Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Dalton Trans ; 46(40): 13869-13877, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-28971198

RESUMEN

The use of uranium and to a minor extent plutonium as fuel for nuclear energy production or as components in military applications is under increasing public pressure. Uranium is weakly radioactive in its natural isotopy but its chemical toxicity, combined with its large scale industrial utilization, makes it a source of concern in terms of health impact for workers and possibly the general population. Plutonium is an artificial element that exhibits both chemical and radiological toxicities. So far, uranium (under its form uranyl, U(vi)) or plutonium (as Pu(iv)) decorporation or protecting strategies based on molecular design have been of limited efficiency to remove the actinide once incorporated after human exposure. In all cases, after human exposure, plutonium and uranium are retained in main target organs (liver, kidneys) as well as skeleton although they exhibit differences in their biodistribution. Polymers could represent an alternative strategy as their tropism for specific target organs has been reported. We recently reported on the complexation properties of methylcarboxylated polyethyleneimine (PEI-MC) with uranyl. In this report we extend our work to methylphosphonated polyethyleneimine (PEI-MP) and to the comparison between actinide oxidation states +IV (thorium) and +VI (uranyl). As a first step, thorium (Th(iv)) was used as a chemical surrogate of plutonium because of the difficulty in handling the latter in the laboratory. For both cations, U(vi) and Th(iv), the uptake curve of PEI-MP was recorded. The functionalized PEI-MP exhibits a maximum loading capacity comprised of between 0.56 and 0.80 mg of uranium (elemental) and 0.15-0.20 mg of thorium (elemental) per milligram of PEI-MP. Complexation sites of U(vi) and Th(iv) under model conditions close to physiological pH were then characterized with a combination of Fourier transform Infra Red (FT-IR) and Extended X-Ray Absorption Fine Structure (EXAFS). Although both cations exhibit different coordination modes, similar structural parameters with phosphonate functions were obtained. For example, the coordination sites are composed of fully monodentate phosphonate functions of the polymer chains. These physical chemical data represent a necessary basic chemistry approach before envisioning further biological evaluations of PEI-MP polymers towards U(vi) and Pu/Th(iv) contamination.


Asunto(s)
Elementos de Series Actinoides/química , Quelantes/metabolismo , Compuestos Organofosforados/química , Polietileneimina/química , Elementos de Series Actinoides/metabolismo , Quelantes/síntesis química , Quelantes/química , Humanos , Plutonio/química , Plutonio/metabolismo , Exposición a la Radiación , Espectroscopía Infrarroja por Transformada de Fourier , Torio/química , Torio/metabolismo , Uranio/química , Uranio/metabolismo
2.
J Environ Radioact ; 150: 277-85, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26406590

RESUMEN

We examined the dissolution of Pu, U, and Am in contaminated soil from the Nevada Test Site (NTS) due to indigenous microbial activity. Scanning transmission x-ray microscopy (STXM) analysis of the soil showed that Pu was present in its polymeric form and associated with Fe- and Mn- oxides and aluminosilicates. Uranium analysis by x-ray diffraction (µ-XRD) revealed discrete U-containing mineral phases, viz., schoepite, sharpite, and liebigite; synchrotron x-ray fluorescence (µ-XRF) mapping showed its association with Fe- and Ca-phases; and µ-x-ray absorption near edge structure (µ-XANES) confirmed U(IV) and U(VI) oxidation states. Addition of citric acid or glucose to the soil and incubated under aerobic or anaerobic conditions enhanced indigenous microbial activity and the dissolution of Pu. Detectable amount of Am and no U was observed in solution. In the citric acid-amended sample, Pu concentration increased with time and decreased to below detection levels when the citric acid was completely consumed. In contrast, with glucose amendment, Pu remained in solution. Pu speciation studies suggest that it exists in mixed oxidation states (III/IV) in a polymeric form as colloids. Although Pu(IV) is the most prevalent and generally considered to be more stable chemical form in the environment, our findings suggest that under the appropriate conditions, microbial activity could affect its solubility and long-term stability in contaminated environments.


Asunto(s)
Elementos de Series Actinoides/metabolismo , Ácido Cítrico/metabolismo , Glucosa/metabolismo , Microbiología del Suelo , Contaminantes Radiactivos del Suelo/metabolismo , Aerobiosis , Americio/metabolismo , Anaerobiosis , Nevada , Plutonio/metabolismo , Uranio/metabolismo
3.
J Pharm Sci ; 104(5): 1832-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25727482

RESUMEN

The hydroxypyridinonate ligand 3,4,3-LI(1,2-HOPO) is currently under development for radionuclide chelation therapy. The preclinical characterization of this highly promising ligand comprised the evaluation of its in vitro properties, including microsomal, plasma, and gastrointestinal fluid stability, cytochrome P450 inhibition, plasma protein binding, and intestinal absorption using the Caco-2 cell line. When mixed with active human liver microsomes, no loss of parent compound was observed after 60 min, indicating compound stability in the presence of liver microsomal P450. At the tested concentrations, 3,4,3-LI(1,2-HOPO) did not significantly influence the activities of any of the cytochromal isoforms screened. Thus, 3,4,3-LI(1,2-HOPO) is unlikely to cause drug-drug interactions by inhibiting the metabolic clearance of coadministered drugs metabolized by these enzymes. Plasma protein-binding assays revealed that the compound is protein-bound in dogs and less extensively in rats and humans. In the plasma stability study, the compound was stable after 1 h at 37°C in mouse, rat, dog, and human plasma samples. Finally, a bidirectional permeability assay demonstrated that 3,4,3-LI(1,2-HOPO) is not permeable across the Caco-2 monolayer, highlighting the need to further evaluate the effects of various compounds with known permeability enhancement properties on the permeability of the ligand in future studies.


Asunto(s)
Elementos de Series Actinoides/metabolismo , Quelantes/química , Quelantes/metabolismo , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos con 1 Anillo/metabolismo , Piridonas/química , Piridonas/metabolismo , Animales , Células CACO-2 , Perros , Estabilidad de Medicamentos , Femenino , Humanos , Masculino , Ratones , Microsomas Hepáticos/metabolismo , Ratas
4.
Dalton Trans ; 41(43): 13370-8, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23007661

RESUMEN

Microorganisms have great potential to bind and thus transport actinides in the environment. Thus microbes indigenous to designated nuclear waste disposal sites have to be investigated regarding their interaction mechanisms with soluble actinyl ions when assessing the safety of a planned repository. This paper presents results on the pH-dependent sorption of U(VI) onto Pseudomonas fluorescens isolated from the granitic rock aquifers at Äspö Hard Rock Laboratory, Sweden. To characterize the U(VI) interaction on a molecular level, potentiometric titration in combination with time-resolved laser-induced fluorescence spectroscopy (TRLFS) were applied. This paper as a result is one of the very few sources which provide stability constants of U(VI) complexed by cell surface functional groups. In addition the bacteria-mediated liberation of inorganic phosphate in dependence on [U(VI)] at different pHs was studied to judge the influence of phosphate release on U(VI) mobilization. The results demonstrate that in the acidic pH range U(VI) is bound by the cells mainly via protonated phosphoryl and carboxylic sites. The complexation by carboxylic groups can be observed over a wide pH range up to around pH 7. At neutral pH fully deprotonated phosphoryl groups are mainly responsible for U(VI) binding. U(VI) can be bound by P. fluorescens with relatively high thermodynamic stability.


Asunto(s)
Pseudomonas fluorescens/metabolismo , Uranio/metabolismo , Elementos de Series Actinoides/química , Elementos de Series Actinoides/metabolismo , Adsorción , División Celular , Concentración de Iones de Hidrógeno , Iones/química , Fosfatos/química , Pseudomonas fluorescens/citología , Espectrometría de Fluorescencia , Uranio/química
5.
Chemistry ; 16(4): 1378-87, 2010 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-19950335

RESUMEN

The impact of actinides on living organisms has been the subject of numerous studies since the 1950s. From a general point of view, these studies show that actinides are chemical poisons as well as radiological hazards. Actinides in plasma are assumed to be mainly complexed to transferrin, the iron carrier protein. This paper casts light on the uptake of actinides(IV) (thorium, neptunium, plutonium) by transferrin, focusing on the pH dependence of the interaction and on a molecular description of the cation binding site in the protein. Their behavior is compared with that of iron(III), the endogenous transferrin cation, from a structural point of view. Complementary spectroscopic techniques (UV/Vis spectrophotometry, microfiltration coupled with gamma spectrometry, and X-ray absorption fine structure) have been combined in order to propose a structural model for the actinide-binding site in transferrin. Comparison of our results with data available on holotransferrin suggests some similarities between the behavior of Fe(III) and Np(IV)/Pu(IV)/ Np(IV) is not complexed at pH <7, whereas at pH approximately 7.4 complexation can be regarded as quantitative. This pH effect is consistent with the in vivo transferrin "cycle". Pu(IV) also appears to be quantitatively bound by apotransferrin at around pH approximately 7.5, whereas Th(IV) was never complexed under our experimental conditions. EXAFS data at the actinide edge have allowed a structural model of the actinide binding site to be elaborated: at least one tyrosine residue could participate in the actinide coordination sphere (two for iron), forming a mixed hydroxo-transferrin complex in which actinides are bound with transferrin both through An-tyrosine and through An--OH bonds. A description of interatomic distances is provided.


Asunto(s)
Elementos de Series Actinoides/química , Hierro/química , Transferrina/química , Elementos de Series Actinoides/metabolismo , Sitios de Unión , Humanos , Concentración de Iones de Hidrógeno , Hierro/sangre , Hierro/metabolismo , Neptunio/química , Neptunio/metabolismo , Plutonio/química , Plutonio/metabolismo , Espectrometría gamma , Espectrofotometría Ultravioleta , Torio/química , Torio/metabolismo , Transferrina/fisiología
6.
J Environ Radioact ; 98(3): 315-28, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17683832

RESUMEN

With the ending of the Cold War, the US and other nations were faced with a legacy of nuclear wastes. For some sites where hazardous nuclear wastes will remain in place, methods must be developed to protect human health and the environment. Biomonitoring is one method of assessing the status and trends of potential radionuclide exposure from nuclear waste sites, and of providing the public with early warning of any potential harmful exposure. Amchitka Island (51 degrees N lat, 179 degrees E long) was the site of three underground nuclear tests from 1965 to 1971. Following a substantive study of radionuclide levels in biota from the marine environment around Amchitka and a reference site, we developed a suite of bioindicators (with suggested isotopes) that can serve as a model for other sites contaminated with radionuclides. Although the species selection was site-specific, the methods can provide a framework for other sites. We selected bioindicators using five criteria: (1) occurrence at all three test shots (and reference site), (2) receptor groups (subsistence foods, commercial species, and food chain nodes), (3) species groups (plants, invertebrates, fish, and birds), (4) trophic levels, and (5) an accumulator of one or several radionuclides. Our major objective was to identify bioindicators that could serve for both human health and the ecosystem, and were abundant enough to collect adjacent to the three test sites and at the reference site. Site-specific information on both biota availability and isotope levels was essential in the final selection of bioindicators. Actinides bioaccumulated in algae and invertebrates, while radiocesium accumulated in higher trophic level birds and fish. Thus, unlike biomonitoring schemes developed for heavy metals or other contaminants, top-level predators are not sufficient to evaluate potential radionuclide exposure at Amchitka. The process described in this paper resulted in the selection of Fucus, Alaria fistulosa, blue mussel (Mytilus trossulus), dolly varden (Salvelinus malma), black rockfish (Sebastes melanops), Pacific cod (Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis), and glaucous-winged gull (Larus glaucescens) as bioindicators. This combination of species included mainly subsistence foods, commercial fish, and nodes on different food chains.


Asunto(s)
Monitoreo de Radiación/métodos , Radioisótopos/análisis , Contaminantes Radiactivos del Agua/análisis , Elementos de Series Actinoides/análisis , Elementos de Series Actinoides/metabolismo , Alaska , Animales , Aves/metabolismo , Radioisótopos de Cesio/análisis , Radioisótopos de Cesio/metabolismo , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/prevención & control , Peces/metabolismo , Geografía , Humanos , Invertebrados/metabolismo , Radioisótopos/metabolismo , Uranio/análisis , Uranio/metabolismo , Contaminantes Radiactivos del Agua/metabolismo
7.
Appl Biochem Biotechnol ; 77-79: 521-33, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10399285

RESUMEN

Removal of radioactive elements from the effluent and waste aqueous solutions is an important problem. In previous laboratory batch experiments, hen egg-shell membrane (ESM) was stable as an insoluble protein and was very capable of binding heavy metal ions from aqueous solution. Batch laboratory pH profile, time dependency, and capacity experiments were performed to determine the binding of uranium (U) and thorium (Th) to ESM. Batch pH profile experiments indicated that the optimum pH for binding these actinides was approx 6.0 (U) or 3.0 (Th). The adsorption isotherms were developed at pH 5.0 (U) or 3.0 (Th) at 25 degrees C, and the adsorption equilibrium data fitted both Langmuir and Freundlich models. The maximum uptakes by the Langmuir model were about 240 mg U/g and 60 mg Th/g dry weight ESM. In addition, their adsorption capacities increased as salt concentration increased. ESM could also accumulate uranium from dilute aqueous solution by adjusting to the optimum pH. These results showed that ESM was effective for removing actinides from solution and would be useful in filtration technology to remove actinides from aqueous solution.


Asunto(s)
Elementos de Series Actinoides/metabolismo , Biodegradación Ambiental , Cáscara de Huevo/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno , Cinética , Torio/metabolismo , Factores de Tiempo , Uranio/metabolismo
8.
Sci Total Environ ; 100 Spec No: 43-60, 1991 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-1648260

RESUMEN

The greatest uncertainty in dose estimates for the ingestion of long-lived, alpha-emitting isotopes of the actinide elements is in the values used for their fractional absorption from the gastrointestinal tract (f1 values). Recent years have seen a large increase in the available data on actinide absorption. Human data are reviewed here, together with animal data, to illustrate the effect on absorption of chemical form, incorporation into food materials, fasting and other dietary factors, and age at ingestion. The f1 values recommended by the International Commission on Radiological Protection, by an Expert Group of the Nuclear Energy Agency and by the National Radiological Protection Board are discussed.


Asunto(s)
Elementos de Series Actinoides/metabolismo , Absorción Intestinal , Americio/metabolismo , Animales , Curio/metabolismo , Contaminación Radiactiva de Alimentos , Humanos , Neptunio/metabolismo , Plutonio/metabolismo , Radioisótopos , Torio/metabolismo , Uranio/metabolismo
9.
Health Phys ; 50(2): 223-32, 1986 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-3005196

RESUMEN

Absorption of 233U, 238Pu, 241Am, and 244Cm from the gastrointestinal (GI) tract was measured in rats, fed ad libitum or fasted, that were gavaged with solutions containing ferric iron, ferrous iron, iron powder, quinhydrone or ascorbic acid. Absorption and retention of all of these actinides was increased substantially by fasting and by the addition of mild oxidizing agents, ferric iron and quinhydrone. In contrast, absorption and retention were decreased to below the fasted level by all the reducing agents except ascorbic acid, which caused diarrhea and an increase in absorption. Absorption of the lanthanide element 147Pm from the intestine of fasted rats was also increased by ferric iron. Some of these actinide elements are polyvalent and are, in some cases, known to be absorbed from the GI tract more readily in their higher oxidation states. This suggested an oxidation-reduction mechanism for the effect of fasting and the action of the chemical agents used. However, the improbability that either 241Am(III) 244Cm(III) or 147Pm is converted to a different oxidation state under these conditions makes that mechanism unlikely. Other explanations are suggested.


Asunto(s)
Elementos de Series Actinoides/metabolismo , Americio/metabolismo , Animales , Curio/metabolismo , Ayuno , Femenino , Absorción Intestinal , Oxidación-Reducción , Plutonio/metabolismo , Prometio/metabolismo , Ratas , Distribución Tisular , Uranio/metabolismo
10.
Health Phys ; 43(4): 509-19, 1982 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-6295981

RESUMEN

Plutonium retention was measured after intragastric administration to neonatal rats, dogs and swine. At 1 week after administration, substantially more of the actinide remained in swine and dogs than in rats. The quantity of 238Pu absorbed by piglets was markedly influenced by such factors as compound solubility, mass of plutonium administered, oxidation state of the actinide, and age of the animal at gavage. Cortisone treatment reduced absorption, but was less effective in piglets than in neonatal rats. Measurements of 238Pu transport from ligated segments of the neonatal swine intestine indicated highest absorption from the duodenum, where the actinide was shown, autoradiographically, to be deposited in the epithelial region; in the ileum, deposition was predominantly in the lacteal region. Absorption of actinides by neonatal swine decreased in the order of 233U greater than 238Pu greater than 237Np greater than 244Cm greater than 241Am. Measurements at 1 yr after gavage showed a much higher retention by swine than by rats.


Asunto(s)
Elementos de Series Actinoides/metabolismo , Animales Recién Nacidos/metabolismo , Absorción Intestinal , Americio/metabolismo , Animales , Curio/metabolismo , Perros , Neptunio/metabolismo , Plutonio/metabolismo , Ratas , Ratas Endogámicas , Porcinos , Distribución Tisular , Uranio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA