Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Neurogastroenterol Motil ; 36(4): e14760, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38361164

RESUMEN

BACKGROUND: Chronic visceral hypersensitivity is closely associated with irritable bowel syndrome (IBS), a very common disorder which significantly impairs quality of life, characterized by abdominal pain, and distension. Imaging studies have found that IBS patients show higher metabolic activities and functional differences from normal controls in the anterior cingulate cortex (ACC), in response to visceral pain stimulation. Non-clinical data and clinical data suggest that medicinal products containing essential oils such as peppermint or caraway oil exert beneficial effects on IBS symptoms. METHODS: We assessed acute and long-term treatment effects of a mixture of peppermint and caraway essential oils (Menthacarin) on brain electrophysiological markers of gut pain sensitivity in two rat models of visceral hypersensitivity. KEY RESULTS: Chronic administration of corticosteroids and acute repeated mechanical hyperstimulation under anesthesia induced hyperalgesia and hypersensitivity, characterized by an increase in electrophysiological excitatory responses of ACC neurons to colorectal distension (CRD) and an increase in the proportion of neurons responding to otherwise subthreshold stimulation, respectively. Long-term, but not acute, oral administration of Menthacarin (60 mg kg-1 day-1) significantly reduced the net excitatory response to CRD in normally responsive control animals and counteracted the development of visceral hyperalgesia and hypersensitivity induced by repeated corticosterone administration and acute mechanical stimulation. CONCLUSIONS & INFERENCES: The present study shows that, using the CRD method, chronic Menthacarin administration at a clinically relevant dose attenuates the neuronal discharge associated with visceral pain stimuli in the rat ACC, particularly in models of hypersensitivity, suggesting a potential for treating exaggerated visceral pain sensitivity.


Asunto(s)
Síndrome del Colon Irritable , Aceites Volátiles , Dolor Visceral , Humanos , Ratas , Animales , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Síndrome del Colon Irritable/tratamiento farmacológico , Dolor Visceral/tratamiento farmacológico , Nocicepción , Calidad de Vida , Dolor Abdominal/inducido químicamente , Dolor Abdominal/tratamiento farmacológico
2.
Zhen Ci Yan Jiu ; 48(12): 1183-1192, 2023 Dec 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38146240

RESUMEN

OBJECTIVES: To explore the neural mechanism of visceral pain and related somatic (acupoints) sensitization by using in vivo calcium imaging of dorsal root ganglia (DRG) neurons. METHODS: Eight BALB/c mice were randomly divided into control and model groups, with 4 mice in each group. The colitis model was induced by colorectal perfusion of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) once daily for 7 days. Mice of the control group received colorectal perfusion of normal saline once daily for 7 days. The location and area of the somatic neurogenic inflammation (cutaneous exudation of Evans blue ï¼»EBï¼½) of the 2 groups of mice were observed after intravenous injection of EB. For pain behavioral tests, sixteen C57BL/6J mice were randomly divided into control and model groups, with 8 mice in each group, and a Von Frey filament was used to stimulate the referred somatic reactive regions in colitis mice, and the number of avoidance and paw withdraw reaction within 10 tests was recorded. For in vivo DRG calcium imaging tests, 24 Pirt-GCaMP6s transgenic mice were randomly and equally divided into control group and colitis model group. The responses of the neurons in L6 or L4 DRG to colorectal distension (CRD), lower back brushing, or mechanical stimulation at the hindpaw were observed using confocal fluorescence microscope. RESULTS: Compared with the control group, the area of EB exudation spot in the hindpaw and lower back regions was increased in the colitis model group (P<0.05), and the avoidance or paw withdraw numbers induced by Von Frey stimulation at the lower back and hindpaw were increased (P<0.01, P<0.05), indicating that colitis induced regional skin (acupoints) sensitization in the lower back and hindpaw regions. Compared with the control group, the percentage of L6 DRG neurons activated by 60 mm Hg CRD in the colitis model mice were apparently increased (P<0.01), the activated neurons mainly involved the medium-sized DRG neurons (P<0.01). In Pirt-GCaMP6s transgenic mice, following brushing the skin of the receptive field (lower back) of L6 DRG neurons, the fluorescence intensity of the brushing-activated DRG neurons and small, medium and large-sized neurons were significantly higher in the colitis model group than those in the control group (P<0.001, P<0.01, P<0.05). After brushing and clamping the skin of the right hindpaw (receptive field of L4 DRG neurons), the percentages of the activated L4 DRG neurons were obviously higher in the colitis model group than those in the control group (P<0.01, P<0.05), while there were no significant changes in the proportion of small, medium and large-sized neurons between the control and colitis model groups. CONCLUSIONS: Colitis may lead to body surface sensitization at the same and adjacent neuro-segments as well as to an increase of the number and activity of the responsive lumbar DRG neurons, among which the L6 DRG neurons at the same neuro-segment as the rectum colon showed an increase in the number of responders and intensity of calcium fluorescence signal while L4 DRG neurons at the level adjacent to the rectum colon showed an increase in the number of responders, suggesting that there may be different mechanisms of peripheral neural sensitization.


Asunto(s)
Colitis , Neoplasias Colorrectales , Dolor Visceral , Ratones , Animales , Dolor Visceral/genética , Calcio , Puntos de Acupuntura , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/genética , Trinitrobencenos , Ratones Transgénicos
3.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37834289

RESUMEN

The management of abdominal pain in patients affected by inflammatory bowel diseases (IBDs) still represents a problem because of the lack of effective treatments. Acetyl L-carnitine (ALCAR) has proved useful in the treatment of different types of chronic pain with excellent tolerability. The present work aimed at evaluating the anti-hyperalgesic efficacy of ALCAR in a model of persistent visceral pain associated with colitis induced by 2,4-dinitrobenzene sulfonic acid (DNBS) injection. Two different protocols were applied. In the preventive protocol, ALCAR was administered daily starting 14 days to 24 h before the delivery of DNBS. In the interventive protocol, ALCAR was daily administered starting the same day of DNBS injection, and the treatment was continued for 14 days. In both cases, ALCAR significantly reduced the establishment of visceral hyperalgesia in DNBS-treated animals, though the interventive protocol showed a greater efficacy than the preventive one. The interventive protocol partially reduced colon damage in rats, counteracting enteric glia and spinal astrocyte activation resulting from colitis, as analyzed by immunofluorescence. On the other hand, the preventive protocol effectively protected enteric neurons from the inflammatory insult. These findings suggest the putative usefulness of ALCAR as a food supplement for patients suffering from IBDs.


Asunto(s)
Colitis , Dolor Visceral , Humanos , Ratas , Animales , Acetilcarnitina/farmacología , Acetilcarnitina/uso terapéutico , Dolor Visceral/tratamiento farmacológico , Dolor Visceral/etiología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/tratamiento farmacológico , Neuroglía , Sistema Nervioso Central
4.
Zhen Ci Yan Jiu ; 48(10): 1017-1024, 2023 Oct 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37879952

RESUMEN

OBJECTIVES: To investigate the effect of manual acupuncture at "Shangjuxu"(ST37) on nerve growth factor(NGF)/phosphatidylinositol 3-kinase(PI3K)/transient receptor potential vanilloid 1(TRPV1) signaling pathway in rats with chronic visceral hyperalgesia of irritable bowel syndrome (IBS), so as to explore its underlying mechanism in treating IBS chronic visceral hyperalgesia. METHODS: IBS chronic visceral hyperalgesia model was established by colorectal dilation stimulation for 2 weeks for SD pups at 8 d after birth, which were fed until 8-week age after the stimulation. Then the verified successfully modeled adult rats were randomly divided into model, Shangjuxu, and non-acupoint groups, with 6 rats in each group, and 6 unmodeled rats were selected as normal group. On the next day of model evaluation, rats in the Shangjuxu group received acupuncture at right ST37 while rats in the non-acupoint group received acupuncture at the non-meridian and non-acupoint point in the right hypochondrium, both for 15 min, with manual twisting of mild reinforcing and reducing performed for 30 s at an interval of 5 min, once a day, for a total of 7 d. Abdominal withdrawal reflex(AWR) score was used to evaluate the degree of chronic visceral pain in rats. Western blot and real-time fluorescence quantitative PCR were used to detect the colonic protein and mRNA expressions of NGF, tropomyosin receptor kinase A (TrkA), PI3K and TRPV1. The positive expressions of PI3K and TRPV1 proteins in the colon of rats were detected by immunohistochemistry method. RESULTS: Compared with the normal group, AWR scores corresponding to 4 pressure levels of 20, 40, 60 and 80 mm Hg, mRNA and protein expressions of NGF, TrkA, PI3K and TRPV1 in colon tissue, and positive expressions of PI3K and TRPV1 in colon tissue were significantly increased(P<0.05) in the model group. After intervention, compared with the model group, rats in the Shangjuxu group had reduced AWR scores corresponding to 4 pressure levels of 20, 40, 60 and 80 mm Hg, lower colonic mRNA and protein expressions of NGF, TrkA, PI3K and TRPV1, and decreased positive expressions of PI3K and TRPV1 in colon tissue(P<0.05), while there were no significant differences in the above indexes of the non-acupoint group. CONCLUSIONS: Manual acupuncture at ST37 can alleviate IBS chronic visceral hyperalgesia in rat and its analgesic effect may be related to regulating NGF/PI3K/TRPV1 signaling pathway.


Asunto(s)
Terapia por Acupuntura , Síndrome del Colon Irritable , Dolor Visceral , Animales , Ratas , Hiperalgesia/genética , Hiperalgesia/terapia , Hiperalgesia/metabolismo , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/terapia , Síndrome del Colon Irritable/metabolismo , Factor de Crecimiento Nervioso/genética , Fosfatidilinositol 3-Quinasas/genética , Ratas Sprague-Dawley , ARN Mensajero/metabolismo , Dolor Visceral/genética , Dolor Visceral/terapia
5.
Phytomedicine ; 116: 154874, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37216760

RESUMEN

BACKGROUND: 3, 3'-diindolylmethane (DIM), a classical aryl hydrocarbon receptor (AhR) agonist, has been shown to relieve neuropathic pain, but few studies have reported the efficacy of DIM in visceral pain under colitis condition. PURPOSE: This study aimed to investigate the effect and mechanism of DIM on visceral pain under colitis condition. METHODS: Cytotoxicity was performed using the MTT assay. RT-qPCR and ELISA assays were applied to determine the expression and release of algogenic substance P (SP), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Flow cytometry was used to examine the apoptosis and efferocytosis. The expression of Arg-1-arginine metabolism-related enzymes was detected using western blotting assays. ChIP assays were used to examine the binding of Nrf2 to Arg-1. Mouse models of dextran sulfate sodium (DSS) were established to illustrate the effect of DIM and validate the mechanism in vivo. RESULTS: DIM did not directly affect expressions and release of algogenic SP, NGF and BDNF in enteric glial cells (EGCs). However, when co-cultured with DIM-pre-treated RAW264.7 cells, the release of SP and NGF was decreased in lipopolysaccharides-stimulated EGCs. Furthermore, DIM increased the number of PKH67+ F4/80+ cells in the co-culture system of EGCs and RAW264.7 cells in vitro and alleviated visceral pain under colitis condition by regulating levels of SP and NGF as well as values of electromyogram (EMG), abdominal withdrawal reflex (AWR) and tail-flick latency (TFL) in vivo, which was significantly inhibited by efferocytosis inhibitor. Subsequently, DIM was found to down-regulate levels of intracellular arginine, up-regulate levels of ornithine, putrescine and Arg-1 but not extracellular arginine or other metabolic enzymes, and polyamine scavengers reversed the effect of DIM on efferocytosis and release of SP and NGF. Moving forward, Nrf2 transcription and the binding of Nrf2 to Arg-1-0.7 kb was enhanced by DIM, AhR antagonist CH223191 abolished the promotion of DIM on Arg-1 and efferocytosis. Finally, nor-NOHA validated the importance of Arg-1-dependent arginine metabolism in DIM-alleviated visceral pain. CONCLUSION: DIM enhances macrophage efferocytosis in an arginine metabolism-dependent manner via "AhR-Nrf2/Arg-1" signals and inhibits the release of SP and NGF to relieve visceral pain under colitis condition. These findings provide a potential therapeutic strategy for the treatment of visceral pain in patients with colitis.


Asunto(s)
Colitis , Dolor Visceral , Ratones , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Factor 2 Relacionado con NF-E2 , Factor Neurotrófico Derivado del Encéfalo , Dolor Visceral/tratamiento farmacológico , Factor de Crecimiento Nervioso , Macrófagos/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico
6.
Zhen Ci Yan Jiu ; 48(3): 281-6, 2023 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-36951081

RESUMEN

OBJECTIVE: To observe the effect of electroacupuncture (EA) on mast cell activation-related substances and intestinal barrier function in diarrhea-predominant irritable bowel syndrome (IBS-D) model rats, so as to explore its underlying mechanisms. METHODS: Thirty female SD rats were randomly divided into control group, model group and EA group, with 10 rats in each group. IBS-D model was established by chronic unpredictable mild stress combined with senna solution gavage. Rats in the EA group received EA treatment (2 Hz/15 Hz,0.1-1.0 mA) at "Zusanli" (ST36), "Taichong"(LR3) and "Tianshu"(ST25), 20 min per day, for a total of 14 days, with sides alternated daily. Visceral pain threshold was used to evaluate visceral hypersensitivity, diarrhea index was used to evaluate diarrhea degree. After all treatments, the pathological scores of colon were recorded after HE staining, the contents of cholecystokinin (CCK), substance P (SP), tryptase (TPS) and adenosine triphosphate (ATP) in colon were detected by ELISA, and the expressions of colonic tight junction protein ZO-1 and occludin were detected by Western blot. RESULTS: Compared with the control group, the visceral pain threshold, the expression levels of colonic ZO-1 and occludin proteins decreased (P<0.01), while the diarrhea index, the contents of colonic CCK, SP, TPS and ATP were significantly increased (P<0.01) in the model group. After intervention, in comparison with the model group, the visceral pain thre-shold, the protein expression levels of colonic ZO-1 and occludin protein increased (P<0.01), while the diarrhea index, the contents of colonic CCK, SP, TPS and ATP were significantly decreased (P<0.01) in the EA group. CONCLUSION: EA can significantly alleviate the symptoms of visceral hypersensitivity and diarrhea in IBS-D rats. Its mechanism may be related to down-regulating colonic CCK, SP, TPS and ATP, inhibiting mast cell activation and degranulation, and up-regulating colonic barrier tight junction proteins.


Asunto(s)
Electroacupuntura , Síndrome del Colon Irritable , Dolor Visceral , Ratas , Femenino , Animales , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/terapia , Ratas Sprague-Dawley , Mastocitos , Ocludina/genética , Puntos de Acupuntura , Diarrea/genética , Diarrea/terapia , Triptasas , Sustancia P , Dolor Visceral/genética , Dolor Visceral/terapia
7.
Oxid Med Cell Longev ; 2023: 4463063, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36713031

RESUMEN

Visceral pain caused by inflammatory bowel disease (IBD) greatly diminishes the quality of life in affected patients. Yet, the mechanism of how IBD causes visceral pain is currently not fully understood. Previous studies have suggested that the central nervous system (CNS) and gut-brain axis (GBA) play an important role in IBD-inducing visceral pain. As one of the treatments for IBD, electroacupuncture (EA) has been used to treat various types of pain and gastrointestinal diseases in clinical practice. However, whether EA relieves the visceral pain of IBD through the gut-brain axis has not been confirmed. To verify the relationship between visceral pain and CNS, the following experiments were conducted. 1H-NMR analysis was performed on the prefrontal cortex (PFC) tissue obtained from IBD rat models to determine the link between the metabolites and their role in EA treatment against visceral pain. Western blot assay was employed for detecting the contents of glutamate transporter excitatory amino acid transporters 2 (EAAT2) and the glutamate receptor N-methyl-D-aspartate (NMDA) to verify whether EA treatment can alleviate neurotoxic symptoms induced by abnormal increases of glutamate. Study results showed that the glutamate content was significantly increased in the PFC of TNBS-induced IBD rats. This change was reversed after EA treatment. This process was associated with increased EAAT2 expression and decreased expression of NMDA receptors in the PFC. In addition, an increase in intestinal glutamic-metabolizing bacteria was observed. In conclusion, this study suggests that EA treatment can relieve visceral pain by reducing glutamine toxicity in the PFC, and serves an alternative clinical utility.


Asunto(s)
Electroacupuntura , Enfermedades Inflamatorias del Intestino , Dolor Visceral , Ratas , Animales , Ratas Sprague-Dawley , Dolor Visceral/terapia , Dolor Visceral/etiología , Dolor Visceral/metabolismo , Electroacupuntura/métodos , Ácido Trinitrobencenosulfónico , Calidad de Vida , Enfermedades Inflamatorias del Intestino/complicaciones , Corteza Prefrontal/metabolismo , Glutamatos
8.
Mol Pain ; 19: 17448069221149834, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36550612

RESUMEN

Irritable bowel syndrome (IBS) related chronic visceral pain affects 20% of people worldwide. The treatment options are very limited. Although the scholarly reviews have appraised the potential effects of the intestinal microbiota on intestinal motility and sensation, the exact mechanism of intestinal microbiota in IBS-like chronic visceral pain remains largely unclear. The purpose of this study is to investigate whether Folic Acid (FA) attenuated visceral pain and its possible mechanisms. Chronic visceral hyperalgesia was induced in rats by neonatal colonic inflammation (NCI). 16S rDNA analysis of fecal samples from human subjects and rats was performed. Patch clamp recording was used to determine synaptic transmission of colonic-related spinal dorsal horn. Alpha diversity of intestinal flora was increased in patients with IBS, as well as the obviously increased abundance of Clostridiales order (a main bacteria producing hydrogen sulfide). The hydrogen sulfide content was positive correlation with visceral pain score in patients with IBS. Consistently, NCI increased Clostridiales frequency and hydrogen sulfide content in feces of adult rats. Notably, the concentration of FA was markedly decreased in peripheral blood of IBS patients compared with non-IBS human subjects. FA supplement alleviated chronic visceral pain and normalized the Clostridiales frequency in NCI rats. In addition, FA supplement significantly reduced the frequency of sEPSCs of neurons in the spinal dorsal horn of NCI rats. Folic Acid treatment attenuated chronic visceral pain of NCI rats through reducing hydrogen sulfide production from Clostridiales in intestine.


Asunto(s)
Sulfuro de Hidrógeno , Síndrome del Colon Irritable , Dolor Visceral , Humanos , Adulto , Ratas , Animales , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico , Ratas Sprague-Dawley , Clostridiales , Ácido Fólico/farmacología , Ácido Fólico/uso terapéutico , Hidrógeno , Dolor Visceral/tratamiento farmacológico , Inflamación , Sulfuros
9.
Acupunct Med ; 41(4): 224-234, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35957508

RESUMEN

BACKGROUND: Electroacupuncture (EA) can effectively relieve visceral hypersensitivity (VH). However, its mechanisms are still unclear. OBJECTIVE: To investigate the impact of EA on VH caused by ileitis, and whether EA relieves VH by modulating the endogenous cannabinoid system (ECS). METHODS: Thirty male native goats were randomly divided into a saline-treated control group (Saline, n = 9) and three 2,4,6-trinitro-benzenesulfonic acid (TNBS)-treated VH model groups that underwent injection of TNBS into the ileal wall to induce VH and remained untreated (TNBS, n = 9) or received six sessions of EA (for 30 min every 3 days) (TNBS + EA, n = 6) or sham acupuncture (TNBS + Sham, n = 6). The visceromotor response (VMR) to colorectal distention (CRD) was measured after each EA treatment. Three goats in the Saline/TNBS groups were euthanized after 7 days for histopathological examination; the remaining 24 (n = 6/group) underwent sampling of the ileal wall, T11 spinal cord and brain nuclei/areas related to visceral regulation and ascending pain modulation system on day 22. Expression of cannabinoid receptor 1 (CB1R), fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) was detected by immunohistochemistry. RESULTS: VMR to CRD was greater in TNBS-treated goats than in saline-treated goats (p < 0.01) from day 7 to 22. After day 7, EA-treated goats showed a decreased (p < 0.05) VMR compared with untreated TNBS-exposed goats. TNBS treatment decreased CB1R and increased FAAH and MAGL expression in the ileum and related nuclei/areas; this was reversed by EA. CONCLUSION: EA ameliorates VH, probably by regulating the ECS in the intestine and nuclei/areas related to visceral regulation and descending pain modulation systems.


Asunto(s)
Cannabinoides , Electroacupuntura , Dolor Visceral , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Dolor Visceral/terapia , Dolor Visceral/metabolismo , Cabras
10.
Purinergic Signal ; 19(1): 43-53, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35389158

RESUMEN

This study explored the role of P2X7 receptors in spinal cord astrocytes in the electroacupuncture-induced inhibition of visceral hypersensitivity (VH) in rats with irritable bowel syndrome (IBS). Visceral hypersensitivity of IBS was intracolonically induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Visceromotor responses to colorectal distension (CRD-20,40,60,80 mmHg) and abdominal withdrawal reflex scoring (AWRs) were recorded after electroacupuncture at bilateral Zusanli (ST36) and Sanyinjiao (SP6) acupoints to evaluate the analgesic effect of electroacupuncture on visceral pain in rats with IBS. Fluorocitric acid (FCA), an astrocyte activity inhibitor, was injected intrathecally before electroacupuncture intervention and AWRs were recorded. Western blot and real-time qPCR were used to detect the expression of NMDA and P2X7 receptor to observe the regulation effect of electroacupuncture on NMDA receptor in the spinal cord of rats with visceral hypersensitivity. Intrathecal injection of P2X7 agonist or antagonist was administered before electroacupuncture treatment. To observe the effect of P2X7 receptor in spinal astrocytes on the inhibition of visceral hyperalgesia by electroacupuncture, the changes of AWR score, NMDA receptor in the spinal cord, and GFAP expression in astrocytes were detected. Inflammation of the colon had basically subsided at day 21 post-TNBS; persistent visceral hypersensitivity could be suppressed by electroacupuncture. This analgesic effect could be inhibited by FCA. The analgesic effect, downregulation of NMDA receptor NR1 subunit, and P2X7 protein of electroacupuncture were all reversed by FCA. P2X7 receptor antagonist A740003 can cooperate with EA to carry out analgesic effect in rats with visceral pain and downregulate the expression of NR1, NR2B, and GFAP in spinal dorsal horn. However, the P2X7 receptor agonist BzATP could partially reverse the analgesic effect of EA, inhibiting the downregulatory effect of EA on the expression of NR1, NR2B, and GFAP. These results indicate that EA may downregulate the expression of the NMDA receptor by inhibiting the P2X7 receptor in the spinal cord, thereby inhibiting spinal cord sensitization in IBS rats with visceral pain, in which astrocytes are an important medium.


Asunto(s)
Electroacupuntura , Hipersensibilidad , Síndrome del Colon Irritable , Dolor Visceral , Ratas , Animales , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/terapia , Ratas Sprague-Dawley , Astrocitos/metabolismo , Dolor Visceral/metabolismo , Electroacupuntura/métodos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Hipersensibilidad/metabolismo , Analgésicos
11.
Comput Intell Neurosci ; 2022: 3755439, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275969

RESUMEN

Visceral pain is unbearable, and natural methods are needed to relieve it. Electroacupuncture is a relatively new technique that helps relieve visceral pain by improving blood circulation and providing energy to clogged parts of the body. However, its analgesic effect and mechanism in colorectal pain are still unknown. In this study, the visceral pain models of electroacupuncture in rats were compared and discussed, using nanocomponents to stimulate the expression and mechanism of the nerve growth factor in colorectal pain and electroacupuncture and to observe the expression and mechanism of nerve growth factor in visceral pain relief rats induced by nanocomponents and electroacupuncture. The results show that nanocomponents can effectively relieve visceral pain under the action of electroacupuncture. NGF can activate endogenous proliferation, migration, differentiation, and integration. NSC can promote nerve regeneration and recovery after injury.


Asunto(s)
Neoplasias Colorrectales , Electroacupuntura , Dolor Visceral , Ratas , Animales , Dolor Visceral/terapia , Dolor Visceral/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Ratas Sprague-Dawley , Analgésicos
12.
Life Sci ; 309: 121000, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36174710

RESUMEN

AIMS: The vagus nerve provides an important route to the central nervous system, and its brain projections are involved in nociceptive control and pain perception. We investigated the effect of ABVN stimulation on the inhibition of nociceptive signaling and the role of the cholinergic system in its neurobiological effects in models of visceral-somatic pain in rats, as well as the potential difference in stimulus laterality. MATERIALS AND METHODS: Male and female Wistar rats were pretreated with auricular acupuncture in the ABVN and submitted to the visceral-somatic nociception model by acetic acid or somatic nociception by formalin. Vagotomy and pharmacological tools were used to verify the participation of the cholinergic system in the experiments. KEY FINDINGS: Acupuncture on the left, but not the right, in the ABVN inhibited nociceptive signaling in the visceral-somatic nociception model in male and female rats. Acupuncture on the left ABVN reduced the response time in the formalin test. The cervical vagotomy of the left branch, but not the right, also inhibited nociceptive signaling in the visceral-somatic nociception model and reduced the effect of ABVN stimulation. Furthermore, cholinergic antagonists reduced the left ABVN stimulation effects in the same model. SIGNIFICANCE: Our data show that only the stimulation in the left ABVN is capable of producing antinociceptive effect in acute pain models in rats, and that it is dependent on the activation of the vagus nerve caudal to the nodose ganglion, as well as the muscarinic and nicotinic cholinergic receptors.


Asunto(s)
Terapia por Acupuntura , Dolor Agudo , Dolor Nociceptivo , Dolor Visceral , Masculino , Animales , Femenino , Ratas , Ratas Wistar , Nervio Vago/fisiología , Dolor Visceral/terapia , Colinérgicos , Formaldehído , Antagonistas Colinérgicos , Receptores Colinérgicos , Analgésicos
13.
Int J Mol Sci ; 23(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35682841

RESUMEN

Chronic visceral pain can occur in many disorders, the most common of which is irritable bowel syndrome (IBS). Moreover, depression is a frequent comorbidity of chronic visceral pain. The P2X7 receptor is crucial in inflammatory processes and is closely connected to developing pain and depression. Gallic acid, a phenolic acid that can be extracted from traditional Chinese medicine, has been demonstrated to be anti-inflammatory and anti-depressive. In this study, we investigated whether gallic acid could alleviate comorbid visceral pain and depression by reducing the expression of the P2X7 receptor. To this end, the pain thresholds of rats with comorbid visceral pain and depression were gauged using the abdominal withdraw reflex score, whereas the depression level of each rat was quantified using the sucrose preference test, the forced swimming test, and the open field test. The expressions of the P2X7 receptor in the hippocampus, spinal cord, and dorsal root ganglion (DRG) were assessed by Western blotting and quantitative real-time PCR. Furthermore, the distributions of the P2X7 receptor and glial fibrillary acidic protein (GFAP) in the hippocampus and DRG were investigated in immunofluorescent experiments. The expressions of p-ERK1/2 and ERK1/2 were determined using Western blotting. The enzyme-linked immunosorbent assay was utilized to measure the concentrations of IL-1ß, TNF-α, and IL-10 in the serum. Our results demonstrate that gallic acid was able to alleviate both pain and depression in the rats under study. Gallic acid also reduced the expressions of the P2X7 receptor and p-ERK1/2 in the hippocampi, spinal cords, and DRGs of these rats. Moreover, gallic acid treatment decreased the serum concentrations of IL-1ß and TNF-α, while raising IL-10 levels in these rats. Thus, gallic acid may be an effective novel candidate for the treatment of comorbid visceral pain and depression by inhibiting the expressions of the P2X7 receptor in the hippocampus, spinal cord, and DRG.


Asunto(s)
Dolor Visceral , Animales , Depresión/tratamiento farmacológico , Ácido Gálico/farmacología , Hiperalgesia/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X7/genética , Factor de Necrosis Tumoral alfa/metabolismo , Dolor Visceral/tratamiento farmacológico
14.
Neuropharmacology ; 210: 109026, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35283136

RESUMEN

Nutritional approaches have emerged over the past number of years as suitable interventions to ameliorate the enduring effects of early life stress. Maternal separation (MS) is a rodent model of early life stress which induces widespread changes across the microbiota-gut-brain axis. Milk fat globule membrane (MFGM) is a neuroactive membrane structure that surrounds milk fat globules in breast milk and has been shown to have positive health effects in infants, yet mechanisms behind this are not fully known. Here, we investigated the effects of MFGM supplementation from birth on a variety of gut-brain signalling pathways in MS and non-separated control animals across the lifespan. Specifically, visceral sensitivity as well as spatial and recognition memory were assessed in adulthood, while gut barrier permeability, enteric nervous system (ENS) and glial network structure were evaluated in both early life and adulthood. MS resulted in visceral hypersensitivity, which was ameliorated to a greater extent by supplementation with MFGM from birth. Modest effects of both MS and dietary supplementation were noted on spatial memory. No effects of MS were observed on enteric neuronal or glial networks in early life or adulthood, however an increase in the immunoreactivity of ßIII-tubulin in adult colonic myenteric ganglia was noted in the MFGM intervention non-separated group. In conclusion, dietary supplementation with MFGM from birth is sufficient to block MS-induced visceral hypersensitivity, highlighting its potential value in visceral pain-associated disorders, but future studies are required to fully elucidate the mechanistic role of this supplementation on MS-induced visceral pain.


Asunto(s)
Suplementos Dietéticos , Sistema Nervioso Entérico , Privación Materna , Dolor Visceral , Adulto , Animales , Glucolípidos , Glicoproteínas , Humanos , Gotas Lipídicas , Permeabilidad , Ratas , Dolor Visceral/tratamiento farmacológico
15.
Biol Futur ; 73(2): 219-227, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35318616

RESUMEN

Different gentian preparations are used as traditional remedies for internal pain control in: Persian traditional medicine (PTM), Chinese traditional medicine (CTM) and Ancient Greek medicine (AGM) from the time of the Roman Empire. Objective: To present a survey of the ethnopharmacological applications of gentians recorded as being used in Eastern and Western traditional medical systems (PTM, CTM and AGM) and their pharmacological effects, chemical composition as well as an in silico investigation of the possible active component/s for the alleviation of internal pain via molecular docking studies. Major traditional medicine literature (PTM, CTM and AGM, 50 AD- 1770) and ethnobotanical studies for the application of gentians were reviewed. Nine European species representing 5 of the 13 sections currently attributed to Gentiana were selected. Chemical compounds and pharmacological activity data of these species were gathered from different databases including Google Scholar, PubChem, PubMed and Web of Science (between 1972 and 2020). The possible active constituents of gentians on visceral pain receptors were investigated, in silico. In all investigated literature, traditional uses of gentian were indicated to have anti-nociceptive effects on visceral pain and possess diuretic action. According to our computational study, acylated flavonoid glycosides, viz. trans-feruloyl-2"-isovitexin (33), trans-feruloyl-2"-isovitexin-4'-O-ß-D-glucoside (34), iso-orientin-4'-O-glucoside (38), trans-caffeoyl-2"-iso-orientin-4'-O-ß-D-glucoside (39), iso-orientin-2"-O-ß-D-glucoside (40) and isoscoparin (41), might be responsible for visceral pain reduction by interacting with the purinergic receptor (P2X3) and vanilloid receptor 1 (TrpV1). This finding shows a good correlation with different traditional gentian uses in Persian, Chinese and European ethnomedicine for visceral pain control.


Asunto(s)
Gentiana , Dolor Visceral , Glucósidos , Simulación del Acoplamiento Molecular , Fitoterapia
16.
Brain Res Bull ; 182: 12-25, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35131337

RESUMEN

The midbrain periaqueductal gray (PAG) is a key structure involved in the supraspinal modulation of pain. Previous studies have reported the association of gut inflammation-triggered chronic abdominal pain with structural and neuronal alterations within the PAG. However, whether PAG-executed visceral nociception processing and descending modulation are altered in gut pathology is not known. We used c-Fos immunohistochemistry and extracellular microelectrode recording in urethane-anesthetized male Wistar rats to evaluate the colitis-induced changes in visceral pain-related neuronal properties of the PAG and its descending outflow to visceral nociceptive neurons of the caudal ventrolateral medulla (CVLM). Analysis of c-Fos protein expression in inflamed animals has shown diminished activation of the lateral and ventrolateral PAG columns by noxious colorectal distension (CRD), although the nonstimulated c-Fos labeling in these PAG subdivisions was enhanced compared with that in controls. Microelectrode recording in the ventrolateral PAG revealed a colitis-elicited decrease in the proportion of CRD-excited neurons accompanied by an increase in the number of unresponsive cells and weakened reactions to the stimulation of CRD-inhibited PAG units. Colonic inflammation has also been found to cause a shift in the effects of ventrolateral PAG electrostimulation on CRD-excited CVLM neurons from being mostly inhibitory under normal conditions to excitatory in colitis. These findings identify impaired PAG functioning in ascending and descending visceral nociception control that may contribute to gut injury-associated visceral hyperalgesia. The data obtained can benefit a better understanding of the supraspinal mechanisms involved in the pathogenesis of postinflammatory chronic abdominal pain.


Asunto(s)
Colitis , Dolor Visceral , Dolor Abdominal , Animales , Inflamación , Masculino , Sustancia Gris Periacueductal , Proteínas Proto-Oncogénicas c-fos , Ratas , Ratas Wistar
17.
Neurogastroenterol Motil ; 34(4): e14242, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34378834

RESUMEN

BACKGROUND: Studies using somatic pain models have shown the hypoalgesic effects of slow, deep breathing. We evaluated the effect of slow, deep breathing on visceral pain and explored putative mediating mechanisms including autonomic and emotional responses. METHODS: Fifty-seven healthy volunteers (36 females, mean age = 22.0 years) performed controlled, deep breathing at a slow frequency (6 breaths per minute), controlled breathing at a normal frequency (14 breaths per minute; active control), and uncontrolled breathing (no-treatment control) in randomized order. Moderate painful stimuli were given during each condition by delivering electrical stimulation in the distal esophagus. Participants rated pain intensity after each stimulation. Heart rate variability and self-reported arousal were measured during each condition. KEY RESULTS: Compared to uncontrolled breathing, pain intensity was lower during slow, deep breathing (Cohen's d = 0.40) and normal controlled breathing (d = 0.47), but not different between slow, deep breathing and normal controlled breathing. Arousal was lower (d = 0.53, 0.55) and heart rate variability was higher (d = 0.70, 0.86) during slow, deep breathing compared to the two control conditions. The effect of slow, deep breathing on pain was not mediated by alterations in heart rate variability or arousal but was moderated by pain catastrophizing. CONCLUSIONS AND INFERENCES: Slow, deep breathing can reduce visceral pain intensity. However, the effect is not specific to the slow breathing frequency and is not mediated by autonomic or emotional responses, suggesting other underlying mechanisms (notably distraction). Whether a long-term practice of slow, deep breathing can influence (clinical) visceral pain warrants to be investigated.


Asunto(s)
Dolor Visceral , Adulto , Sistema Nervioso Autónomo/fisiología , Ejercicios Respiratorios , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Percepción del Dolor , Frecuencia Respiratoria/fisiología , Adulto Joven
18.
Acta Pharmacol Sin ; 42(11): 1821-1833, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33558654

RESUMEN

Accumulating evidence shows that agents targeting gut dysbiosis are effective for improving symptoms of irritable bowel syndrome (IBS). However, the potential mechanisms remain unclear. In this study we investigated the effects of berberine on the microbiota-gut-brain axis in two rat models of visceral hypersensitivity, i.e., specific pathogen-free SD rats subjected to chronic water avoidance stress (WAS) and treated with berberine (200 mg· kg-1 ·d-1, ig, for 10 days) as well as germ-free (GF) rats subjected to fecal microbiota transplantation (FMT) from a patient with IBS (designated IBS-FMT) and treated with berberine (200 mg· kg-1 ·d-1, ig, for 2 weeks). Before the rats were sacrificed, visceral sensation and depressive behaviors were evaluated. Then colonic tryptase was measured and microglial activation in the dorsal lumbar spinal cord was assessed. The fecal microbiota was profiled using 16S rRNA sequencing, and short chain fatty acids (SCFAs) were measured. We showed that berberine treatment significantly alleviated chronic WAS-induced visceral hypersensitivity and activation of colonic mast cells and microglia in the dorsal lumbar spinal cord. Transfer of fecal samples from berberine-treated stressed donors to GF rats protected against acute WAS. FMT from a patient with IBS induced visceral hypersensitivity and pro-inflammatory phenotype in microglia, while berberine treatment reversed the microglial activation and altered microbial composition and function and SCFA profiles in stools of IBS-FMT rats. We demonstrated that berberine did not directly influence LPS-induced microglial activation in vitro. In both models, several SCFA-producing genera were enriched by berberine treatment, and positively correlated to the morphological parameters of microglia. In conclusion, activation of microglia in the dorsal lumbar spinal cord was involved in the pathogenesis of IBS caused by dysregulation of the microbiota-gut-brain axis, and the berberine-altered gut microbiome mediated the modulatory effects of the agent on microglial activation and visceral hypersensitivity, providing a potential option for the treatment of IBS.


Asunto(s)
Berberina/uso terapéutico , Eje Cerebro-Intestino/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Microglía/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Dolor Visceral/tratamiento farmacológico , Animales , Berberina/farmacología , Eje Cerebro-Intestino/fisiología , Línea Celular , Trasplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/fisiología , Humanos , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/metabolismo , Masculino , Ratones , Microglía/metabolismo , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Dolor Visceral/metabolismo
19.
J Ethnopharmacol ; 264: 113352, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32891821

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Irritable bowel syndrome (IBS) is a chronic, stress-related, functional gastrointestinal disorder characterized by abdominal discomfort and altered bowel habits; the manipulation of the microbiota is emerging as a promising therapeutic option for IBS. Cynanchum thesioides (CT) is an herb of traditional Mongolian medicine that has been employed in treating abdominal pain and diarrhea for hundreds of years. Phytochemical studies of this plant showed the presence of various flavonoids with antibacterial and anti-inflammatory activities. We hypothesized that Cynanchum thesioides manipulates the gut mycobiome and reverses visceral hypersensitivity in IBS rat model. PURPOSE OF THE STUDY: The aims of this study were to prove the in vivo efficacy of Cynanchum thesioides on improving visceral hypersensitivity in IBS rat model and to examine its effect on gut bacterial communities, focusing on the potential interrelationships among microbiota and visceral hypersensitivity. MATERIALS AND METHODS: We induced visceral hypersensitivity rat models by maternal separation (MS) of Sprague-Dawley rats, and administered CT water extracts to MS rats for 10 consecutive days. The abdominal withdrawal reflex score and threshold of colorectal distention were employed to assess visceral sensitivity. We then used the Illumina HiSeq platform to analyze bacterial 16S rRNA gene. RESULTS: Treatment with CT improved visceral hypersensitivity in MS rats, and this was accompanied by alterations in the structure and composition of the gut microbiota. The extent of the stability of the gut microbiota was improved after treatment with CT. The genera Pseudomonas, Lachnospiracea_incertae_sedis, and Clostridium XlVa (which were more prevalent in MS rats) were significantly decreased, whereas the abundance of some genera were less prevalent in MS rats-for example, Clostridium IV, Elusimicrobium, Clostridium_sensu_stricto, and Acetatifactor were significantly enriched after treatment with CT. CONCLUSION: Water-extracted CT was beneficial against visceral hypersensitivity in IBS and favorably affected the structure, composition, and functionality of gut microbiota. CT is therefore a promising agent in therapy of IBS.


Asunto(s)
Cynanchum , Microbioma Gastrointestinal/efectos de los fármacos , Síndrome del Colon Irritable/dietoterapia , Privación Materna , Extractos Vegetales/uso terapéutico , Dolor Visceral/tratamiento farmacológico , Animales , Animales Recién Nacidos , Microbioma Gastrointestinal/fisiología , Síndrome del Colon Irritable/etiología , Síndrome del Colon Irritable/psicología , Masculino , Extractos Vegetales/aislamiento & purificación , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Dolor Visceral/etiología , Dolor Visceral/psicología , Agua
20.
J Ethnopharmacol ; 269: 113712, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33352243

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Minthostachys verticillata (Griseb.) Epling (Lamiaceae), known as Peperina is a medicinal native plant, with a traditional use as a digestive, antispasmodic and antidiarrheic. AIM OF THE STUDY: Despite its folkloric use, no scientific evaluation of this plant related to the gastrointestinal inflammatory process has been carried out to date. The present study aims to assess the effects of M. verticillata on gastrointestinal system in experimental models. MATERIALS AND METHODS: M. verticillata (250 and 500 mg/kg) was orally tested in a colitis model induced by acetic acid. Colon weight/length ratio, oxidative stress (oxidized and reduced glutathione), histological changes using Alcian blue and hematoxylin & eosin staining and expression of IL1ß, TNFα, iNOS, COX-2 were evaluated. The effect of the extract in three additional in vivo models were studied: intestinal motility and diarrhea induced by ricin oil, and visceral pain induced by intracolonic administration of capsaicin. Finally, the activity on concentration response curves of acetylcholine, calcium chloride, potassium and serotonin were achieved in isolated rat jejunum. RESULTS: In the colitis model, M. verticillata induced a significant reduction in the colon weight/length ratio, oxidative stress and expression levels of IL-1ß, iNOS and COX-2. Also, the extract diminished the severity of microscopic tissue damage and showed protective effect on goblet cells. Intestinal motility, diarrhea, visceral pain-related behaviors and referred hyperalgesia were significantly reduced when the animals were treated with the extract. Furthermore, in isolated jejunum, M. verticillata significantly reduced the contraction induced by serotonin and acetylcholine. Likewise, the extract non-competitively inhibited the response-concentration induced by CaCl2 and inhibited both low and high K+-induced contractions. CONCLUSIONS: This is the first study to validate traditional use of M. verticillata for digestive disorders and demonstrated that its aqueous extract could represent a promising strategy in targeting the multifactorial pathophysiology of inflammatory bowel disease.


Asunto(s)
Antiinflamatorios/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Lamiaceae/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Ácido Acético/toxicidad , Animales , Antiinflamatorios/uso terapéutico , Conducta Animal/efectos de los fármacos , Capsaicina/toxicidad , Aceite de Ricino/toxicidad , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Colon/efectos de los fármacos , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Motilidad Gastrointestinal/efectos de los fármacos , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Masculino , Ratones , Extractos Vegetales/uso terapéutico , Ratas Sprague-Dawley , Dolor Visceral/inducido químicamente , Dolor Visceral/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA