Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Environ Manage ; 355: 120469, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38432010

RESUMEN

Crop byproducts can be supplemented in livestock feeds to improve the utilization of resources and reduce greenhouse gas (GHG) emissions. We explored the mitigation potential of GHG emissions by supplementing crop byproducts in feeds based on a typical intensive dairy farm in China. Results showed that GHG emissions associated with production of forage were significantly decreased by 25.60 % when no GHG emissions were allocated to crop byproducts, and enteric methane emission was significantly decreased by 13.46 % on the basis of CO2 eq, g/kg fat and protein corrected milk. The supplementation did not affect lactation performance, rumen microbiota and microbial enzymes at the gene level. Metabolomics analysis revealed changes in amino acid catabolism of rumen fluid, which were probably responsible for more propionate production. In conclusion, supplementing crop byproducts in feeds can be a potential strategy to reduce GHG emissions of livestock.


Asunto(s)
Gases de Efecto Invernadero , Animales , Femenino , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/metabolismo , Ganado , Leche/química , Suplementos Dietéticos/análisis , Alimentación Animal/análisis , Metano/análisis , Efecto Invernadero
2.
Sci Total Environ ; 914: 169486, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145678

RESUMEN

Oil crops are among the main drivers of global land use changes. Palm oil is possibly the most criticized, as a driver of primary tropical forests loss. This has generated two different reactions in its use in various sectors (e.g., food, feed, biodiesel, surfactant applications, etc.): from one side there is a growing claim for deforestation-free palm oil, whereas on the other side the attention raised towards other vegetable oils as possible substitutes, such as soybean, rapeseed and sunflower oil. We assess potential land use changes and consequent greenhouse gas (GHG) emissions for switching from palm oil to other oils and compare this solution to deforestation-free palm oils. We consider three scenarios of 25 %, 50 % and 100 % palm oil replacement in the eight major oil crop producing countries. Total GHG emissions account for anthropogenic emissions generated along the life cycle of the field production process and potential forest carbon stock losses from land use change for oil crops expansion. Replacing palm oil with other oils would have a worthless effect in terms of global emissions reduction since GHG emissions remain approximatively stable across the three scenarios, whereas it would produce a deforestation increase of 28.2 to 51.9 Mha worldwide (or 7 to 21.5 Mha if excluding the unlikely deforestation in USA, Russia, Ukraine and the offset deforestation in China, India). Conversely, if the global palm oil production becomes deforestation-free, its GHG emissions would be reduced by 92 %, switching from the current 371 to 29 Mt CO2eq per year. Although highlighting the historical unsustainability of oil palm plantations, results show that replacing them with other oil crops almost never represents a more sustainable solution, thus potentially questioning sustainability claims of palm oil free products with respect to deforestation-free palm oil.


Asunto(s)
Arecaceae , Gases de Efecto Invernadero , Aceite de Palma , Aceites de Plantas , Conservación de los Recursos Naturales , Productos Agrícolas , Efecto Invernadero
3.
Environ Sci Technol ; 57(48): 19602-19611, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37955401

RESUMEN

Renewable liquid fuels production from landfill waste provides a promising alternative to conventional carbon-intensive waste management methods and has the potential to contribute to the transition toward low-carbon fuel pathways. In this work, we investigated the life cycle greenhouse gas (GHG) emissions of producing Fischer-Tropsch diesel from landfill gas (LFG) using the TriFTS catalytic conversion process and compared it to fossil-based petroleum diesel. A life cycle-based comparison was made between TriFTS diesel and other LFG waste management pathways, LFG-to-Electricity and LFG-to-Compressed renewable natural gas (RNG), on a per kilogram of feedstock basis as well as on a per MJ of energy basis, which also included the LFG-to-Direct Combustion pathway. The study considered flaring of LFG as the common underlying counterfactual scenario for all of the waste-to-energy product pathways. We estimated the life cycle GHG emissions for TriFTS diesel to be -36.4 carbon dioxide equivalent (grams CO2e)/MJ which is significantly lower than its fossil fuel counterpart which was estimated to be 90.5 g CO2e/MJ on a cradle-to-grave basis. The life cycle emission results from both perspectives (per kg feedstock and per MJ energy output) show that TriFTS diesel is a viable alternative energy pathway from LFG when compared to other pathways, primarily due to the main product being a renewable fuel that can serve as a drop-in fuel for diesel-based uses, within both the waste industry as well as the larger market. Further sensitivity analysis was performed based on the production of TriFTS diesel with the counterfactual waste management scenario of LFG-to-Flaring as well as the alternative LFG-to-Electricity waste management pathway. The sensitivity of the carbon intensity for TriFTS diesel to flaring efficiency and the carbon intensity of the electricity grid were also investigated. The study highlights the potential for the TriFTS conversion process technology to contribute to the waste industry's closed loop and decarbonization initiatives and to provide low carbon fuel for transportation.


Asunto(s)
Gases de Efecto Invernadero , Petróleo , Dióxido de Carbono/análisis , Instalaciones de Eliminación de Residuos , Gas Natural , Efecto Invernadero
4.
PLoS One ; 18(10): e0292659, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37815985

RESUMEN

Livestock production is under scrutiny for its impact on greenhouse gas (GHG) emissions. Animal disease outbreaks will have economic effects on producers and the indirect cost of an animal disease outbreak is the result of shifts in consumption across commodities. This shift in demand for meat products will also positively or negatively affect carbon emissions. We explore the indirect costs and subsequent carbon impact of four potential exotic disease outbreaks, namely African swine fever, sheep pox, bluetongue, and foot and mouth disease. The indirect costs are quantified under different severities of outbreak using a vector error correction model and by estimating the changes in revenues of livestock and feed markets. By associating subsequent consumption switches with emission factors, we quantify the hidden carbon impact of these livestock disease outbreaks. The indirect costs vary based on severity and type of disease outbreak. Similarly, the net reduction in supply and subsequent consumption impacts result in averting between 0.005 and 0.67 million tonnes of CO2 eq. for these sectors. A foot and mouth disease outbreak has the highest indirect costs and largest reduction in GHG emissions as it decreases the production of cattle as consumers switch to lower emitting meat commodities. Conversely, African swine fever has the smallest reduction in GHG emissions, reflecting the more industrialised nature of pig farming. Our modelling approach opens a provocative debate around how compensation to producers supports restocking and how this relates to commitments to net zero farming. Overall, an exotic disease outbreak may trigger an opportunity to switch to lower emitting breeds or species if a more holistic, joined up approach were taken by Government.


Asunto(s)
Fiebre Porcina Africana , Fiebre Aftosa , Gases de Efecto Invernadero , Ovinos , Animales , Bovinos , Porcinos , Crianza de Animales Domésticos , Fiebre Aftosa/epidemiología , Gases de Efecto Invernadero/análisis , Ganado , Efecto Invernadero , Dióxido de Carbono/análisis
5.
Sci Total Environ ; 890: 164362, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37230350

RESUMEN

Carbon dioxide removal (CDR) technologies are considered essential to accomplish the Paris Agreement targets. Given the important contribution of the food sector to climate change, this study aims to investigate the role of two carbon capture and utilization (CCU) technologies in decarbonizing the production of spirulina, an algae product commonly consumed for its nutritional characteristics. The proposed scenarios considered the replacement of synthetic food-grade CO2 in Arthrospira platensis cultivation (BAU scenario) with CO2 from beer fermentation (BRW) and CO2 from DACC (direct air carbon capture) (SDACC), representing two alternatives with great potential in the short and medium-long term, respectively. The methodology follows the Life Cycle Assessment guidelines, considering a cradle-to-gate scope and a functional unit equivalent to the annual production of spirulina in a Spanish artisanal plant. Results showed a better environmental performance of both CCU scenarios as compared to BAU, reaching a reduction of greenhouse gas (GHG) emissions of 52 % in BRW and of 46 % in SDACC. Although the brewery CCU offers a deeper carbon mitigation of spirulina production, the process cannot reach net zero GHG emissions due to residual burdens across the supply chain. In comparison, the DACC unit could potentially supply both the CO2 needed in spirulina production and work as a CDR to compensate residual emissions, which opens the door for further research on its technical and economic feasibility in the food sector.


Asunto(s)
Gases de Efecto Invernadero , Spirulina , Animales , Dióxido de Carbono/análisis , Suplementos Dietéticos , Estadios del Ciclo de Vida , Efecto Invernadero
6.
Water Res ; 236: 119969, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37099862

RESUMEN

There is growing global concern that greenhouse gas (GHG) emissions from water bodies are increasing because of interactions between nutrient levels and climate warming. This paper investigates key land-cover, seasonal and hydrological controls of GHGs by comparison of the semi-natural, agricultural and urban environments in a detailed source-to-sea study of the River Clyde, Scotland. Riverine GHG concentrations were consistently oversaturated with respect to the atmosphere. High riverine concentrations of methane (CH4) were primarily associated with point source inflows from urban wastewater treatment, abandoned coal mines and lakes, with CH4-C concentrations between 0.1 - 44 µg l-1. Concentrations of carbon dioxide (CO2) and nitrous oxide (N2O) were mainly driven by nitrogen concentrations, dominated by diffuse agricultural inputs in the upper catchment and supplemented by point source inputs from urban wastewater in the lower urban catchment, with CO2-C concentrations between 0.1 - 2.6 mg l-1 and N2O-N concentrations between 0.3 - 3.4 µg l-1. A significant and disproportionate increase in all GHGs occurred in the lower urban riverine environment in the summer, compared to the semi-natural environment, where GHG concentrations were higher in winter. This increase and change in GHG seasonal patterns points to anthropogenic impacts on microbial communities. The loss of total dissolved carbon, to the estuary is approximately 48.4 ± 3.6 Gg C yr-1, with the annual inorganic carbon export approximately double that of organic carbon and four times that of CO2, with CH4 accounting for 0.03%, with the anthropogenic impact of disused coal mines accelerating DIC loss. The annual loss of total dissolved nitrogen to the estuary is approximately 4.03 ± 0.38 Gg N yr-1 of which N2O represents 0.06%. This study improves our understanding of riverine GHG generation and dynamics which can contribute to our knowledge of their release to the atmosphere. It identifies where action could support reductions in aquatic GHG generation and emission.


Asunto(s)
Gases de Efecto Invernadero , Gases de Efecto Invernadero/análisis , Dióxido de Carbono , Efecto Invernadero , Ríos , Nitrógeno , Carbón Mineral , Metano/análisis , Óxido Nitroso/análisis , Suelo
7.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36645233

RESUMEN

This article provides a science-based, data-driven perspective on the relevance of the beef herd in the U.S. to our society and greenhouse gas (GHG) contribution to climate change. Cattle operations are subject to criticism for their environmental burden, often based on incomplete information disseminated about their social, economic, nutritional, and ecological benefits and detriments. The 2019 data published by the U.S. Environmental Protection Agency reported that U.S. beef cattle emitted 22.6% of the total agricultural emissions, representing about 2.2% of the total anthropogenic emissions of CO2 equivalent (CO2e). Simulations from a computer model developed to address global energy and climate challenges, set to use extreme improvements in livestock and crop production systems, indicated a potential reduction in global CO2e emissions of 4.6% but without significant enhancement in the temperature change by 2030. There are many natural and anthropogenic sources of CH4 emissions. Contrary to the increased contribution of peatlands and water reservoirs to atmospheric CO2e, the steady decrease in the U.S. cattle population is estimated to have reduced its methane (CH4) emissions by about 30% from 1975 to 2021. This CH4 emission deacceleration of 2.46 Mt CO2e/yr2 might be even more significant than reported. Many opportunities exist to mitigate CH4 emissions of beef production, leading to a realistic prospect of a 5% to 15% reduction in the short term after considering the overlapping impacts of combined strategies. Reduction strategies include feeding synthetic chemicals that inactivate the methyl-coenzyme M reductase (the enzyme that catalyzes the last step of methanogenesis in the rumen), red seaweed or algae extracts, ionophore antibiotics, phytochemicals (e.g., condensed tannins and essential oils), and other nutritional manipulations. The proposed net-zero concept might not solve the global warming problem because it will only balance future anthropogenic GHG emissions with anthropogenic removals, leaving global warming on a standby state. Recommendations for consuming red meat products should consider human nutrition, health, and disease and remain independent of controversial evidence of causational relationships with perceived negative environmental impacts of beef production that are not based on scientific data.


This article aims to provide data-driven information about the relevance of the U.S. beef cattle herd to our society and its greenhouse gas (GHG) contribution to climate change. The Environmental Protection Agency reported that U.S. beef cattle emitted 22.6% of the total agricultural emissions, representing about 2.2% of the total anthropogenic emissions of carbon dioxide equivalent (CO2e). Although the GHG contribution of the U.S. beef cattle production is small, there are many opportunities to reduce enteric methane emissions from beef cattle, with realistic estimates of a 5% to 15% reduction. However, net-zero emissions will be challenging to achieve for beef production. Considering the relatively minor contribution of beef cattle production to GHG emissions, other sources with a greater contribution to GHG emissions should be a much higher priority for mitigation as they would have a more substantial impact on slowing global warming. Recommendations by health professionals for consuming red meat products should consider human nutrition, health, and disease and remain independent of perceived negative environmental impacts of beef production that are not based on scientific data.


Asunto(s)
Cambio Climático , Gases de Efecto Invernadero , Bovinos , Humanos , Animales , Crianza de Animales Domésticos/métodos , Ambiente , Estado Nutricional , Metano/análisis , Efecto Invernadero
8.
Sci Rep ; 13(1): 418, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624147

RESUMEN

The Hospitality and Food Service (HaFS) sectors are notoriously known for their contribution to the food waste problem. Hence, there is an urgent need to devise strategies to reduce food waste in the HaFS sectors and to decarbonise their operation to help fight hunger, achieve food security, improve nutrition and mitigate climate change. This study proposes three streams to decarbonise the staff cafeteria operation in an integrated resort in Macau. These include upstream optimisation to reduce unserved food waste, midstream education to raise awareness amongst staff about the impact of food choices on the climate and health, and finally downstream recognition to reduce edible plate waste using a state-of-the-art computer vision system. Technology can be an effective medium to facilitate desired behavioural change through nudging, much like how speed cameras can cause people to slow down and help save lives. The holistic and data-driven approach taken revealed great potential for organisations or institutions that offer catering services to reduce their food waste and associated carbon footprint whilst educating individuals about the intricate link between food, climate and well-being.


Asunto(s)
Servicios de Alimentación , Eliminación de Residuos , Humanos , Animales , Alimentos , Huella de Carbono , Estadios del Ciclo de Vida , Efecto Invernadero
9.
Environ Sci Pollut Res Int ; 30(10): 27763-27781, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36385332

RESUMEN

To achieve net zero emissions, the global transportation sector needs to reduce emissions by 90% from 2020 to 2050, and road freight has a significant potential to reduce emissions. In this context, emission reduction paths should be explored for road freight over the fuel life cycle. Based on panel data from 2015 to 2020 in China, China's version of the GREET model was established to evaluate the impact of crude oil mix, electricity mix, and vehicle technology on China's reduction in road freight emissions. The results show that the import share of China's crude oil has increased from 2015 to 2020, resulting in an increase in the greenhouse gas (GHG) emission intensity of ICETs in the well-to-tank (WTT) stage by 7.3% in 2020 compared with 2015. Second, the share of China's coal-fired electricity in the electricity mix decreased from 2015 to 2020, reducing the GHG emission intensity of battery electric trucks (BETs), by approximately 6.5% in 2020 compared to 2015. Third, different vehicle classes and types of BETs and fuel cell electric trucks (FCETs) have different emission reduction effects, and their potentials for energy-saving and emission reduction at various stages of the fuel life cycle are different. In addition, in a comparative study of vehicle technology, the results show that (1) for medium-duty trucks (MDTs) and heavy-duty trucks (HDTs), FCETs have lower GHG emission intensity than BETs, and replacing diesel-ICETs can significantly reduce GHG emissions from road freight; (2) for light-duty trucks (LDTs), BETs and FCETs have the highest GHG emission reduction potential; thus, improving technologies such as electricity generation, hydrogen fuel production, hydrogen fuel storage, and transportation will help to improve the emission reduction capabilities of BETs and FCETs. Therefore, policymakers should develop emission standards for road freight based on vehicle class, type, and technology.


Asunto(s)
Gases de Efecto Invernadero , Petróleo , Emisiones de Vehículos/análisis , Vehículos a Motor , China , Electricidad , Hidrógeno , Efecto Invernadero
10.
Nat Commun ; 13(1): 7853, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543764

RESUMEN

A pressing challenge facing the aviation industry is to aggressively reduce greenhouse gas emissions in the face of increasing demand for aviation fuels. Climate goals such as carbon-neutral growth from 2020 onwards require continuous improvements in technology, operations, infrastructure, and most importantly, reductions in aviation fuel life cycle emissions. The Carbon Offsetting Scheme for International Aviation of the International Civil Aviation Organization provides a global market-based measure to group all possible emissions reduction measures into a joint program. Using a bottom-up, engineering-based modeling approach, this study provides the first estimates of life cycle greenhouse gas emissions from petroleum jet fuel on regional and global scales. Here we show that not all petroleum jet fuels are the same as the country-level life cycle emissions of petroleum jet fuels range from 81.1 to 94.8 gCO2e MJ-1, with a global volume-weighted average of 88.7 gCO2e MJ-1. These findings provide a high-resolution baseline against which sustainable aviation fuel and other emissions reduction opportunities can be prioritized to achieve greater emissions reductions faster.


Asunto(s)
Aviación , Gases de Efecto Invernadero , Petróleo , Efecto Invernadero , Carbono/análisis
11.
PLoS One ; 17(8): e0270342, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36018832

RESUMEN

Agriculture in India accounts for 18% of greenhouse gas (GHG) emissions and uses significant land and water. Various socioeconomic factors and food subsidies influence diets in India. Indian food systems face the challenge of sustainably nourishing the 1.3 billion population. However, existing studies focus on a few food system components, and holistic analysis is still missing. We identify Indian food systems covering six food system components: food consumption, production, processing, policy, environmental footprints, and socioeconomic factors from the latest Indian household consumer expenditure survey. We identify 10 Indian food systems using k-means cluster analysis on 15 food system indicators belonging to the six components. Based on the major source of calorie intake, we classify the ten food systems into production-based (3), subsidy-based (3), and market-based (4) food systems. Home-produced and subsidized food contribute up to 2000 kcal/consumer unit (CU)/day and 1651 kcal/CU/day, respectively, in these food systems. The calorie intake of 2158 to 3530 kcal/CU/day in the food systems reveals issues of malnutrition in India. Environmental footprints are commensurate with calorie intake in the food systems. Embodied GHG, land footprint, and water footprint estimates range from 1.30 to 2.19 kg CO2eq/CU/day, 3.89 to 6.04 m2/CU/day, and 2.02 to 3.16 m3/CU/day, respectively. Our study provides a holistic understanding of Indian food systems for targeted nutritional interventions on household malnutrition in India while also protecting planetary health.


Asunto(s)
Gases de Efecto Invernadero , Desnutrición , Dieta , Efecto Invernadero , Humanos , India , Agua
12.
Sci Total Environ ; 838(Pt 2): 155997, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35588830

RESUMEN

Synergies to achieve high phosphorus (P) use efficiency (PUE) and mitigate greenhouse gas (GHG) emissions are critical for developing strategies aimed toward agricultural green development. However, the potential effects of such synergies in the entire P supply chain through optimizing P management in crop production are poorly understood. In this study, a partial life cycle of a GHG emissions model was developed to quantify the P-related GHG emissions in the entire P supply chain in China. Our results showed that 16.3 kg CO2-equivalent (CO2-eq) was produced from the entire P supply chain per unit of P used for grain agriculture (maize, rice, and wheat). P-related GHG emissions in China increased more than five-fold from 1980 (7.2 Tg CO2-eq) to 2018 (44.9 Tg CO2-eq). GHG emissions were found to be strongly associated with the intensity of grain production in China, and they varied considerably across production regions owing to the differences in the P fertilizer production efficiency. Mineral P fertilizer use in crop production was the primary source of P-related GHG emissions. The results suggest that sustainable P management by matching mineral P fertilizer rates and fertilizer types with crop needs can mitigate GHG emissions by 10.8-27.7 Tg (24.0-65.1%). Moreover, this can improve PUE and reduce mineral P input by 0.7-1.4 Tg (24.0-46.0%). These findings highlight that potential synergies between high PUE and low P-related GHG emissions can be achieved via sustainable P management, thereby enhancing green agricultural development in China and other regions worldwide.


Asunto(s)
Fertilizantes , Gases de Efecto Invernadero , Agricultura/métodos , Dióxido de Carbono/análisis , China , Fertilizantes/análisis , Efecto Invernadero , Gases de Efecto Invernadero/análisis , Fósforo
13.
Sci Total Environ ; 829: 154539, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35302036

RESUMEN

Intensive cultivation and post-harvest vegetable oil production stages are major sources of greenhouse gas (GHG) emissions. Variation between production systems and reporting disparity have resulted in discordance in previous emissions estimates. The aim of this study was to assess global systems-wide variation in GHG emissions resulting from palm, soybean, rapeseed and sunflower oil production. Such an analysis is critical to understand the implications of meeting increasing edible oil demand. To achieve this, we performed a unified re-analysis of life cycle input data from diverse palm, soybean, rapeseed, and sunflower oil production systems, from a saturating search of published literature. The resulting dataset reflects almost 6000 producers in 38 countries, and is representative of over 71% of global vegetable oil production. Across all oil crop systems, median GHG emissions were 3.81 kg CO2e per kg refined oil. Crop specific median emissions ranged from 2.49 kg CO2e for rapeseed oil to 4.25 kg CO2e for soybean oil per kg refined oil. Determination of the carbon cost of agricultural land occupation revealed that carbon storage potential in native compared to agricultural land cover drives variation in production GHG emissions, and indicates that expansion of production in low carbon storage potential land, whilst reforesting areas of high carbon storage potential, could reduce net GHG emissions whilst boosting productivity. Nevertheless, there remains considerable scope to improve sustainability within current production systems, including through increasing yields whilst limiting application of inputs with high carbon footprints, and in the case of palm oil through more widespread adoption of methane capture technologies in processing stages.


Asunto(s)
Efecto Invernadero , Gases de Efecto Invernadero , Carbono/análisis , Huella de Carbono , Gases de Efecto Invernadero/análisis , Aceites de Plantas/análisis , Glycine max , Aceite de Girasol/análisis
14.
Sci Total Environ ; 822: 153647, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35124027

RESUMEN

This paper compares the environmental impacts of the operation of a novel Gas-to-Liquid (GtL) process for synthetic crude oil production with conventional crude oil production. This process uses novel microreactor technology (NetMIX) applied in Steam Methane Reforming and Fischer-Tropsch (FT-SMR) for the conversion of associated gas originated on offshore Oil and Gas exploration. Data from literature for Oil and Gas extraction together with data obtained from Aspen Plus ® simulations was used to build the life cycle inventory. An attributional Life Cycle Assessment (LCA) was performed to compare the FT-SMR pathway to conventional crude oil production, using 1 MJ LHV as the functional unit. An additional assessment was also conducted by reporting the impact to 1 barrel. This is done to assess the effect that the add-on technology may have on the impact of current crude production. Converting associated gas using the FT-SMR pathway produces a synthetic crude with negative net GWP impacts. This is because the amount of avoided emissions is larger than the emissions due to the operation of the pathway. The remaining impact categories increase since the FT-SMR has additional intermediary steps, with added fuel energy needs, and additional process emissions. Moreover, the amount of natural gas required to produce 1 MJ of synthetic crude oil (abbreviated in the text as syncrude) results in larger impacts in the extraction phase, than those associated with the extraction of 1 MJ of conventional crude. The obtained syncrude has a GWP impact of -0.34 [-0.62, -0.14] kg CO2 eq/MJ, in comparison to 0.012 [0.009, 0.017] kg CO2 eq/MJ of conventional crude. A reduction of 8% to the impacts per daily barrel of crude (70.3 kg CO2 eq/barrel and 64.6 kg CO2 eq/barrel before and after using the FT-SMR pathway) was observed for a reduction of 34% of the total flared gas mass.


Asunto(s)
Petróleo , Animales , Efecto Invernadero , Estadios del Ciclo de Vida , Metano , Tecnología
15.
J Environ Manage ; 307: 114568, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35078062

RESUMEN

Although the response of plants to nitrogen (N) in conventional systems has been extensively described in the literature, there is a lack of information available to refine the strategic N fertilisation program required in intercropping systems to match the nutrient supply with crop demands and reduce environmental impacts on greenhouse gas emissions. Therefore, this study aims to investigate the effect of N management on the growth, production, quality, greenhouse gas emissions (GHG) and carbon footprint of a beet-arugula intercropping system during two growing seasons (winter and summer). The efficiency of N fertilisation in each season was assessed by the supply of 20 N doses, varying the amounts applied at planting and as a side dressing (0-80, 0-120, 0-160, 0-200, 0-240, 20-80, 20-120, 20-160, 20-200, 20-240, 40-80, 40-120, 40-160, 40-200, 40-240, 60-80, 60-120,60-160, 60-200 and 60-240 kg N ha-1). GHG emissions and carbon footprint were calculated and converted to CO2 equivalent (CO2 eq) utilising IPCC methodology. The height, total and marketable productivities of beet plants were 33, 31 and 34% higher in winter than in summer, respectively. Arugula plants achieved the highest performance (height, fresh mass and yield) in summer. Considering the environmental impact on global warming/climate change caused by the use of N fertilisers, total GHG emissions may range from 1723.9 to 3369.8 kg CO2eq ha-1 cycle-1 according to the N dose applied. However, based on the carbon footprint, the application of 60-120 kg N ha-1 at planting and as side dressing was the best N dose, since it reduced the carbon footprint (equivalent to 0.134 g CO2eq kcal-1 vegetables) without compromising crop yield.


Asunto(s)
Beta vulgaris , Gases de Efecto Invernadero , Agricultura , Huella de Carbono , Fertilización , Efecto Invernadero , Gases de Efecto Invernadero/análisis , Metano/análisis , Nitrógeno/análisis
16.
Molecules ; 27(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35011535

RESUMEN

Fusarium oxysporum is an aggressive phytopathogen that affects various plant species, resulting in extensive local and global economic losses. Therefore, the search for competent alternatives is a constant pursuit. Quinolizidine alkaloids (QA) are naturally occurring compounds with diverse biological activities. The structural diversity of quinolizidines is mainly contributed by species of the family Fabaceae, particularly the genus Lupinus. This quinolizidine-based chemo diversity can be explored to find antifungals and even mixtures to address concomitant effects on F. oxysporum. Thus, the antifungal activity of quinolizidine-rich extracts (QREs) from the leaves of eight greenhouse-propagated Lupinus species was evaluated to outline promising QA mixtures against F. oxysporum. Thirteen main compounds were identified and quantified using an external standard. Quantitative analysis revealed different contents per quinolizidine depending on the Lupinus plant, ranging from 0.003 to 32.8 mg/g fresh leaves. Bioautography showed that all extracts were active at the maximum concentration (5 µg/µL). They also exhibited >50% mycelium growth inhibition. All QREs were fungistatic except for the fungicidal QRE of L. polyphyllus Lindl. Angustifoline, matrine, 13α-hydroxylupanine, and 17-oxolupanine were ranked to act jointly against the phytopathogen. Our findings constitute reference information to better understand the antifungal activity of naturally afforded QA mixtures from these globally important plants.


Asunto(s)
Antifúngicos/farmacología , Lupinus/química , Extractos Vegetales/farmacología , Quinolizidinas/farmacología , Antifúngicos/química , Cromatografía de Gases y Espectrometría de Masas , Efecto Invernadero , Lupinus/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Quinolizidinas/química
17.
Sci Total Environ ; 806(Pt 1): 150297, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34571235

RESUMEN

As an emerging power generation technology, small module reactors (SMRs) have the potential for development with its contribution to reducing greenhouse gas (GHG) emissions. In this study, an SMR-induced environmental input-output model (SEIOM) is proposed to simulate the environmental consequences of SMRs development and provide suggested schemes for SMRs deployment. A case study of Saskatchewan, Canada is conducted to demonstrate the proposed model. Specifically, key industries with high reduction potentials are first identified in the study; then, the power supply for three energy-intensive industries is assumed to be replaced by power generated from SMRs at various penetration degrees. The corresponding changes in direct and indirect GHG emissions and the interrelationships among multiple economic sectors associated with GHG flows are analyzed. The results indicate that there are close interdependences between various sectors and a small group of sectors could play a big role in GHG emission mitigation. In Saskatchewan, "Electricity power generation, transmission and distribution", "Oil and gas extraction", "Potash mining" and "Petroleum refineries" are key sectors for realizing GHG emission reduction targets. Meanwhile, it is estimated that replacing the power supply for "Oil and gas extraction" sector with SMRs would contribute the most to the reduction in GHG emission, which is much more than those for "Potash mining" and "Petroleum refineries" sectors. This study is expected to provide a basis for supporting the initiative and application of SMRs.


Asunto(s)
Gases de Efecto Invernadero , Petróleo , Efecto Invernadero , Gases de Efecto Invernadero/análisis , Modelos Teóricos , Petróleo/análisis , Saskatchewan
18.
Molecules ; 26(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885739

RESUMEN

Transportation accounts for nearly one third of the total energy consumed worldwide and, unlike other sectors, it relies almost exclusively (96%) on petroleum [...].


Asunto(s)
Biocombustibles , Transportes , Emisiones de Vehículos/prevención & control , Biomasa , Efecto Invernadero , Humanos , Petróleo/efectos adversos
20.
Glob Chang Biol ; 27(22): 5726-5761, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34314548

RESUMEN

Livestock have long been integral to food production systems, often not by choice but by need. While our knowledge of livestock greenhouse gas (GHG) emissions mitigation has evolved, the prevailing focus has been-somewhat myopically-on technology applications associated with mitigation. Here, we (1) examine the global distribution of livestock GHG emissions, (2) explore social, economic and environmental co-benefits and trade-offs associated with mitigation interventions and (3) critique approaches for quantifying GHG emissions. This review uncovered many insights. First, while GHG emissions from ruminant livestock are greatest in low- and middle-income countries (LMIC; globally, 66% of emissions are produced by Latin America and the Caribbean, East and southeast Asia and south Asia), the majority of mitigation strategies are designed for developed countries. This serious concern is heightened by the fact that 80% of growth in global meat production over the next decade will occur in LMIC. Second, few studies concurrently assess social, economic and environmental aspects of mitigation. Of the 54 interventions reviewed, only 16 had triple-bottom line benefit with medium-high mitigation potential. Third, while efforts designed to stimulate the adoption of strategies allowing both emissions reduction (ER) and carbon sequestration (CS) would achieve the greatest net emissions mitigation, CS measures have greater potential mitigation and co-benefits. The scientific community must shift attention away from the prevailing myopic lens on carbon, towards more holistic, systems-based, multi-metric approaches that carefully consider the raison d'être for livestock systems. Consequential life cycle assessments and systems-aligned 'socio-economic planetary boundaries' offer useful starting points that may uncover leverage points and cross-scale emergent properties. The derivation of harmonized, globally reconciled sustainability metrics requires iterative dialogue between stakeholders at all levels. Greater emphasis on the simultaneous characterization of multiple sustainability dimensions would help avoid situations where progress made in one area causes maladaptive outcomes in other areas.


Asunto(s)
Gases de Efecto Invernadero , Miopía , Animales , Carbono , Efecto Invernadero , Gases de Efecto Invernadero/análisis , Ganado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA