Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Environ Monit Assess ; 196(5): 444, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607455

RESUMEN

This study aimed to monitor long-term land use dynamics for understanding the natural forest integrity and intactness of the Rajiv Gandhi (Nagarhole) Tiger Reserve (RTR) pre- and post-declarations as TR. We employed multi-source data from Survey of India Toposheets (1:50 k), Landsat-7, and Sentinel-2A along with Global Ecosystem Dynamics Investigation (GEDI) vegetation canopy height (10 m) data, a high-spatial resolution CORONA (1970) images and temporal Google Earth Pro images for mapping and validation. To map vegetation type, land use and land cover (LULC) transitions, and fragmentation (1980-2022) we employed a hybrid classification approach. This study also analyzed decadal forest dynamics within TRs using India's State of Forest Reports (ISFR). Findings reveal significant forest fragmentation and habitat loss due to anthropogenic activities in the TR. Mono-plantations (teak and eucalyptus) were found inside TR, while the buffer (1 km) was occupied mainly with coffee and orange plantations which indicates the prevalence of human footprint. The overall accuracy of the current period (2022) is 92.0% with a kappa coefficient value of 0.90. These plantations were established during the British colonial period (early 1900s) for commercial purposes by clearing natural forests. The present study highlights that mono-plantations have not transitioned into natural forests even after a century. This lack of transformation could potentially compromise the integrity of the native forest. Despite its ecological significance, RTR has experienced disturbance due to human footprint. Hence, there is a need for an action plan to protect this vital landscape by replacing mono-plantations with suitable species to preserve the integrity of the forest. These issues extend beyond the protected areas, impacting surrounding regions and require regular monitoring. The proposed methods can be applied to other protected areas facing similar problems in the country and world.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Humanos , Efectos Antropogénicos , Café , Bosques
2.
Mar Pollut Bull ; 201: 116224, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38457880

RESUMEN

In this study, multiple molecular markers [polycyclic aromatic hydrocarbons (PAHs), linear and branched alkanes, unresolved complex mixture (UCM), hopanes, and steranes] were applied to explore petroleum-related inputs in complex coastal systems influenced by various human-induced pressures. To investigate anthropogenic impacts related to petrogenic emissions, we analysed surface sediments from coastal areas of southern Baltic, including harbour/shipyard channels, offshore dumping sites, shipping routes, and major sinks for particulate matter discharged by large rivers. This study indicates a large spatial variability in the contamination degree of examined sites by petroleum-derived chemicals. Hopanes and steranes along with UCM appeared to have the highest potential to identify petroleum sources in studied locations, whereas investigations based on alkanes and PAHs seemed to be considerably affected by inputs of modern biogenic and combustion-derived materials, respectively. However, the combined use of all these markers provides deeper insight into the complexity of sedimentary organic matter in human-impacted environments.


Asunto(s)
Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Humanos , Efectos Antropogénicos , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Monitoreo del Ambiente , Alcanos/análisis , Petróleo/análisis , Biomarcadores , Hidrocarburos Policíclicos Aromáticos/análisis , Triterpenos Pentacíclicos
3.
Environ Monit Assess ; 195(12): 1459, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37950807

RESUMEN

Lake sediments can provide valuable insights into anthropogenic disturbances such as intensive aquaculture and land use changes. These disturbances often manifest as elevated levels of nutrients and elements within the sediments. This paper uses several analytical techniques, i.e., FTIR (Fourier-transform infrared spectroscopy), XRD (X-ray diffraction), EDS (energy-dispersive X-ray spectroscopy), and SEM (scanning electron microscopy), to examine the elemental constituents of lake sediments, along with their relative mineral abundances and surface morphology. The selected freshwater lakes are from the Central Gangetic Plain. The analysis provides a "fingerprint" of geogenic and biogenic mineral constituents of the sediments. Physicochemical, mineralogical, and elemental analysis shows that intensive aquaculture activities in lake alter the sediment chemistry as evidenced by the increase in pH, organic carbon, organic matter, and total phosphorus which is not observed in the lake where aquaculture is prohibited. Freshwater lake sediment is characterized by a high content of biogenic silica and carbonate minerals. The variations in sediment nutrients and mineral fluxes of the selected lakes are mainly attributed to diverse anthropogenic pressures, differences in lake productivity, and the overall ecological condition of the lakes. In the selected three lakes, major variation was reported in the autochthonous sediments in comparison to the allochthonous sediments. The study concludes that catchment and biotic deposit variations in the lakes cannot be evened out by in-lake mixing mechanisms due to variations in the terrigenous and pelagic deposits of the lake. The results highlight the importance of studying annual fluctuations and spatial variations in geogenic and biogenic mineral particle fluxes in lakes. Such investigations provide valuable insights into the annual dynamics of minerals within lakes, contributing to a more comprehensive understanding of their behavior and distribution.


Asunto(s)
Efectos Antropogénicos , Lagos , Lagos/química , Monitoreo del Ambiente/métodos , Fósforo/análisis , Minerales/análisis , Sedimentos Geológicos/química , China
4.
J Environ Manage ; 345: 118883, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37683383

RESUMEN

Legacy phosphorus (P) in watersheds continuously affects the water quality. The time lag between anthropogenic P input and algal bloom has made P dynamics prediction in aquatic ecosystems more challenging. Whether the legacy P in the Yangtze River Watershed (YRW) exceeds its storage threshold remains unknown, and the continuous impact of legacy P on the water quality has not been analyzed. This study aimed to evaluate variation trends (1970-2018) and influencing factors for accumulated P in the YRW under different economic development periods, quantitatively identify the watershed P storage threshold based on the two split line models and estimate the time required for the return of legacy P to the baseline level using an exponential decay process. The results showed that the P storage threshold of the YRW was surpassed due to intense anthropogenic activities, and the residual P still had an impact on aquatic ecosystems for a long time. The dissolved total P loadings may become the top priority to achieve better P management goals. The time lags for the legacy P restoration would require for about 1000 years to be exhausted. The legacy P in the YRW would continuously undermine the restoration efforts of the water quality. The combined effects of watershed P surplus reductions and depletion of residual P may become essential to better manage P in the future. We still need to strengthen our efforts to make soil legacy P more absorbed by crops and improve sewage treatment capacity to achieve sustainable development of YRW.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Productos Agrícolas , Desarrollo Económico , Fósforo
5.
Sci Total Environ ; 896: 166323, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37595919

RESUMEN

Land use and cover change (LUCC) in Brazil encompass a complex interplay of diverse factors across different biomes. Understanding these dynamics is crucial for informed decision-making and sustainable land management. In this study, we comprehensively analyzed LUCC patterns and drivers using 30 m resolution MapBiomas Collection 6.0 data (1985-2020). By mapping deforestation of primary and secondary natural vegetation, natural vegetation regeneration, and transitions between pasture, soybean, agriculture, and irrigation, we shed light on the intricate nature of LUCC in Brazil. Our findings highlight significant and increasing trends of deforestation in primary vegetation in the country. Simultaneously, the Atlantic Forest, Caatinga, Pampa, and other regions of the Cerrado have experienced intensification processes. Notably, the pasture area in Brazil reached its peak in 2006 and has since witnessed a gradual replacement by soybean and other crops. While pasture-driven deforestation persists in most biomes, the net pasture area has only increased in the Amazon and Pantanal, decreasing in other biomes due to the conversion of pasturelands to intensive cropping in other regions. Our analysis further reveals that primary and secondary vegetation deforestation accounts for a substantial portion of overall forest loss, with 72 % and 17 %, respectively. Of the cleared areas, 48 % were in pasture, 9 % in soybean cultivation, and 16 % in other agricultural uses in 2020. Additionally, we observed a lower rate of deforestation in the Atlantic Forest, a biome that has been significantly influenced by anthropogenic activities since 1986. This holistic quantification of LUCC dynamics provides a solid foundation for understanding the impacts of these changes on local to continental-scale land-atmosphere interactions. By unraveling the complex nature of LUCC in Brazil, this study aims to contribute to the development of effective strategies for sustainable land management and decision-making processes.


Asunto(s)
Ecosistema , Bosques , Brasil , Agricultura , Efectos Antropogénicos , Glycine max
6.
Environ Sci Technol ; 56(23): 16940-16951, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36379054

RESUMEN

Interactions among multiple stressors, legacies of past perturbations, and the lack of historical information make it difficult to determine the influence of individual anthropogenic impacts on lakes and separate them from natural ecosystem variability. In the present study, we coupled paleolimnological approaches, historical data, and ecological experiments to disentangle the impacts of multiple long-term stressors on lake ecosystem structure and function. We found that the lake structure and function remained resistant to the impacts of catchment deforestation and erosion, and the introduction of several exotic fish species. Changes in ecosystem structure and function were consistent, with nutrient enrichment being the primary driver of change. Significant and sustained changes in the lake diatom community structure (and their nutrient requirements), bacterial community function, and paleolimnological proxies of ecosystem function coincided with nitrogen and phosphorus fertilizers in the catchment. The results highlight that the effects of increased nutrient inputs are much stronger than the influence of other, potentially significant, drivers of ecosystem change, and that the degree of nutrient impact can be underestimated by environmental monitoring due to its diffuse and accumulative nature. Delineating the effects of multiple anthropogenic drivers requires long-term records of both impacts and lake ecosystem change across multiple trophic levels.


Asunto(s)
Ecosistema , Lagos , Animales , Lagos/química , Efectos Antropogénicos , Fósforo , Nutrientes
7.
Adv Mar Biol ; 93: 3-21, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36435593

RESUMEN

Marine mammals are regarded in high esteem by the general public, and are recognized as flagship species for conservation, while at the same time they suffer from anthropogenic impacts on a global scale, and often in extreme ways. It seems there is a huge discrepancy between how we humans think about our fellow creatures in the sea, and how we behave to impact and/or conserve them. Here, I examine why the purely scientific and thus intellectual approach to marine mammal conservation has had limited success over the past decades. While there are some obvious success stories in cetacean conservation, the situation today is, for many species and populations, more dire than it has ever been. The idea of 'we need to know more'-a credo of the scientific community-often is politically misrepresented to postpone necessary conservation decisions. To adapt our path towards more profound and, importantly, more effective marine conservation, as conservationists we need to go deeper and change the narrative of separation, i.e., the concept of humans being set apart from the rest of nature. Instead, there is a need to create a narrative of connectedness, i.e., the consciousness of humans being an integral part of the planetary system. Rather than telling horror stories about the plight of marine mammals, conservationists also need to trigger positive emotions about them in ourselves. More holistic aspects of conservation need to be incorporated in our future efforts, including the fuller integration of traditional knowledge and indigenous wisdom, recognizing ecosystem functions of marine life and protecting the processes they sustain, respecting 'holiness' of nature while focusing on the animals' individuality, personhood and the cultural identity of distinct communities. Effective marine mammal conservation will be possible only on the basis of a profound change of our own values and a fundamental change of the societal system we are living in.


Asunto(s)
Caniformia , Animales , Humanos , Efectos Antropogénicos , Cetáceos , Ecosistema
8.
Environ Monit Assess ; 194(8): 568, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794258

RESUMEN

In this study, the multi-marker approach was used for the first time with a highly urbanized lake located in the city of Fortaleza, Brazil, to provide a comprehensive view of temporal trends in sources of pollutants and evaluate the relation between the influence of anthropogenic activities and socioeconomic development. Total concentrations of the markers analyzed ranged from 21.0 to 103.8 ng g-1, 450.2 to 2390.2 ng g-1, and 233.8 to 9827.3 ng g-1 for ∑PAHs, ∑n-alk, and ∑sterols, respectively. Concentrations and patterns of PAH, AH, and sterol ratio distribution changed over time and may be associated with different episodes in the history of the city of Fortaleza. The marker ratio distribution in the sediment core revealed an overlap of natural and anthropogenic sources, with degraded oil, biogenic inputs, pyrogenic processes, and fecal contamination from humans and animals in the past changing to petroleum fossil inputs and high contamination from sewage in the present day. The distribution of markers and the chronological history of Fortaleza revealed two distinct periods related to human activities during the development of the city. In the first period (prior to the 1950s), the main human activities were animal breeding and the use of biomass for domestic activities, public and cargo transportation, and commercial activities, especially food production. In the second period (after the 1950s), expansion of the city occurred due to the so-called Brazilian economic miracle and the main human activities were industrialization and urbanization processes, involving deforestation, paving, sewage discharge, and petroleum combustion.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua , Animales , Efectos Antropogénicos , Brasil , Monitoreo del Ambiente , Sedimentos Geológicos , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis
9.
Sci Total Environ ; 843: 156833, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35750171

RESUMEN

Phosphorus usage is irreplaceable in agriculture; however, its excessive use leads to wastage of invaluable resources and significant soil surplus. Agronomic soil phosphorus surplus in Asian regions has a much higher level than the global average. And with rapid urbanization and population growth in the recent decades, Asian countries have seen a rise in environmental pollution levels also. This study assessed the detailed phosphorus budget in the Yamato River catchment, an urbanized coastal catchment in Asia, from 1940s to 2010s using Soil and Water Assessment Tool, comprehensively analyzed the effect of anthropogenic factors on long-term phosphorus loading and agronomic soil phosphorus balance. The results showed the peak period of total phosphorus loading and agronomic soil phosphorus surplus occurred in 1970s, at 895 tons/year and 36.6 kg/ha, respectively. The major reasons for increased phosphorus loading and soil surplus during 1940-1970 were rapid population growth and increased fertilizer usage, respectively. Since the 1980s, the construction of wastewater treatment system and reduction in agricultural land contributed to environmental improvement. These anthropogenic factors had a much stronger impact on phosphorus budget than climate change in the study catchment. Soil phosphorus balance is affected by a combination of factors, such as soil properties, fertilizer usage and applied schedule, precipitation event, and crop types. And soil phosphorus surplus may be severely overestimated if the non-point source loss due to precipitation factor is not fully considered.


Asunto(s)
Fertilizantes , Fósforo , Agricultura/métodos , Efectos Antropogénicos , Bahías , Monitoreo del Ambiente , Fósforo/análisis , Suelo
10.
Sci Total Environ ; 842: 156878, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35752244

RESUMEN

Six decades field observation data series on submerged aquatic vegetation (SAV), water level and water quality from Lake Taihu were compiled to reveal the dynamics in coverage and species composition of SAV and their anthropogenic drivers. We found that both SAV species composition and coverage area declined significantly in Lake Taihu during the period, and the increasing nutrient levels and water level as well as decreasing water clarity were responsible for these change trends. Specifically, the decrease in species richness could be particularly well predicted by total nitrogen (TN) and the ratio of water clarity (i.e., Secchi disk depth (SDD)) to water level (WL), contributing 47.3 % and 32.3 %, respectively, while the coverage of macrophytes was most strongly related to the water level, accounting for 70.1 % of the variation. A classification tree analysis revealed a threshold of TN of 3.2 mg/L and SDD/WL of 0.14 that caused a shift to a eutrophic low-macrophyte dominated state. Our results highlight that SDD/WL must be improved for SAV recolonization, rather than merely reducing nutrient input and regulating water level. Our findings provide scientific information for lake managers to prevent plant degradation in macrophyte-dominant lakes and facilitate a shift to a macrophyte-dominant state in eutrophic lakes.


Asunto(s)
Efectos Antropogénicos , Lagos , China , Eutrofización , Nitrógeno/análisis , Fósforo/análisis , Plantas , Calidad del Agua
11.
Ecol Lett ; 25(6): 1497-1509, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35545440

RESUMEN

Anthropogenic disturbance and climate change can result in dramatic increases in the emergence of new, ecologically novel, communities of organisms. We used a standardised framework to detect local novel communities in 2135 pollen time series over the last 25,000 years. Eight thousand years of post-glacial warming coincided with a threefold increase in local novel community emergence relative to glacial estimates. Novel communities emerged predominantly at high latitudes and were linked to global and local temperature change across multi-millennial time intervals. In contrast, emergence of locally novel communities in the last 200 years, although already on par with glacial retreat estimates, occurred at midlatitudes and near high human population densities. Anthropogenic warming does not appear to be strongly associated with modern local novel communities, but may drive widespread emergence in the future, with legacy effects for millennia after warming abates.


Asunto(s)
Efectos Antropogénicos , Cambio Climático , Humanos , Plantas , Polen
12.
Sci Total Environ ; 821: 153378, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35085641

RESUMEN

As a medicinal plant, Artemisia annua L. is the main source of artemisinin in malaria drugs, but the lack of understanding of its distribution, environmental conditions and protection status limits the mass acquisition of artemisinin. Therefore, we used the ensemble forecast method to model the current and future global distribution areas of A. annua, evaluated the changes in suitable distribution areas on each continent under impacts of human activities and climate change, and its protection status on each continent in the corresponding period. The results showed that the main distribution areas of A. annua were concentrated in mid-latitudes in western and central Europe, southeastern Asia, southeastern North America and southeastern South America. Under the current climate scenario, human modifications have greatly reduced the suitable distribution area of A. annua, which was projected to expand inland with climate change and human socioeconomic impacts of CMIP6 in the future, but the effects of increasing temperature were different in different periods. Among all continents, the suitable distribution area in Europe was the most affected. However, at present and in the future, A. annua needs high priority protection on all continents. Asia and Europe have slightly better protection status scores than other continents, but the protection status scores of all continents are still very low. Our findings can be useful to guide development of protective measures for medicinal plants such as A. annua to further support drug production and disease treatment.


Asunto(s)
Efectos Antropogénicos , Artemisia annua , Clima , Conservación de los Recursos Naturales , Plantas Medicinales , Asia , Temperatura
13.
Sci Total Environ ; 808: 152125, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34871681

RESUMEN

Nowadays, a variety of methodologies are available to assess local, regional and global impacts of human activities on ecosystems, which include Life Cycle Assessment (LCA), Environmental Risk Assessment (ERA) and Ecosystem Services Assessment (ESA). However, none can individually assess both the positive and negative impacts of human activities at different geographical scales in a comprehensive manner. In order to overcome the shortcomings of each methodology and develop more holistic assessments, the integration of these methodologies is essential. Several studies have attempted to integrate these methodologies either conceptually or through applied case studies. To understand why, how and to what extent these methodologies have been integrated, a total of 110 relevant publications were reviewed. The analysis of the case studies showed that the integration can occur at different positions along the cause-effect chain and from this, a classification scheme was proposed to characterize the different integration approaches. Three categories of integration are distinguished: post-analysis, integration through the combination of results, and integration through the complementation of a driving method. The literature review highlights that the most recurrent type of integration is the latter. While the integration through the complementation of a driving method is more realistic and accurate compared to the other two categories, its development is more complex and a higher data requirement could be needed. In addition to this, there is always the risk of double-counting for all the approaches. None of the integration approaches can be categorized as a full integration, but this is not necessarily needed to have a comprehensive assessment. The most essential aspect is to select the appropriate components from each methodology that can cover both the environmental and socioeconomic costs and benefits of human activities on the ecosystems.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Conservación de los Recursos Naturales , Humanos , Medición de Riesgo
14.
Sci Total Environ ; 809: 151992, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34883171

RESUMEN

Tracking the spatiotemporal dynamics of particulate phosphorus concentration (CPP) and understanding its regulating factors is essential to improve our understanding of its impact on inland water eutrophication. However, few studies have assessed this in eutrophic inland lakes, owing to a lack of suitable bio-optical algorithms allowing the use of remote sensing data. Herein, a novel semi-analytical algorithm of CPP was developed to estimate CPP in lakes on the Yangtze Plain, China. The independent validations of the proposed algorithm showed a satisfying performance with the mean absolute percentage error and root mean square error less than 27% and 27 µg/L, respectively. The Ocean and Land Color Instrument observations revealed a remarkable spatiotemporal heterogeneity of CPP in 23 lakes on the Yangtze Plain from 2016 to 2020, with the lowest value in December (62.91 ± 34.59 µg/L) and the highest CPP in August (114.9 ± 51.69 µg/L). Among the 23 examined lakes, the highest mean CPP was found in Lake Poyang (124.58 ± 44.71 µg/L), while the lowest value was found in Lake Qiandao (33.51 ± 4.71 µg/L). Additionally, 13 lakes demonstrated significant decreasing or increasing trends (P < 0.05) of annual mean CPP during the observation period. The driving factor analysis revealed that four natural factors (wind speed, air temperature, precipitation, and sunshine duration) and two anthropogenic factors (the normalized difference vegetation index and nighttime light) combined explained more than 91% of the variation in CPP, while the impacts of these factors on CPP showed considerable differences among lakes. This study offered a novel and scalable algorithm for the study of the spatiotemporal variation of CPP in inland waters and provided new insights into the regulating factors in water eutrophication.


Asunto(s)
Efectos Antropogénicos , Fósforo , China , Monitoreo del Ambiente , Eutrofización , Lagos , Fósforo/análisis
15.
Mar Pollut Bull ; 175: 113171, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34844749

RESUMEN

Analysis of the common and most influential natural and anthropogenic activities on the spatiotemporal variation in nutrients at a multiannual scale is important. Eleven cruises from 2015 to 2017 were carried out to better elucidate the seasonal and spatial variations in nutrients, as well as the impact factors on dissolved inorganic nitrogen (DIN), phosphorus (DIP) and silicate (DSi). Both nutrient concentrations and forms showed similar and significant seasonal variations over the 3 years, and were closely related to the biomass and species of phytoplankton. Terrestrial inputs had significant effects on the spatial distribution of nutrients throughout the year, especially in the surface water, which showed DIN > DIP>DSi. In summer, shellfish aquaculture and hypoxia jointly affected the spatial distribution of nutrients. The bottom water nutrient concentrations in the aquaculture area were 1.1-2.3 times higher than those outside of the aquaculture area. Seasonal hypoxia can increase the release of DSi and NH4+ from the sediment to the water. In summary, anthropogenic activities and physical conditions jointly influenced the nutrient distributions.


Asunto(s)
Efectos Antropogénicos , Monitoreo del Ambiente , China , Nitrógeno/análisis , Nutrientes/análisis , Fósforo/análisis , Estaciones del Año , Agua de Mar
16.
Sci Total Environ ; 807(Pt 2): 151753, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34822893

RESUMEN

Despite numerous studies, there are many knowledge gaps in our understanding of uranium (U) contamination in the alluvial aquifers of Punjab, India. In this study, a large hydrogeochemical dataset was compiled to better understand the major factors controlling the mobility and enrichment of uranium (U) in this groundwater system. The results showed that shallow groundwaters (<60 m) are more contaminated with U than from deeper depths (>60 m). This effect was predominant in the Southwest districts of the Malwa, facing significant risk due to chemical toxicity of U. Groundwaters are mostly oxidizing and alkaline (median pH: 7.25 to 7.33) in nature. Spearman correlation analysis showed that U concentrations are more closely related to total dissolved solids (TDS), salinity, Na, K, HCO3-, NO3- Cl-, and F- in shallow water than deep water, but TDS and salinity remained highly correlated (U-TDS: ρ = 0.5 to 0.6; U-salinity: ρ = 0.5). This correlation suggests that the salt effect due to high competition between ions is the principal cause of U mobilization. This effect is evident when the U level increased with increasing mixed water species (Na-Cl, Mg-Cl, and Na-HCO3). Speciation data showed that the most dominant U species are Ca2UO2(CO3)2- and CaUO2(CO3)3-, which are responsible for the U mobility. Based on the field parameters, TDS along with pH and oxidation-reduction potential (ORP) were better fitted to U concentration above the WHO guideline value (30 µg.L-1), thus this combination could be used as a quick indicator of U contamination. The strong positive correlation of U with F- (ρ = 0.5) in shallow waters indicates that their primary source is geogenic, while anthropogenic factors such as canal irrigation, groundwater table decline, and use of agrochemicals (mainly nitrate fertilizers) as well as climate-related factors i.e., high evaporation under arid/semi-arid climatic conditions, which result in higher redox and TDS/salinity levels, may greatly affect enrichment of U. The geochemical rationale of this study will provide Science-based-policy implications for U health risk assessment in this region and further extrapolate these findings to other arid/semi-arid areas worldwide.


Asunto(s)
Agua Subterránea , Uranio , Efectos Antropogénicos , India
17.
J Environ Manage ; 304: 114313, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34942548

RESUMEN

Environmental pollution mitigation measure involving bioremediation technology is a sustainable intervention for a greener ecosystem biorecovery, especially the obnoxious hydrocarbons, xenobiotics, and other environmental pollutants induced by anthropogenic stressors. Several successful case studies have provided evidence to this paradigm including the putative adoption that the technology is eco-friendly, cost-effective, and shows a high tendency for total contaminants mineralization into innocuous bye-products. The present review reports advances in bioremediation, types, and strategies conventionally adopted in contaminant clean-up. It identified that natural attenuation and biostimulation are faced with notable limitations including the poor remedial outcome under the natural attenuation system and the residual contamination occasion following a biostimulation operation. It remarks that the use of genetically engineered microorganisms shows a potentially promising insight as a prudent remedial approach but is currently challenged by few ethical restrictions and the rural unavailability of the technology. It underscores that bioaugmentation, particularly the use of high cell density assemblages referred to as microbial consortia possess promising remedial prospects thus offers a more sustainable environmental security. The authors, therefore, recommend bioaugmentation for large scale contaminated sites in regions where environmental degradation is commonplace.


Asunto(s)
Restauración y Remediación Ambiental , Petróleo , Contaminantes del Suelo , Efectos Antropogénicos , Biodegradación Ambiental , Ecosistema , Hidrocarburos , Microbiología del Suelo , Contaminantes del Suelo/análisis , Tecnología
18.
Chemosphere ; 290: 133344, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34922961

RESUMEN

Soil - water pollution resulting from anthropogenic activities is a growing concern internationally. Effective monitoring techniques play a crucial role in the detection, prevention, and remediation of polluted sites. Current pollution monitoring practices in many geographical locations are primarily based on physico-chemical assessments which do not always reflect the potential toxicity of contaminant 'cocktails' and harmful chemicals not screened for routinely. Biomonitoring provides a range of sensitive techniques to characterise the eco-toxicological effects of chemical contamination. The bioavailability of contaminants, in addition to their effects on organisms at the molecular, cellular, individual, and community level allows the characterisation of the overall health status of polluted sites and ecosystems. Quantifying bioaccumulation, changes to community structure, faunal morphology, behavioural, and biochemical responses are standard procedures employed in biomonitoring studies in many High-Income Countries (HICs). This review highlights the need to integrate biomonitoring tools alongside physico-chemical monitoring techniques by using 'effect-based' tools to provide more holistic information on the ecological impairment of soil-water systems. This paper considers the wider implementation of biomonitoring methods in Low to Middle Income Countries (LMICs) and their significance in pollution investigations and proposes an integrated monitoring framework that can identify toxicity drivers by utilising 'effect-based' and 'risk-based' monitoring approaches.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Efectos Antropogénicos , Monitoreo Biológico , Monitoreo del Ambiente , Suelo , Contaminantes Químicos del Agua/análisis , Contaminación del Agua
19.
J Hazard Mater ; 424(Pt A): 127312, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34600393

RESUMEN

Coastal wetlands are ecosystems lying between land and ocean and are subject to inputs of heavy metals (HMs) from terrestrial, oceanic and atmospheric sources. Although the study on HM pollution in coastal wetlands has been rapidly developing over the past three decades, systematic reviews are still unavailable. Here, by analyzing 3343 articles published between 1990 and 2019, we provided the first holistic systematic review of studies on HM pollution in coastal wetlands globally. The results showed a trend of rapid increases in publications in this field globally, especially over the past ten years. Trends varied greatly among coastal countries, and global trends were primarily driven by the US before 2000, and in China after 2010. We also found that mercury (Hg), cadmium (Cd), and copper (Cu) were the most widely studied HM elements globally, but patterns differed geographically, with Hg being most widely examined in the Americas, Cd in China and India, and lead (Pb) in the western Europe and Australia, respectively. Among different types of coastal wetlands, salt marshes, mangrove forests, and estuaries were the most widely studied, in contrast to seagrass beds and tidal flats. As for ecosystem components, soils/sediments and plants were most extensively investigated, while algae, microbes, and animals were much less examined. Our analysis further revealed rapid emergence of topics on anthropogenic sources, interactions with other anthropogenic environmental changes (climate change in particular), and control and remediation methodology in the literature in the recent ten years. Moving forward, we highlight that future studies are needed to i) better understand the impacts of HM pollution in less studied coastal wetland systems and species, ii) deepen current understanding of the biogeochemical behaviors of HMs under anthropogenic activities, iii) examine interactions with other anthropogenic environmental changes, iv) conceive ecological remediation (i.e., "ecoremediation" as compared to traditional physiochemical remediation and bioremediation) strategies, and v) develop advanced analysis instruments and methods. The perspectives we brought forward can help stimulate many new advances in this field.


Asunto(s)
Metales Pesados , Humedales , Efectos Antropogénicos , China , Ecosistema , Monitoreo del Ambiente , Contaminación Ambiental , Sedimentos Geológicos , Metales Pesados/análisis
20.
Environ Sci Pollut Res Int ; 29(5): 7225-7239, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34472029

RESUMEN

Groundwater samples from Kapurthala (45), Jalandhar (70), and Hoshiarpur (70) districts from northern Punjab, India, were studied for seasonal variation (pre-monsoon and post-monsoon) of uranium distribution and physicochemical parameters, quality and suitability for drinking purposes, source apportionment, and health risks. The average uranium concentration (in µg L-1) in Kapurthala, Jalandhar, and Hoshiarpur districts was 12.7, 18.8, and 7.0, respectively, in pre-monsoon and 8.0, 17.3, and 5.6, respectively, in post-monsoon. In both seasons, uranium concentration was below WHO limit (30 µg L-1) in more than 90% of groundwater samples, and it was found to exhibit positive correlation majorly with TDS, EC, and total alkalinity. Principal component analysis revealed dissolution of rocks/minerals contributing to mineralization of associated aquifers in addition to some anthropogenic activities such as excessive application of fertilizers/pesticides and dumping of domestic waste followed by their seepage into the groundwater table. All groundwater samples fall in very good to good drinking groundwater quality and its quality is more improved in post-monsoon season owing to dilution of various inorganic salts during groundwater recharge in monsoon season. Average Hazard Index (HI) values due to ingestion of U, F-, and NO3- via drinking water for both adults and children were found to be marginally greater than safe limit of 1 with major contribution from F-. It is advisable to local government/public that regular monitoring of groundwater and proper management policies or strategies should be adopted followed by their implementation to control groundwater pollution in three districts.


Asunto(s)
Agua Subterránea , Uranio , Contaminantes Químicos del Agua , Efectos Antropogénicos , Monitoreo del Ambiente , India , Uranio/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA