS/MEB pathologies including severe muscle breakdowns, head malformations, and early lethality. We have also generated a milder LGMD2I-model zebrafish via overexpression of a heat shock-inducible human FKRP (L276I) transgene that shows milder muscle pathology. Screening of an FDA-approved drug compound library in the LGMD2I zebrafish revealed a strong propensity towards steroids, antibacterials, and calcium regulators in ameliorating FKRP-dependent pathologies. Together, these studies demonstrate the utility of the zebrafish to both study human-specific FKRP mutations and perform compound library screenings for corrective drug compounds to treat muscular dystrophies.


Asunto(s)
Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Distrofia Muscular de Cinturas/tratamiento farmacológico , Distrofia Muscular de Cinturas/fisiopatología , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/fisiopatología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Técnicas de Inactivación de Genes , Humanos , Locomoción , Movimiento , Músculo Esquelético/fisiopatología , Distrofias Musculares/genética , Distrofia Muscular de Cinturas/genética , Mutación , Pentosiltransferasa , Fenotipo , Proteínas , Transcriptoma , Síndrome de Walker-Warburg , Pez Cebra
3.
Physiother Res Int ; 16(1): 20-31, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21110410

RESUMEN

BACKGROUND AND PURPOSE: There are few studies on possible effects of physiotherapy for adults with muscular dystrophy. The aim of this study was to examine if treatment based on the Bobath concept may influence specific gait parameters in some of these patients. METHODS: A single-subject experimental design with A-B-A-A phases was used, and four patients, three with limb-girdle muscular dystrophy (LGMD) and one with fascioscapulohumeral muscular dystrophy (FSHD), were included. The patients had 1 hour of individually tailored physiotherapy at each working day for a period of 3 weeks. Step length, step width and gait velocity were measured during the A-B-A-A phases by use of an electronic walkway. Walking distance and endurance were measured by use of the '6 minute walk test'. RESULTS: . The three LGMD patients, who initially walked with a wide base of support, had a narrower, velocity-adjusted step width after treatment, accompanied with the same or even longer step length. These changes lasted throughout follow-up. Moreover, two of the patients were able to walk a longer distance within 6 minutes after the treatment period. The fourth patient (with FSHD) had a normal step width at baseline, which did not change during the study. CONCLUSIONS: The results indicate that physiotherapy treatment based on the Bobath concept may influence the gait pattern in patients with LGMD. However, in order to evaluate the effectiveness of physiotherapy to patients with muscular dystrophies, we call for larger studies and controlled trials.


Asunto(s)
Marcha/fisiología , Distrofia Muscular de Cinturas/fisiopatología , Distrofia Muscular de Cinturas/rehabilitación , Modalidades de Fisioterapia , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Caminata/fisiología
4.
PLoS One ; 5(9): e12981, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20886045

RESUMEN

The dysferlin deficient SJL/J mouse strain is commonly used to study dysferlin deficient myopathies. Therefore, we systematically evaluated behavior in relatively young (9-25 weeks) SJL/J mice and compared them to C57BL6 mice to determine which functional end points may be the most effective to use for preclinical studies in the SJL/J strain. SJL/J mice had reduced body weight, lower open field scores, higher creatine kinase levels, and less muscle force than did C57BL6 mice. Power calculations for expected effect sizes indicated that grip strength normalized to body weight and open field activity were the most sensitive indicators of functional status in SJL/J mice. Weight and open field scores of SJL/J mice deteriorated over the course of the study, indicating that progressive myopathy was ongoing even in relatively young (<6 months old) SJL/J mice. To further characterize SJL/J mice within the context of treatment, we assessed the effect of fasudil, a rho-kinase inhibitor, on disease phenotype. Fasudil was evaluated based on previous observations that Rho signaling may be overly activated as part of the inflammatory cascade in SJL/J mice. Fasudil treated SJL/J mice showed increased body weight, but decreased grip strength, horizontal activity, and soleus muscle force, compared to untreated SJL/J controls. Fasudil either improved or had no effect on these outcomes in C57BL6 mice. Fasudil also reduced the number of infiltrating macrophages/monocytes in SJL/J muscle tissue, but had no effect on muscle fiber degeneration/regeneration. These studies provide a basis for standardization of preclinical drug testing trials in the dysferlin deficient SJL/J mice, and identify measures of functional status that are potentially translatable to clinical trial outcomes. In addition, the data provide pharmacological evidence suggesting that activation of rho-kinase, at least in part, may represent a beneficial compensatory response in dysferlin deficient myopathies.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Proteínas de la Membrana/deficiencia , Distrofia Muscular de Cinturas/tratamiento farmacológico , Distrofia Muscular de Cinturas/metabolismo , Inhibidores de Proteínas Quinasas/administración & dosificación , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/administración & dosificación , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Disferlina , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA