Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Med ; 30(1): 24, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321393

RESUMEN

BACKGROUND: Lipid peroxidation is a characteristic metabolic manifestation of diabetic retinopathy (DR) that causes inflammation, eventually leading to severe retinal vascular abnormalities. Selenium (Se) can directly or indirectly scavenge intracellular free radicals. Due to the narrow distinction between Se's effective and toxic doses, porous Se@SiO2 nanospheres have been developed to control the release of Se. They exert strong antioxidant and anti-inflammatory effects. METHODS: The effect of anti-lipid peroxidation and anti-inflammatory effects of porous Se@SiO2 nanospheres on diabetic mice were assessed by detecting the level of Malondialdehyde (MDA), glutathione peroxidase 4 (GPX4), decreased reduced/oxidized glutathione (GSH/GSSG) ratio, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL) -1ß of the retina. To further examine the protective effect of porous Se@SiO2 nanospheres on the retinal vasculopathy of diabetic mice, retinal acellular capillary, the expression of tight junction proteins, and blood-retinal barrier destruction was observed. Finally, we validated the GPX4 as the target of porous Se@SiO2 nanospheres via decreased expression of GPX4 and detected the level of MDA, GSH/GSSG, TNF-α, IFN-γ, IL -1ß, wound healing assay, and tube formation in high glucose (HG) cultured Human retinal microvascular endothelial cells (HRMECs). RESULTS: The porous Se@SiO2 nanospheres reduced the level of MDA, TNF-α, IFN-γ, and IL -1ß, while increasing the level of GPX4 and GSH/GSSG in diabetic mice. Therefore, porous Se@SiO2 nanospheres reduced the number of retinal acellular capillaries, depletion of tight junction proteins, and vascular leakage in diabetic mice. Further, we identified GPX4 as the target of porous Se@SiO2 nanospheres as GPX4 inhibition reduced the repression effect of anti-lipid peroxidation, anti-inflammatory, and protective effects of endothelial cell dysfunction of porous Se@SiO2 nanospheres in HG-cultured HRMECs. CONCLUSION: Porous Se@SiO2 nanospheres effectively attenuated retinal vasculopathy in diabetic mice via inhibiting excess lipid peroxidation and inflammation by target GPX4, suggesting their potential as therapeutic agents for DR.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Nanosferas , Selenio , Humanos , Ratones , Animales , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Selenio/metabolismo , Selenio/farmacología , Selenio/uso terapéutico , Dióxido de Silicio/metabolismo , Dióxido de Silicio/farmacología , Dióxido de Silicio/uso terapéutico , Diabetes Mellitus Experimental/metabolismo , Células Endoteliales/metabolismo , Peroxidación de Lípido , Porosidad , Factor de Necrosis Tumoral alfa/metabolismo , Disulfuro de Glutatión/metabolismo , Disulfuro de Glutatión/farmacología , Disulfuro de Glutatión/uso terapéutico , Inflamación/metabolismo , Antiinflamatorios/uso terapéutico , Proteínas de Uniones Estrechas/metabolismo
2.
J Biochem Mol Toxicol ; 38(1): e23540, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37728183

RESUMEN

Dose-dependent heart failure is a major complication of the clinical use of doxorubicin (Dox), one of the most potent chemotherapeutic agents. Effective adjuvant therapy is required to prevent Dox-induced cardiotoxicity. Currently, plant-derived exosome-like nanovesicle (PELNV) has revealed their salubrious antioxidant and immunological regulating actions in various disease models. In this study, we isolated, purified and characterized Beta vulgaris-derived exosome-like nanovesicle (BELNV). Dox or normal saline was given to HL-1 cells (3 µM) and 8-week C57BL/6N mice (5 mg/kg bodyweight per week for 4 weeks) to establish the in vitro and in vivo model of Dox-induced cardiotoxicity. Administration of BELNV significantly alleviated chronic Dox-induced cardiotoxicity in terms of echocardiographic and histological results. A reduced malondialdehyde (MDA), increased ratio of glutathione (GSH) to oxidized glutathione (GSSG) and levels of system xc- and glutathione peroxidase 4 were observed, indicating that DOX-stimulated ferroptosis was reversed by BELNV. Besides, the safety of BELNV was also validated since no liver, spleen, and kidney toxicity induced by BELNV was observed. These findings provide evidence that BELNV may act as a novel therapeutic biomaterial for patients undergoing adverse effects of Dox, at least partly mediated by inhibiting Dox-induced ferroptosis.


Asunto(s)
Beta vulgaris , Exosomas , Ferroptosis , Humanos , Ratones , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Miocardio/metabolismo , Beta vulgaris/metabolismo , Exosomas/metabolismo , Ratones Endogámicos C57BL , Doxorrubicina/efectos adversos , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Disulfuro de Glutatión/farmacología , Disulfuro de Glutatión/uso terapéutico , Estrés Oxidativo , Miocitos Cardíacos/metabolismo
3.
Phytomedicine ; 115: 154807, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37121057

RESUMEN

BACKGROUND: Muscle wasting increases morbidity and mortality and is related to chronic kidney disease (CKD) and dialysis. It is still unclear whether ferroptosis occurs during this progression and whether it is a potential intervention target for the treatment of CKD-related muscle injury. PURPOSE: The objective is to identify potential compounds for treating ferroptosis and muscle wasting and explore the potential mechanisms in vivo/in vitro. METHODS: Initially, we explored whether ferroptosis is present in the skeletal muscle of 5/6 nephrectomized (NPM) mice via RNA-Seq analysis, TUNEL staining, Oil red O staining, MDA/GSH/GSSG level detection and real-time quantitative PCR (qPCR). Subsequently, utilizing our established molecular phenotyping strategy, we screened potential traditional Chinese herb-derived compounds for alleviation of muscle wasting and ferroptosis. HE staining, Oil red O staining, TUNEL staining, immunofluorescence staining, MDA/GSH/GSSG level detection, Fe level detection, western blotting and qPCR were applied to assess the effects of the identified compound on muscle wasting and ferroptosis and explore the potential mechanism. Furthermore, RNA-Seq analysis, ChIP-Seq analysis and further experiments in vitro were performed to determine the role of Hedgehog signaling in the effect of Lobetyolin (LBT) on ferroptosis. RESULTS: In NPM mice, skeletal muscle dysfunction, lipogenesis, reduced GSH/GSSG ratio, decreased GSH content, increased MDA production and and higher levels of ferroptosis markers were observed. LBT treatment (30 mg/kg or 50 mg/kg) significantly alleviates skeletal muscle injury by inhibiting ferroptosis. Additionally, in an in vitro investigation, C2C12 cells exposed to Indolyl sulfate (IS) induced ferroptosis and LBT treatment (20 µM and 50 µM) protected C2C12 from such injury, consistent with the results from the in vivo analysis. Furthermore, it was found LBT increased the levels of protein involving Hedgehog signaling pathway (SMO and GLI1), and rescue analysis revealed that this pathway played a crucial role in the regulation of ferroptosis. Further experiments demonstrated that LBT upregulated a series of suppressors of ferroptosis by activating Gli1 transcription. CONCLUSION: LBT alleviates CKD-induced muscle injury by inhibiting ferroptosis through activation of the Hedgehog signaling pathway.


Asunto(s)
Ferroptosis , Insuficiencia Renal Crónica , Ratones , Animales , Proteínas Hedgehog/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Disulfuro de Glutatión/uso terapéutico , Músculo Esquelético/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Atrofia Muscular
4.
J Ethnopharmacol ; 306: 116176, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36682600

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Trichilia catigua A. Juss (Meliaceae) is used in Brazilian folk medicine to alleviate fatigue and emotional stress and improve memory. Previous studies from our laboratory reported that an ethyl-acetate fraction (EAF) of T. catigua that was given before cerebral ischemia in vivo prevented memory loss and reduced oxidative stress and neuroinflammation. Despite the value of these findings of a neuroprotective effect of T. catigua, treatment that was given immediately before or immediately after ischemia limits its clinical relevance. Thus, unknown is whether T. catigua possesses a specific time window of efficacy (TWE) when administered postischemia. AIM OF THE STUDY: Given continuity to previous studies, we investigated whether an EAF of T. catigua maintains its neuroprotective properties if treatment begins at different time windows of efficacy after ischemia. We also evaluated, for the first time, whether T. catigua possesses neuroplasticity/neurotrophic properties. MATERIAL AND METHODS: Rats were subjected to transient global brain ischemia (TGCI) and then given a single dose of the EAF (400 mg/kg) or vehicle (1 ml/kg) orally 1, 4, or 6 h postischemia. The levels of protein PCG, GSH, and GSSG, and activity of SOD and CAT were assayed as markers of oxidative stress on the day after ischemia. In another experiment, naive rats underwent spatial learning training in a radial maze task and then subjected to TGCI. Delayed treatment with the EAF began 4 or 6 h later and continued for 7 days. Retrograde memory performance was assessed 10, 17, and 24 days postischemia. Afterward, brains were examined for neurodegeneration and neuronal dendritic morphology in the hippocampus and cerebral cortex. Another group received the EAF at 4 h of reperfusion, and 4 days later their brains were examined for GFAP and Iba-1 immunoreactivity. Lastly, ischemic rats received the EAF 4 h after ischemia and neural plasticity-related proteins, BDNF, SYN, PSD 95, and NeuN were measured in the hippocampus 7 and 14 days after ischemia. RESULTS: A single EAF administration 1, 4, or 6 h postischemia alleviated oxidative stress that was caused by ischemia, expressed as a reduction of the amount of the PCG and GSSG, normalization of the GSH/GSSG ratio, and the restoration of SOD activity. Ischemia caused the persistent loss of memory (i.e., amnesia), an outcome that was consistently ameliorated by treatment with the EAF that was initiated 4 or 6 h postischemia. The 4 h delay in EAF treatment positively impacted dendritic morphology in neurons that survived ischemia. TGCI reduced BDNF, SYN, PSD-95, and NeuN protein levels in the hippocampus and cerebral cortex. The EAF normalized SYN and PSD-95 protein levels. Ischemia-induced neurodegeneration and glial cell activation were not prevented by EAF treatment. CONCLUSION: The present study corroborates prior data that demonstrated the neuroprotective potential of T. catigua and extends these data by showing that the delayed administration of EAF postischemia effectively prevented memory impairment and decreased oxidative stress, dendritic deterioration, and synaptic protein loss within a TWE that ranged from 1 to 6 h. This specific TWE in preclinical research may have clinical relevance by suggesting the possible utility of this plant for the development of neuroprotective strategies in the setting of ischemic brain diseases. Another innovative finding of the present study was the possible neurotrophic/neuroplastic properties of T. catigua.


Asunto(s)
Isquemia Encefálica , Meliaceae , Fármacos Neuroprotectores , Ratas , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disulfuro de Glutatión/metabolismo , Disulfuro de Glutatión/farmacología , Disulfuro de Glutatión/uso terapéutico , Extractos Vegetales/farmacología , Isquemia Encefálica/tratamiento farmacológico , Estrés Oxidativo , Infarto Cerebral/tratamiento farmacológico , Hipocampo , Trastornos de la Memoria/tratamiento farmacológico , Acetatos/farmacología , Superóxido Dismutasa/metabolismo , Plasticidad Neuronal , Fármacos Neuroprotectores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA