Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Aging (Albany NY) ; 16(3): 2362-2384, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38284886

RESUMEN

As one of the most common liver diseases, nonalcoholic fatty liver disease (NAFLD) affects almost one-quarter of the world's population. Although the prevalence of NAFLD is continuously rising, effective medical treatments are still inadequate. Radix Polygoni Multiflori (RPM) is a traditional Chinese herbal medicine. As a processed product of RPM, prepared Radix Polygoni Multiflori (PRPM) has been reported to have antioxidant and anti-inflammatory effects. This study investigated whether PRPM treatment could significantly improve NAFLD. We used recent literature, the Herb database and the SwissADME database to isolate the active compounds of PRPM. The OMIM, DisGeNET and GeneCards databases were used to isolate NAFLD-related target genes, and GO functional enrichment and KEGG pathway enrichment analyses were conducted. Moreover, PRPM treatment in NAFLD model mice was evaluated. The results indicate that the target genes are mainly enriched in the AMPK and de novo lipogenesis signaling pathways and that PRPM treatment improves NAFLD disease in model mice. Here, we found the potential benefits of PRPM against NAFLD and demonstrated in vivo and in vitro that PRPM and its ingredient emodin downregulate phosphorylated P38/P38, phosphorylated ERK1/2 and genes related to de novo adipogenesis signaling pathways and reduce lipid droplet accumulation. In conclusion, our findings revealed a novel therapeutic role for PRPM in the treatment of NAFLD and metabolic inflammation.


Asunto(s)
Medicamentos Herbarios Chinos , Emodina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Emodina/farmacología , Emodina/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Gotas Lipídicas , Transducción de Señal
2.
J Ethnopharmacol ; 322: 117583, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38122912

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Subarachnoid hemorrhage (SAH) triggers a cascade of events that lead to early brain injury (EBI), which contributes to poor outcomes and appears within 3 days after SAH initiation. EBI involves multiple process including neuronal death, blood-brain barrier (BBB) injury and inflammation response. Microglia are cluster of immune cells originating in the brain which respond to SAH by changing their states and releasing inflammatory molecules through various signaling pathways. M0, M1, M2 are three states of microglia represent resting state, promoting inflammation state, and anti-inflammation state respectively, which can be modulated by pharmacological strategies. AIM OF THE STUDY: After identified potential active ingredients and targets of Sanhua Decoction (SHD) for SAH, we selected aloe-emodin (AE) as a potential ingredient modulating microglia activation states. MATERIALS AND METHODS: Molecular mechanisms, targets and pathways of SHD were reveal by network pharmacology technique. The effects of AE on SAH were evaluated in vivo by assessing neurological deficits, neuronal apoptosis and BBB integrity in a mouse SAH model. Furthermore, BV-2 cells were used to examine the effects of AE on microglial polarization. The influence of AE on microglia transformation was measured by Iba-1, TNF-α, CD68, Arg-1 and CD206 staining. The signal pathways of neuronal apoptosis and microglia polarization was measured by Western blot. RESULTS: Network pharmacology identified potential active ingredients and targets of SHD for SAH. And AE is one of the active ingredients. We also confirmed that AE via NF-κB and PKA/CREB pathway inhibited the microglia activation and promoted transformation from M1 phenotype to M2 at EBI stage after SAH. CONCLUSIONS: AE, as one ingredient of SHD, can alleviate the inflammatory response and protecting neurons from SAH-induced injury. AE has potential value for treating SAH-induced nerve injury and is expected to be applied in clinical practice.


Asunto(s)
Aloe , Lesiones Encefálicas , Emodina , Hemorragia Subaracnoidea , Ratones , Animales , Microglía , Emodina/farmacología , Emodina/uso terapéutico , Enfermedades Neuroinflamatorias , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , FN-kappa B/metabolismo , Lesiones Encefálicas/metabolismo
3.
Fitoterapia ; 171: 105704, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37858757

RESUMEN

Erhuang Quzhi Granules (EQG), the Chinese herbal compound, has demonstrated significant clinical efficacy in treating non-alcoholic fatty liver disease (NAFLD). The mechanism of this treatment has been shown to involve the nuclear factor kappa B (NF-κB)/nod-like receptor thermal protein domain associated protein 3 (NLRP3) pathway. However, research on the material basis of EQG against NAFLD is still in its primary stages. Following these considerations, this study predicted and screened the active ingredients of EQG using the absorption, distribution, metabolism, and excretion (ADME) property evaluation tool and molecular docking. Then the levels of these active ingredients in EQG were measured using ultra-high-performance liquid chromatography (UHPLC). The efficacy of the active ingredients and their mechanisms were validated through both in vivo and in vitro experiments. The results indicate that the collected 12 components have favorable metabolic stability, are safe, and have drug-like properties. Aloe-emodin (AE), rhein (RH), curcumin (CUR), emodin (EM), and chrysophanol (CP) showed better binding affinity with TNF-α and Caspase-1 proteins. UHPLC analysis revealed that EQG contains AE, RH, CUR, EM, and CP. Cellular experiments proved that all these five ingredients reduce the accumulation of lipids and reactive oxygen species. In animal models of NAFLD, AE, and RH significantly improved the pathological symptoms of steatosis and fibrosis and reduced the levels of pro-inflammatory factors via the NF-κB/NLRP3 pathway. The results reveal the active ingredients of EQG for treating NAFLD based on the NF-κB/NLRP3 pathway and lay the foundation for the clinical promotion of EQG.


Asunto(s)
Curcumina , Emodina , Enfermedad del Hígado Graso no Alcohólico , Animales , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR , Inflamasomas , Emodina/uso terapéutico , Simulación del Acoplamiento Molecular , Estructura Molecular
4.
Medicine (Baltimore) ; 102(20): e33521, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37335741

RESUMEN

Pancreatic adenocarcinoma (PAAD) is one of the most common malignancies worldwide with an increasing incidence and poor outcome due to the lack of effective diagnostic and treatment methods. Emerging evidence implicates that emodin displays extensive spectrum anticancer properties. Differential expression genes in PAAD patients were analyzed by Gene Expression Profiling Interactive Analysis (GEPIA) website, and the targets of emodin were obtained via Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. Subsequently, enrichment analyses were performed using R software. A protein-protein interaction (PPI) network was constructed by STRING database and Cytoscape software was used to identify the hub genes. Prognostic value and immune infiltration landscapes were explored through Kaplan-Meier plotter (KM plotter) website and the Single-Sample Gene Set Enrichment Analysis package of R. Finally, molecular docking was used to computationally verify the interaction of ligand and receptor proteins. A total of 9191 genes were significantly differentially expressed in PAAD patients and 34 potential targets of emodin were obtained. Intersections of the 2 groups were considered as potential targets of emodin against PAAD. Functional enrichment analyses illustrated that these potential targets were linked to numerous pathological processes. Hub genes identified through PPI networks were correlated with poor prognosis and infiltration level of different immune cells in PAAD patients. Perhaps emodin interacted with the key molecules and regulate the activity of them. We revealed the inherent mechanism of emodin against PAAD with the aid of network pharmacology, which provided reliable evidence and a novel guideline for clinical treatment.


Asunto(s)
Adenocarcinoma , Emodina , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Emodina/farmacología , Emodina/uso terapéutico , Farmacología en Red , Simulación del Acoplamiento Molecular , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas
5.
Fitoterapia ; 168: 105549, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37244503

RESUMEN

Dipeptidyl peptidase IV (DPP-IV) is an integrated type II transmembrane protein that reduces endogenous insulin contents and increases plasma glucose levels by hydrolyzing glucagon-like peptide-1 (GLP-1). Inhibition of DPP-IV regulates and maintains glucose homeostasis, making it an attractive drug target for the treatment of diabetes II. Natural compounds have tremendous potential to regulate glucose metabolism. In this study, we examined the DPP-IV inhibitory activity of a series of natural anthraquinones and synthetic structural analogues on DPP-IV using fluorescence-based biochemical assays. The inhibitory efficiency differed among anthraquinone compounds with different structures. Alizarin (7), aloe emodin (11), emodin (13) emerged the outstanding inhibitory potential for DPP-IV with IC50 values lower than 5 µM. To clarifying the inhibitory mechanism, inhibitory kinetics were performed, which showed that alizarin red S (8) and 13 were effective non-competitive inhibitors of DPP-IV, while alizarin complexone (9), rhein (12), and anthraquinone-2-carboxylic acid (23) were mixed inhibitors. Emodin was determined as inhibitor with the strongest DPP-IV-binding affinity determined via molecular docking. Structure-activity relationship (SAR) demonstrated that hydroxyl group at C-1 and C-8 sites and hydroxyl, hydroxymethyl or carboxyl group at the C-2 or C-3 site were very essential for DPP-IV inhibition, replacement of hydroxyl group with amino group at C-1 could led to an increase of the inhibitory potential. Further fluorescence imaging showed that both compounds 7 and 13 significantly inhibited DPP-IV activity in RTPEC cells. Overall, the results indicated that anthraquinones would be a natural functional ingredient for inhibiting DPP-IV and provided new ideas for searching and developing potential antidiabetic compounds.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Emodina , Humanos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Emodina/farmacología , Emodina/uso terapéutico , Estructura Molecular , Hipoglucemiantes/farmacología , Relación Estructura-Actividad , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo
6.
Biomed Pharmacother ; 161: 114539, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36933375

RESUMEN

The morbidity and mortality of cardiovascular diseases (CVDs) are increasing in recent years, and atherosclerosis (AS), a major CVD, becomes a disorder that afflicts human beings severely, especially the elders. AS is recognized as the primary cause and pathological basis of some other CVDs. The active constituents of Chinese herbal medicines have garnered increasing interest in recent researches owing to their influence on AS and other CVDs. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a naturally occurring anthraquinone derivative found in some Chinese herbal medicines such as Rhei radix et rhizome, Polygoni cuspidati rhizoma et radix and Polygoni multiflori root. In this paper, we first review the latest researches about emodin's pharmacology, metabolism and toxicity. Meanwhile, it has been shown to be effective in treating CVDs caused by AS in dozens of previous studies. Therefore, we systematically reviewed the mechanisms by which emodin treats AS. In summary, these mechanisms include anti-inflammatory activity, lipid metabolism regulation, anti-oxidative stress, anti-apoptosis and vascular protection. The mechanisms of emodin in other CVDs are also discussed, such as vasodilation, inhibition of myocardial fibrosis, inhibition of cardiac valve calcification and antiviral properties. We have further summarized the potential clinical applications of emodin. Through this review, we hope to provide guidance for clinical and preclinical drug development.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Medicamentos Herbarios Chinos , Emodina , Humanos , Anciano , Emodina/farmacología , Emodina/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Extractos Vegetales , Aterosclerosis/tratamiento farmacológico , Fitoquímicos
7.
Cancer Rep (Hoboken) ; 6(4): e1790, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36772872

RESUMEN

BACKGROUND: Prostate cancer (PC) is estimated to cause 13.1% of all new cancer cases in the United States in 2021. Natural bioactive compounds have drawn the interest of researchers worldwide in their efforts to find novel treatments for PC. Many of these bioactive compounds have been identified from traditional Chinese medicine (TCM) remedies often containing multiple bioactive compounds. However, in vitro studies frequently focus on the compounds in isolation. AIM: We used mixture design response surface methodology (MDRSM) to assess changes in PC cell viability after 48 h of treatment to identify the optimal mixture of all 35 three-compound combinations of seven bioactive compounds from TCM. METHODS AND RESULTS: We used berberine, wogonin, shikonin, curcumin, triptolide, emodin, and silybin to treat PC3 and LNCaP human PC cells at their IC50 concentrations that we calculated. These compounds modulate many chemotherapeutic pathways including intrinsic and extrinsic apoptosis, increasing reactive oxygen species, decreasing metastatic pathways, inhibiting cell cycle progression. We hypothesize that because these compounds bind to unique molecular targets to activate different chemotherapeutic pathways, they will act synergistically to decrease tumor cell viability. Results from MDRSM showed that two-way combinations were more effective than three-way or single compounds. Most notably wogonin, silybin, emodin and berberine responded well in two-compound combinations with each other in PC3 and LNCaP cells. We then conducted cell viability tests combining two bioactive compound ratios with docetaxel (Doc) and found significant results within the LNCaP cell line. In particular, mixtures of berberine and wogonin, berberine and silybin, emodin and berberine, and emodin and silybin reduced LNCaP cell viability up to an average of 90.02%. The two-compound combinations were significantly better than docetaxel treatment of LNCaP cells. CONCLUSION: Within the PC3 cells, we show that a combination of berberine, wogonin and docetaxel is just as effective as docetaxel alone. Thus, we provide new combination treatments that are highly effective in vitro for treating androgen-dependent and androgen-independent PC.


Asunto(s)
Berberina , Emodina , Neoplasias de la Próstata , Masculino , Humanos , Docetaxel/farmacología , Andrógenos/uso terapéutico , Emodina/uso terapéutico , Silibina/uso terapéutico , Berberina/farmacología , Berberina/uso terapéutico , Línea Celular Tumoral , Neoplasias de la Próstata/metabolismo , Fitoquímicos/uso terapéutico
8.
Phytother Res ; 37(5): 1883-1899, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36723382

RESUMEN

Neuropathic pain (NeP) is a major health concern. Due to the complex pathological mechanisms, management of NeP is challenging. Emodin, a natural anthraquinone derivative, exerts excellent analgesic effects. However, its mechanisms of action are still poorly understood. In this study, we investigated the mechanisms underlying pain-relief effects of emodin in the cerebral cortex using proteomic and metabolomic approaches. After 15 days of emodin administration, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) values in the emodin groups were significantly higher than those in the chronic constriction injury (CCI) group (p < .05), suggesting emodin treatment could reverse CCI-induced hyperalgesia. Emodin treatment evoked the expression alteration of 402 proteins (153 up-regulated and 249 down-regulated) in the CCI models, which were primarily involved in PI3K/AKT signaling pathway, gamma-aminobutyric acid (GABA) receptor signaling, complement and coagulation cascades, cGMP/PKG signaling pathway, MAPK signaling pathway, and calcium signaling pathway. In parallel, emodin intervention regulated the abundance alteration of 27 brain metabolites (20 up-regulated and 7 down-regulated) in the CCI rats, which were primarily implicated in carbon metabolism, biosynthesis of amino acids, pentose phosphate pathway, and glucagon signaling pathway. After a comprehensive analysis and western blot validation, we demonstrated that emodin alleviated NeP mainly through regulating GABAergic pathway and PI3K/AKT/NF-κB pathway.


Asunto(s)
Emodina , Neuralgia , Ratas , Animales , FN-kappa B/metabolismo , Emodina/farmacología , Emodina/uso terapéutico , Ratas Sprague-Dawley , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas , Proteómica , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Ácido gamma-Aminobutírico
9.
Biol Trace Elem Res ; 201(7): 3300-3310, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36192614

RESUMEN

Tumour illness and its resistance against existing anticancer therapies pose a serious health concern globally despite the progressive advancement of therapeutic options. The prevailing treatment of HCC using numerous antitumor agents has inflated long-lived complete remissions, but a percentage of individuals still die due to disease recurrence, indicating a need for further exploration of possible anti-tumour regimes. We aim to boost the effectiveness of the HCC treatment by conducting current investigations evaluating the effect of arsenic trioxide (ATO) with different herbal compounds like quercetin and aloe-emodin against liver tumour via inhibition of telomerase, a pro-cancer enzyme. The anticancer activity of ATO with herbal compounds was investigated in human control liver cell line (Wrl-68) and cancer liver cell line (HepG2) at different time intervals. Viability and cytotoxicity in response to combinatorial drugs were assessed in vitro by trypan blue dye exclusion assay and MTT and WST assay. Apoptosis was analysed by annexin V/PI assay, and the expression of telomerase and apoptosis-regulating proteins was evaluated by immunoblotting and qRT-PCR. Arsenic trioxide in combination with quercetin and aloe-emodin reduced cell viability in cancerous cells compared to normal cells by inducing apoptosis, downregulating telomerase and Bcl-2 (anti-apoptotic protein) and upregulating the expression of Bax (pro-apoptotic protein). ATO exhibited significant anticancer effects due to the synergistic effects of quercetin and aloe-emodin in liver tumour cells. The current study data collectively suggest that a successful inhibition of cancer growth by the combination of ATO and tested herbal medicines against liver tumour growth is via the inhibition of telomerase activity.


Asunto(s)
Antineoplásicos , Arsénico , Arsenicales , Carcinoma Hepatocelular , Emodina , Neoplasias Hepáticas , Telomerasa , Humanos , Trióxido de Arsénico/farmacología , Arsénico/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Telomerasa/metabolismo , Telomerasa/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Arsenicales/farmacología , Óxidos/farmacología , Óxidos/metabolismo , Emodina/farmacología , Emodina/uso terapéutico , Quercetina/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología , Apoptosis , Proliferación Celular
10.
Comb Chem High Throughput Screen ; 26(5): 989-1000, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35570550

RESUMEN

AIMS: Different nociceptive models induced with heat and chemicals were used to assess the potency of emodin in alleviating pain. The anti-inflammatory properties of emodin at different doses were also assessed using different anti-inflammatory in vivo models. OBJECTIVE: Pain management is a global problem nowadays, and nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed to assuage inflammation and alleviate pain. Prolonged usage of these NSAIDs triggers various adverse drug reactions (ADRs). The dose-dependent effect of emodin was assessed by treating mice with three different doses (5, 10, and 20 mg/kg bwt) of emodin. METHODS: The effects of emodin in various nociceptive and inflammatory models were assessed. The anti-nociceptive potential of emodin was evaluated with the hot plate and tail immersion tests. The effects of emodin on acetic acid-, glutamate-, capsaicin-, and formalin-stimulated pain models were examined. The anti-inflammatory potency of emodin was examined in a carrageenan-induced inflammatory model. The sedative effect of emodin was assessed by an open field test. RESULTS: Emodin potentially prevented the nociception provoked by thermal stressors during the hot plate and tail immersion methods and from chemical stressors such as acetic acid, formalin, capsaicin, and glutamate. The anti-inflammatory action of emodin was evidenced by carrageenaninduced paw edema and peritoneal leukocyte penetration. The open field results confirmed that emodin induced a mild sedative effect on the treated mice. CONCLUSION: Our overall results obtained from this study confirmed that emodin exhibits potent anti- nociceptive and anti-inflammatory effects.


Asunto(s)
Analgésicos , Emodina , Ratones , Animales , Analgésicos/farmacología , Emodina/farmacología , Emodina/uso terapéutico , Capsaicina/efectos adversos , Extractos Vegetales/farmacología , Dolor/tratamiento farmacológico , Dolor/inducido químicamente , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Antiinflamatorios no Esteroideos/efectos adversos , Glutamatos/efectos adversos , Formaldehído
11.
Mol Pain ; 18: 17448069221146398, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-36474308

RESUMEN

Chronic pain is the predominant problem for rheumatoid arthritis patients, and negatively affects quality of life. Arthritis pain management remains largely inadequate, and developing new treatment strategies are urgently needed. Spinal inflammation and oxidative stress contribute to arthritis pain and represent ideal targets for the treatment of arthritis pain. In the present study, collagen-induced arthritis (CIA) mouse model was established by intradermally injection of type II collagen (CII) in complete Freund's adjuvant (CFA) solution, and exhibited as paw and ankle swelling, pain hypersensitivity and motor disability. In spinal cord, CIA inducement triggered spinal inflammatory reaction presenting with inflammatory cells infiltration, increased Interleukin-1ß (IL-1ß) expression, and up-regulated NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and cleaved caspase-1 levels, elevated spinal oxidative level presenting as decreased nuclear factor E2-related factor 2 (Nrf2) expression and Superoxide dismutase (SOD) activity. To explore potential therapeutic options for arthritis pain, emodin was intraperitoneally injected for 3 days on CIA mice. Emodin treatment statistically elevated mechanical pain sensitivity, suppressed spontaneous pain, recovered motor coordination, decreased spinal inflammation score and IL-1ß expression, increased spinal Nrf2 expression and SOD activity. Further, AutoDock data showed that emodin bind to Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) through two electrovalent bonds. And emodin treatment increased the phosphorylated AMPK at threonine 172. In summary, emodin treatment activates AMPK, suppresses NLRP3 inflammasome response, elevates antioxidant response, inhibits spinal inflammatory reaction and alleviates arthritis pain.


Asunto(s)
Artritis Experimental , Emodina , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide , Dolor Crónico , Emodina/uso terapéutico , Inflamación/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
12.
Biomed Pharmacother ; 154: 113555, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36027610

RESUMEN

Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a bioactive compound, a natural anthraquinone aglycone, present mainly in herbaceous species of the families Fabaceae, Polygonaceae and Rhamnaceae, with a physiological role in protection against abiotic stress in vegetative tissues. Emodin is mainly used in traditional Chinese medicine to treat sore throats, carbuncles, sores, blood stasis, and damp-heat jaundice. Pharmacological research in the last decade has revealed other potential therapeutic applications such as anticancer, neuroprotective, antidiabetic, antioxidant and anti-inflammatory. The present study aimed to summarize recent studies on bioavailability, preclinical pharmacological effects with evidence of molecular mechanisms, clinical trials and clinical pitfalls, respectively the therapeutic limitations of emodin. For this purpose, extensive searches were performed using the PubMed/Medline, Scopus, Google scholar, TRIP database, Springer link, Wiley and SciFinder databases as a search engines. The in vitro and in vivo studies included in this updated review highlighted the signaling pathways and molecular mechanisms of emodin. Because its bioavailability is low, there are limitations in clinical therapeutic use. In conclusion, for an increase in pharmacotherapeutic efficacy, future studies with carrier molecules to the target, thus opening up new therapeutic perspectives.


Asunto(s)
Emodina , Polygonaceae , Antiinflamatorios , Antioxidantes , Emodina/farmacología , Emodina/uso terapéutico , Humanos , Medicina Tradicional China
13.
Biomed Pharmacother ; 149: 112877, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35367766

RESUMEN

Emodin is an anthraquinone derivative found in the roots and bark of a variety of plants, molds, and lichens. Emodin has been used as a traditional medication for more than 2000 years and is still common in numerous herbal drugs. Emodin is plentiful in the three plant families, including Polygonaceae (Rheum, Rumex, and Polygonum spp.), Fabaceae (Cassia spp.), and Rhamnaceae (Rhamnus, Frangula, and Ventilago spp.). Emerging experimental evidences indicate that emodin confers a wide range of pharmacological activities; special focus was implemented toward neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, cerebral ischemia, anxiety and depression, schizophrenia, chronic hyperglycemic peripheral neuropathy, etc. Numerous preclinical evidences were established in support of the neuroprotection of emodin. However, this review highlighted the role of emodin as a potent neurotherapeutic agent; therefore, its evidence-based functionality on neurological disorders (NDs).


Asunto(s)
Emodina , Fármacos Neuroprotectores , Rhamnus , Rheum , Antraquinonas/farmacología , Emodina/farmacología , Emodina/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
14.
Nutrients ; 14(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35406121

RESUMEN

Cachexia, which is characterised by the wasting of fat and skeletal muscles, is the most common risk factor for increased mortality rates among patients with advanced lung cancer. PTHLH (parathyroid hormone-like hormone) is reported to be involved in the pathogenesis of cancer cachexia. However, the molecular mechanisms underlying the regulation of PTHLH expression and the inhibitors of PTHLH have not yet been identified. The PTHLH mRNA levels were measured using quantitative real-time polymerase chain reaction, while the PTHrP (parathyroid hormone-related protein) expression levels were measured using Western blotting and enzyme-linked immunosorbent assay. The interaction between TCF4 (Transcription Factor 4) and TWIST1 and the binding of the TCF4-TWIST1 complex to the PTHLH promoter were analysed using co-immunoprecipitation and chromatin immunoprecipitation. The results of the mammalian two-hybrid luciferase assay revealed that emodin inhibited TCF4-TWIST1 interaction. The effects of Polygonum cuspidatum extract (Pc-Ex), which contains emodin, on cachexia were investigated in vivo using A549 tumour-bearing mice. Ectopic expression of TCF4 upregulated PTHLH expression. Conversely, TCF4 knockdown downregulated PTHLH expression in lung cancer cells. The expression of PTHLH was upregulated in cells ectopically co-expressing TCF4 and TWIST1 when compared with that in cells expressing TCF4 or TWIST1 alone. Emodin inhibited the interaction between TCF4 and TWIST1 and consequently suppressed the TCF4/TWIST1 complex-induced upregulated mRNA and protein levels of PTHLH and PTHrP. Meanwhile, emodin-containing Pc-Ex significantly alleviated skeletal muscle atrophy and downregulated fat browning-related genes in A549 tumour-bearing mice. Emodin-containing Pc-Ex exerted therapeutic effects on lung cancer-associated cachexia by inhibiting TCF4/TWIST1 complex-induced PTHrP expression.


Asunto(s)
Emodina , Fallopia japonica , Neoplasias Pulmonares , Animales , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/prevención & control , Emodina/farmacología , Emodina/uso terapéutico , Humanos , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/tratamiento farmacológico , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Proteínas Nucleares/genética , Proteína Relacionada con la Hormona Paratiroidea/genética , Extractos Vegetales , ARN Mensajero/metabolismo , Factor de Transcripción 4/genética , Proteína 1 Relacionada con Twist/genética
15.
Integr Cancer Ther ; 21: 15347354211067469, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34984952

RESUMEN

Gastrointestinal (GI) cancers cause one-third of all cancer-related deaths worldwide. Natural compounds are emerging as alternative or adjuvant cancer therapies given their distinct advantage of manipulating multiple pathways to both suppress tumor growth and alleviate cancer comorbidities; however, concerns regarding efficacy, bioavailability, and safety are barriers to their development for clinical use. Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a Chinese herb-derived anthraquinone, has been shown to exert anti-tumor effects in colon, liver, and pancreatic cancers. While the mechanisms underlying emodin's tumoricidal effects continue to be unearthed, recent evidence highlights a role for mitochondrial mediated apoptosis, modulated stress and inflammatory signaling pathways, and blunted angiogenesis. The goals of this review are to (1) highlight emodin's anti-cancer properties within GI cancers, (2) discuss the known anti-cancer mechanisms of action of emodin, (3) address emodin's potential as a treatment complementary to standard chemotherapeutics, (4) assess the efficacy and bioavailability of emodin derivatives as they relate to cancer, and (5) evaluate the safety of emodin.


Asunto(s)
Antineoplásicos , Emodina , Neoplasias Gastrointestinales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Emodina/farmacología , Emodina/uso terapéutico , Neoplasias Gastrointestinales/tratamiento farmacológico , Humanos , Transducción de Señal
16.
Inflammation ; 45(2): 753-767, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34787801

RESUMEN

Emodin, the effective component of the traditional Chinese medicine Dahuang, has anti-inflammatory effects. However, the protective effects and potential mechanisms of emodin are not clear. This study investigated the protective effects and potential mechanisms of emodin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in vitro and in vivo. In vivo, we designed an LPS-induced ALI rat model. In vitro, we chose the J774A.1 cell line to establish an inflammatory cellular model, and knocked down NOD-like receptor family pyrin domain containing 3 (NLRP3) using small interfering RNA. The mRNA and protein expression of NLRP3, a C-terminal caspase recruitment domain (ASC), caspase 1 (CASP1), and gasdermin D (GSDMD) in cells and lung tissues were detected by western blot and real-time quantitative polymerase chain reaction (PCR). The expression levels of interleukin 1 beta (IL-1ß) and IL-18 in the serum and supernatant were determined by the enzyme-linked immunosorbent assay. The degree of pathological injury in lung tissue was evaluated by hematoxylin and eosin (H&E) staining. In vitro, we demonstrated that emodin could inhibit NLRP3 and then inhibit the expression of ASC, CASP1, GSDMD, IL-1ß, and IL-18. In vivo, we confirmed that emodin had protective effects on LPS-induced ALI and inhibitory effects on NLRP3 inflammasome -dependent pyroptosis. Emodin showed excellent protective effects against LPS-induced ALI by regulating the NLRP3 inflammasome-dependent pyroptosis signaling pathway.


Asunto(s)
Lesión Pulmonar Aguda , Emodina , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Emodina/farmacología , Emodina/uso terapéutico , Inflamasomas/metabolismo , Lipopolisacáridos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Ratas , Transducción de Señal
17.
Nutr Cancer ; 74(2): 592-604, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33645356

RESUMEN

Phytoestrogens have been investigated for their potential anti-tumorigenic effects in various cancers including breast cancer. Emodin being a phytoestrogen shows anti-carcinogenic properties especially in estrogen receptor positive (ER+) breast cancers. The aim of this study is to identify the molecular mechanism and related biological pathways in both (ER+) MCF-7 and (ER-) MDA-MB-231 breast cancer cell lines upon Emodin treatment via microarray analysis in order to find out therapeutic biomarkers. In both cell lines, first differentially expressed genes were identified, then gene ontology and functional pathway enrichment analyses were performed. Genes regulated through multiple pathways were studied together with literature and a gene cluster was determined for each cell line. Further GeneMANIA and STRING databases were used to study the interactions within the related gene clusters. The results showed that, the genes which are related to cell cycle were significantly regulated in both cell lines. Also, Forkhead Box O1-related genes were found to be prominent in MCF-7 cells. In MDA-MB-231 cells, spindle attachment checkpoint mechanism-related genes were regulated, remarkably. As a result, novel gene regulations reported in this study in response to Emodin will give more information about its metabolism and antiproliferative effect, especially in ER + cells.


Asunto(s)
Neoplasias de la Mama , Emodina , Biología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Emodina/farmacología , Emodina/uso terapéutico , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Fitoestrógenos/farmacología
18.
Biol Pharm Bull ; 44(12): 1837-1842, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34615812

RESUMEN

Epstein-Barr virus (EBV), a human herpesvirus, is several human lymphoid malignancies-associated. Our earlier study found the effect of Polygonum cuspidatum root on promoting EBV-positive apoptosis. Therefore, this study investigated the effects of the Polygonum cuspidatum ethyl acetate subfraction containing emodin on EBV gene expression and anti-EBV tumor cells. Resultantly, the the Polygonum cuspidatum ethyl acetate subfraction containing emodin (F3a) promoted Raji cell death (50% cytotoxic concentration, CC50: 12.08 µg/mL); the 12.5 µg/mL F3a effect transcribed BRLF1 and BNLF1 and increased latent membrane protein 1 (LMP1), which may reduce the intracellular phospho-extracellular signal-regulated kinase (ERK) and phospho-inhibitor of Nuclear factor kappa B α (IκBα). Meanwhile, the Raji cells increased the intracellular reactive-oxygen species (ROS), activated the apoptosis-related proteins, cleaved caspase 3 and poly(ADP-ribose)polymerase (PARP), and increased the apoptosis percentage. Therefore, the Polygonum cuspidatum ethyl acetate subfraction containing emodin could be a therapeutic drug for EBV-related tumors.


Asunto(s)
Emodina/farmacología , Infecciones por Virus de Epstein-Barr/metabolismo , Fallopia japonica/química , Herpesvirus Humano 4/metabolismo , Neoplasias/virología , Extractos Vegetales/farmacología , Proteínas Virales/metabolismo , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis , Linfoma de Burkitt/virología , Línea Celular Tumoral , Emodina/uso terapéutico , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/virología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica , Humanos , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Fitoterapia , Extractos Vegetales/uso terapéutico , Raíces de Plantas/química , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas de la Matriz Viral/metabolismo
19.
Int J Mol Sci ; 22(17)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34502424

RESUMEN

Emodin (6-methyl-1,3,8-trihydroxyanthraquinone) is a naturally occurring anthraquinone derivative found in roots and leaves of various plants, fungi and lichens. For a long time it has been used in traditional Chinese medicine as an active ingredient in herbs. Among other sources, it is isolated from the rhubarb Rheum palmatum or tuber fleece-flower Polygonam multiflorum. Emodin has a wide range of biological activities, including diuretic, antibacterial, antiulcer, anti-inflammatory, anticancer and antinociceptive. According to the most recent studies, emodin acts as an antimalarial and antiallergic agent, and can also reverse resistance to chemotherapy. In the present work the potential therapeutic role of emodin in treatment of inflammatory diseases, cancers and microbial infections is analysed.


Asunto(s)
Emodina/uso terapéutico , Infecciones/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Rheum/química , Emodina/química , Humanos , Inflamación/tratamiento farmacológico
20.
Biomed Res Int ; 2021: 9066938, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540999

RESUMEN

The peroxisome proliferator-activated receptor (PPAR) α/γ-adenosine 5'-monophosphate- (AMP-) activated protein kinase- (AMPK-) sirtuin-1 (SIRT1) pathway and fatty acid metabolism are reported to be involved in influenza A virus (IAV) replication and IAV-pneumonia. Through a cell-based peroxisome proliferator responsive element- (PPRE-) driven luciferase bioassay, we have investigated 145 examples of traditional Chinese medicines (TCMs). Several TCMs, such as Polygonum cuspidatum, Rheum officinale Baillon, and Aloe vera var. Chinensis (Haw.) Berg., were found to possess high activity. We have further detected the anti-IAV activities of emodin (EMO) and its analogs, a group of common important compounds of these TCMs. The results showed that emodin and its several analogs possess excellent anti-IAV activities. The pharmacological tests showed that emodin significantly activated PPARα/γ and AMPK, decreased fatty acid biosynthesis, and increased intracellular ATP levels. Pharmaceutical inhibitors, siRNAs for PPARα/γ and AMPKα1, and exogenous palmitate impaired the inhibition of emodin. The in vivo test also showed that emodin significantly protected mice from IAV infection and pneumonia. Pharmacological inhibitors for PPARα/γ and AMPK signal and exogenous palmitate could partially counteract the effects of emodin in vivo. In conclusion, emodin and its analogs are a group of promising anti-IAV drug precursors, and the pharmacological mechanism of emodin is linked to its ability to regulate the PPARα/γ-AMPK pathway and fatty acid metabolism.


Asunto(s)
Emodina/uso terapéutico , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Células A549 , Adenilato Quinasa/efectos de los fármacos , Adenilato Quinasa/metabolismo , Animales , China , Perros , Emodina/análogos & derivados , Emodina/metabolismo , Ácidos Grasos/metabolismo , Humanos , Virus de la Influenza A/patogenicidad , Metabolismo de los Lípidos , Células de Riñón Canino Madin Darby , Medicina Tradicional China/métodos , PPAR alfa/efectos de los fármacos , PPAR alfa/metabolismo , PPAR gamma/efectos de los fármacos , PPAR gamma/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuina 1/efectos de los fármacos , Sirtuina 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA