Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Nutr Food Res ; 68(7): e2300616, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430210

RESUMEN

SCOPE: Endocannabinoid signaling regulates energy homeostasis, and is tightly associated with nonalcoholic fatty liver disease (NAFLD). The study previously finds that supplementation of docosahexaenoic acid (DHA) has superior function to ameliorate NAFLD compared with eicosapentaenoic acid (EPA), however, the underlying mechanism remains elusive. The present study aims to investigate whether DHA intervention alleviates NAFLD via endocannabinoid system. METHODS AND RESULTS: In a case-control study, the serum endocannabinoid ligands in 60 NAFLD and 60 healthy subjects are measured. Meanwhile, NAFLD model is established in mice fed a high-fat and -cholesterol diet (HFD) for 9 weeks. DHA or EPA is administrated for additional 9 weeks. Serum primary endocannabinoid ligands, namely anandamide (AEA) and 2-arachidoniylglycerol (2-AG), are significantly higher in individuals with NAFLD compared with healthy controls. NAFLD model shows that serum 2-AG concentrations and adipocyte cannabinoid receptor 1 expression levels are significantly lower in DHA group compared with HFD group. Lipidomic and targeted ceramide analyses further confirm that endocannabinoid signaling inhibition has exerted deletion of hepatic C16:0-ceramide contents, resulting in down-regulation of de novo fatty acid synthesis and up-regulation of fatty acid ß-oxidation related protein expression levels. CONCLUSIONS: This work elucidates that DHA has improved NAFLD by suppressing endocannabinoid system.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Endocannabinoides/metabolismo , Estudios de Casos y Controles , Hígado/metabolismo , Ácido Eicosapentaenoico/farmacología , Ceramidas/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
2.
Neuropharmacology ; 248: 109870, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401791

RESUMEN

Delayed therapeutic responses and limited efficacy are the main challenges of existing antidepressant drugs, thereby incentivizing the search for new potential treatments. Cannabidiol (CBD), non-psychotomimetic component of cannabis, has shown promising antidepressant effects in different rodent models, but its mechanism of action remains unclear. Herein, we investigated the antidepressant-like effects of repeated CBD treatment on behavior, neuroplasticity markers and lipidomic profile in the prefrontal cortex (PFC) of Flinders Sensitive Line (FSL), a genetic animal model of depression, and their control counterparts Flinders Resistant Line (FRL) rats. Male FSL animals were treated with CBD (10 mg/kg; i.p.) or vehicle (7 days) followed by Open Field Test (OFT) and the Forced Swimming Test (FST). The PFC was analyzed by a) western blotting to assess markers of synaptic plasticity and cannabinoid signaling in synaptosome and cytosolic fractions; b) mass spectrometry-based lipidomics to investigate endocannabinoid levels (eCB). CBD attenuated the increased immobility observed in FSL, compared to FRL in FST, without changing the locomotor behavior in the OFT. In synaptosomes, CBD increased ERK1, mGluR5, and Synaptophysin, but failed to reverse the reduced CB1 and CB2 levels in FSL rats. In the cytosolic fraction, CBD increased ERK2 and decreased mGluR5 expression in FSL rats. Surprisingly, there were no significant changes in eCB levels in response to CBD treatment. These findings suggest that CBD effects in FSL animals are associated with changes in synaptic plasticity markers involving mGluR5, ERK1, ERK2, and synaptophysin signaling in the PFC, without increasing the levels of endocannabinoids in this brain region.


Asunto(s)
Cannabidiol , Depresión , Ratas , Masculino , Animales , Depresión/tratamiento farmacológico , Depresión/genética , Cannabidiol/farmacología , Endocannabinoides/metabolismo , Sinaptofisina/metabolismo , Antidepresivos/farmacología , Corteza Prefrontal , Plasticidad Neuronal , Modelos Animales de Enfermedad
3.
J Ethnopharmacol ; 323: 117681, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38163557

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Mulberry (Morus alba L.) leaf is a well-known herbal medicine and has been used to treat diabetes in China for thousands of years. Our previous studies have proven mulberry leaf water extract (MLWE) could improve type 2 diabetes mellitus (T2D). However, it is still unclear whether MLWE could mitigate T2D by regulating gut microbiota dysbiosis and thereof improve intestinal permeability and metabolic dysfunction through modulation of lipopolysaccharide (LPS) and endocannabinoid system (eCBs). AIM OF STUDY: This study aims to explore the potential mechanism of MLWE on the regulation of metabolic function disorder of T2D mice from the aspects of gut microbiota, LPS and eCBs. MATERIALS AND METHODS: Gut microbiota was analyzed by high-throughput 16S rRNA gene sequencing. LPS, N-arachidonoylethanolamine (AEA) and 2-ararchidonylglycerol (2-AG) contents in blood were determined by kits or liquid phase chromatography coupled with triple quadrupole tandem mass spectrometry, respectively. The receptors, enzymes or tight junction protein related to eCBs or gut barrier were detected by RT-PCR or Western blot, respectively. RESULTS: MLWE reduced the serum levels of AEA, 2-AG and LPS, decreased the expressions of N-acylphophatidylethanolamine phospholipase D, diacylglycerol lipase-α and cyclooxygenase 2, and increased the expressions of fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), alpha/beta hydrolases domain 6/12 in the liver and ileum and occludin, monoacylglycerol lipase and cannabinoid receptor 1 in the ileum of T2D mice. Furthermore, MLWE could change the abundances of the genera including Acetatifactor, Anaerovorax, Bilophila, Colidextribacter, Dubosiella, Gastranaerophilales, Lachnospiraceae_NK4A136_group, Oscillibacter and Rikenella related to LPS, AEA and/or 2-AG. Moreover, obvious improvement of MLWE treatment on serum AEA level, ileum occludin expression, and liver FAAH and NAAA expression could be observed in germ-free-mimic T2D mice. CONCLUSION: MLWE could ameliorate intestinal permeability, inflammation, and glucose and lipid metabolism imbalance of T2D by regulating gut microbiota, LPS and eCBs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Morus , Ratones , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Endocannabinoides/metabolismo , Lipopolisacáridos , Morus/química , Microbioma Gastrointestinal/genética , Disbiosis/tratamiento farmacológico , Ocludina , ARN Ribosómico 16S , Hojas de la Planta/metabolismo
4.
Nutrients ; 15(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37960275

RESUMEN

Modifying the food structure allows a nutrient to be delivered differently, which can modify not only its digestion process but also its subsequent metabolism. In this study, rats received 3 g of omelette daily containing docosahexaenoic acid (DHA) as crude oil or previously encapsulated with whey proteins, whereas a control group received a DHA-free omelette. The results showed that DHA encapsulation markedly induced a different feeding behaviour so animals ate more and grew faster. Then, after four weeks, endocannabinoids and other N-acyl ethanolamides were quantified in plasma, brain, and heart. DHA supplementation strongly reduced endocannabinoid derivatives from omega-6 fatty acids. However, DHA encapsulation had no particular effect, other than a great increase in the content of DHA-derived docosahexaenoyl ethanolamide in the heart. While DHA supplementation has indeed shown an effect on cannabinoid profiles, its physiological effect appears to be mediated more through more efficient digestion of DHA oil droplets in the case of DHA encapsulation. Thus, the greater release of DHA and other dietary cannabinoids present may have activated the cannabinoid system differently, possibly more locally along the gastrointestinal tract. However, further studies are needed to evaluate the synergy between DHA encapsulation, fasting, hormones regulating food intake, and animal growth.


Asunto(s)
Cannabinoides , Ácidos Grasos Omega-3 , Ratas , Animales , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Endocannabinoides/metabolismo , Proteína de Suero de Leche/farmacología , Dieta , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo
5.
Front Endocrinol (Lausanne) ; 14: 1269334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900144

RESUMEN

Introduction: Male reproduction is under the control of the hypothalamus-pituitary-gonadal (HPG) axis. The endocannabinoid system (ECS) and the kisspeptin system (KS) are two major signaling systems in the central and peripheral control of reproduction, but their possible interaction has been poorly investigated in mammals. This manuscript analyzes their possible reciprocal modulation in the control of the HPG axis. Materials and methods: Adolescent male rats were treated with kisspeptin-10 (Kp10) and endocannabinoid anandamide (AEA), the latter alone or in combination with the type 1 cannabinoid receptor (CB1) antagonist rimonabant (SR141716A). The hypothalamic KS system and GnRH expression, circulating sex steroids and kisspeptin (Kiss1) levels, and intratesticular KS and ECS were evaluated by immunohistochemical and molecular methods. Non-coding RNAs (i.e., miR145-5p, miR-132-3p, let7a-5p, let7b-5p) were also considered. Results: Circulating hormonal values were not significantly affected by Kp10 or AEA; in the hypothalamus, Kp10 significantly increased GnRH mRNA and aromatase Cyp19, Kiss1, and Kiss1 receptor (Kiss1R) proteins. By contrast, AEA treatment affected the hypothalamic KS at the protein levels, with opposite effects on the ligand and receptor, and SR141716A was capable of attenuating the AEA effects. Among the considered non-coding RNA, only the expression of miR145-5p was positively affected by AEA but not by Kp10 treatment. Localization of Kiss1+/Kiss1R+ neurons in the arcuate nucleus revealed an increase of Kiss1R-expressing neurons in Kp10- and AEA-treated animals associated with enlargement of the lateral ventricles in Kp10-treated animals. In the brain and testis, the selected non-coding RNA was differently modulated by Kp10 or AEA. Lastly, in the testis, AEA treatment affected the KS at the protein levels, whereas Kp10 affected the intragonadal levels of CB1 and FAAH, the main modulator of the AEA tone. Changes in pubertal transition-related miRNAs and the intratesticular distribution of Kiss1, Kiss1R, CB1, and CB2 following KP and AEA treatment corroborate the KS-ECS crosstalk also showing that the CB1 receptor is involved in this interplay. Conclusion: For the first time in mammals, we report the modulation of the KS in both the hypothalamus and testis by AEA and revealed the KP-dependent modulation of CB1 and FAAH in the testis. KP involvement in the progression of spermatogenesis is also suggested.


Asunto(s)
Kisspeptinas , MicroARNs , Masculino , Ratas , Animales , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptores de Kisspeptina-1/genética , Endocannabinoides/farmacología , Endocannabinoides/metabolismo , Rimonabant/metabolismo , Rimonabant/farmacología , Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Mamíferos/metabolismo , Reproducción , ARN no Traducido/metabolismo , MicroARNs/metabolismo
6.
J Neurosci ; 43(30): 5458-5467, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37414560

RESUMEN

Cannabinoid-targeted pain therapies are increasing with the expansion of cannabis legalization, however, their efficacy may be limited by pain-induced adaptations in the cannabinoid system. Cannabinoid receptor subtype 1 (CB1R) inhibition of spontaneous, GABAergic miniature IPSCs (mIPSCs) and evoked IPSCs (eIPSCs) in the ventrolateral periaqueductal gray (vlPAG) were compared in slices from naive and inflamed male and female Sprague Dawley rats. Complete Freund's Adjuvant (CFA) injections into the hindpaw induced persistent inflammation. In naive rats, exogenous cannabinoid agonists robustly reduce both eIPSCs and mIPSCs. After 5-7 d of inflammation, the effects of exogenous cannabinoids are significantly reduced because of CB1R desensitization via GRK2/3, as function is recovered in the presence of the GRK2/3 inhibitor, Compound 101 (Cmp101). Inhibition of GABA release by presynaptic µ-opioid receptors in the vlPAG does not desensitize with persistent inflammation. Unexpectedly, while CB1R desensitization significantly reduces the inhibition produced by exogenous agonists, depolarization-induced suppression of inhibition protocols that promote 2-arachidonoylglycerol (2-AG) synthesis exhibit prolonged CB1R activation after inflammation. 2-AG tone is detected in slices from CFA-treated rats when GRK2/3 is blocked, suggesting an increase in 2-AG synthesis after persistent inflammation. Inhibiting 2-AG degradation with the monoacylglycerol lipase (MAGL) inhibitor JZL184 during inflammation results in the desensitization of CB1Rs by endocannabinoids that is reversed with Cmp101. Collectively, these data indicate that persistent inflammation primes CB1Rs for desensitization, and MAGL degradation of 2-AG protects CB1Rs from desensitization in inflamed rats. These adaptations with inflammation have important implications for the development of cannabinoid-based pain therapeutics targeting MAGL and CB1Rs.SIGNIFICANCE STATEMENT Presynaptic G-protein-coupled receptors are resistant to desensitization. Here we find that persistent inflammation increases endocannabinoid levels, priming presynaptic cannabinoid 1 receptors for desensitization on subsequent addition of exogenous agonists. Despite the reduced efficacy of exogenous agonists, endocannabinoids have prolonged efficacy after persistent inflammation. Endocannabinoids readily induce cannabinoid 1 receptor desensitization if their degradation is blocked, indicating that endocannabinoid concentrations are maintained at subdesensitizing levels and that degradation is critical for maintaining endocannabinoid regulation of presynaptic GABA release in the ventrolateral periaqueductal gray during inflammatory states. These adaptations with inflammation have important implications for the development of cannabinoid-based pain therapies.


Asunto(s)
Cannabinoides , Endocannabinoides , Ratas , Masculino , Femenino , Animales , Endocannabinoides/metabolismo , Receptores de Cannabinoides , Monoacilglicerol Lipasas/farmacología , Transducción de Señal/fisiología , Ratas Sprague-Dawley , Dolor/metabolismo , Cannabinoides/farmacología , Ácido gamma-Aminobutírico/metabolismo , Inflamación/tratamiento farmacológico , Receptor Cannabinoide CB1
7.
Neuropeptides ; 101: 102336, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37290176

RESUMEN

Sleep deprivation alters orexinergic neuronal activity in the lateral hypothalamus (LH), which is the main regulator of sleep-wake, arousal, appetite, and energy regulation processes. Cannabinoid receptor (CBR) expression in this area is involved in modulating the function of orexin neurons. In this study, we investigated the effects of endocannabinoid anandamide (AEA) administration on improving food intake and appetite by modulating the activity of orexin neurons and CB1R expression after chronic sleep deprivation. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation +20 mg/kg AEA (SD + A). For SD induction, the rats were kept in a sleep deprivation device for 18 h (7 a.m. to 1 a.m.) daily for 21 days. Weight gain, food intake, the electrical power of orexin neurons, CB1R mRNA expression in hypothalamus, CB1R protein expression in the LH, TNF-α, IL-6, IL-4 levels and antioxidant activity in hypothalamus were measured after SD induction. Our results showed that AEA administration significantly improved food intake (p < 0.01), Electrical activity of orexin neurons (p < 0.05), CB1R expression in the hypothalamus (p < 0.05), and IL-4 levels (p < 0.05). AEA also reduced mRNA expression of OX1R and OX2R (p < 0.01 and p < 0.05 respectively), also IL-6 and TNF-α (p < 0.01) and MDA level (p < 0.05) in hypothalamic tissue. As a consequence, AEA modulates orexinergic system function and improves food intake by regulating the expression of the CB1 receptor in the LH in sleep deprived rats.


Asunto(s)
Área Hipotalámica Lateral , Privación de Sueño , Ratas , Masculino , Animales , Orexinas/metabolismo , Área Hipotalámica Lateral/metabolismo , Privación de Sueño/metabolismo , Endocannabinoides/metabolismo , Receptor Cannabinoide CB1/metabolismo , Ratas Wistar , Interleucina-4/metabolismo , Interleucina-4/farmacología , Interleucina-6/metabolismo , Interleucina-6/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Ingestión de Alimentos/fisiología , ARN Mensajero/metabolismo , Receptores de Orexina/metabolismo
8.
Pharmacol Rev ; 75(5): 885-958, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37164640

RESUMEN

The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Alucinógenos , Humanos , Niño , Endocannabinoides/metabolismo , Cannabidiol/uso terapéutico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Cannabinoides/metabolismo , Dronabinol , Cannabis/química , Cannabis/metabolismo , Proteínas Portadoras , Agonistas de Receptores de Cannabinoides
9.
Sci Rep ; 13(1): 5280, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002295

RESUMEN

Metabolic disorders are often linked to alterations in insulin signaling. Omega-3 (n-3) fatty acids modulate immunometabolic responses; thus, we examined the effects of peripartum n-3 on systemic and adipose tissue (AT)-specific insulin sensitivity, immune function, and the endocannabinoid system (ECS) in dairy cows. Cows were supplemented peripartum with saturated fat (CTL) or flaxseed supplement rich in alpha-linolenic acid (ALA). Blood immunometabolic biomarkers were examined, and at 5-8 d postpartum (PP), an intravenous glucose-tolerance-test (GTT) and AT biopsies were performed. Insulin sensitivity in AT was assessed by phosphoproteomics and proteomics. Peripartum n-3 reduced the plasma concentrations of Interleukin-6 (IL-6) and IL-17α, lowered the percentage of white blood cells PP, and reduced inflammatory proteins in AT. Systemic insulin sensitivity was higher in ALA than in CTL. In AT, the top canonical pathways, according to the differential phosphoproteome in ALA, were protein-kinase-A signaling and insulin-receptor signaling; network analysis and immunoblots validated the lower phosphorylation of protein kinase B (Akt), and lower abundance of insulin receptor, together suggesting reduced insulin sensitivity in ALA AT. The n-3 reduced the plasma concentrations of ECS-associated ligands, and lowered the abundances of cannabinoid-1-receptor and monoglycerol-lipase in peripheral blood mononuclear cells PP. Peripartum ALA supplementation in dairy cows improved systemic insulin sensitivity and immune function, reduced ECS components, and had tissue-specific effects on insulin-sensitivity in AT, possibly counter-balancing the systemic responses.


Asunto(s)
Resistencia a la Insulina , Femenino , Bovinos , Animales , Endocannabinoides/metabolismo , Ácido alfa-Linolénico/farmacología , Ácido alfa-Linolénico/metabolismo , Leucocitos Mononucleares , Tejido Adiposo/metabolismo , Insulina/metabolismo , Inflamación/metabolismo , Lactancia , Dieta/veterinaria
10.
Mol Metab ; 72: 101713, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36977433

RESUMEN

OBJECTIVE: Orexin-A (OX-A) is a neuropeptide produced selectively by neurons of the lateral hypothalamus. It exerts powerful control over brain function and physiology by regulating energy homeostasis and complex behaviors linked to arousal. Under conditions of chronic or acute brain leptin signaling deficiency, such as in obesity or short-term food deprivation, respectively, OX-A neurons become hyperactive and promote hyperarousal and food seeking. However, this leptin-dependent mechanism is still mostly unexplored. The endocannabinoid 2-arachidonoyl-glycerol (2-AG) is known to be implicated in food consumption by promoting hyperphagia and obesity, and we and others demonstrated that OX-A is a strong inducer of 2-AG biosynthesis. Here, we investigated the hypothesis that, under acute (6 h fasting in wt mice) or chronic (in ob/ob mice) hypothalamic leptin signaling reduction, OX-A-induced enhancement of 2-AG levels leads to the production of the 2-AG-derived 2-arachidonoyl-sn-glycerol-3-phosphate (2-AGP), a bioactive lipid belonging to the class of lysophosphatidic acids (LPAs), which then regulates hypothalamic synaptic plasticity by disassembling α-MSH anorexigenic inputs via GSK-3ß-mediated Tau phosphorylation, ultimately affecting food intake. METHODS: We combined cell-type-specific morphological (CLEM and confocal microscopy), biochemical, pharmacological, and electrophysiological techniques to dissect the leptin- and OX-A/2-AGP-mediated molecular pathways regulating GSK-3ß-controlled pT231-Tau production at POMC neurons of obese ob/ob and wild-type (wt) lean littermate mice and in an in vitro model of POMC neurons such as mHypoN41 neurons (N41). RESULTS: 2-AGP is overproduced in the hypothalamus of obese leptin-deficient, or lean 6 h food-deprived mice, and promotes food intake by reducing α-MSH-expressing synaptic inputs to OX-A neurons via lysophosphatidic acid type-1 receptor (LPA1-R) activation, and pT231-Tau accumulation in α-MSH projections. This effect is due to the activation of the Pyk2-mediated pTyr216-GSK3ß pathway and contributes to further elevating OX-A release in obesity. Accordingly, we found a strong correlation between OX-A and 2-AGP levels in the serum of obese mice and of human subjects. CONCLUSIONS: Hypothalamic feeding pathways are endowed with 2-AGP-mediated synaptic plasticity according to their inherent functional activities and the necessity to adapt to changes in the nutritional status. These findings reveal a new molecular pathway involved in energy homeostasis regulation, which could be targeted to treat obesity and related disturbances.


Asunto(s)
Endocannabinoides , Leptina , Ratones , Humanos , Animales , Orexinas/metabolismo , Leptina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Endocannabinoides/metabolismo , alfa-MSH/metabolismo , Proopiomelanocortina/metabolismo , Hipotálamo/metabolismo , Obesidad/metabolismo , Lisofosfolípidos/metabolismo , Ratones Endogámicos
11.
Pharmacol Ther ; 244: 108394, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36966972

RESUMEN

Endocannabinoids are endogenous lipid signaling mediators that participate in a variety of physiological and pathological processes. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid and is a full agonist of G-protein-coupled cannabinoid receptors (CB1R and CB2R), which are targets of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive ingredient in cannabis. While 2-AG has been well recognized as a retrograde messenger modulating synaptic transmission and plasticity at both inhibitory GABAergic and excitatory glutamatergic synapses in the brain, growing evidence suggests that 2-AG also functions as an endogenous terminator of neuroinflammation in response to harmful insults, thus maintaining brain homeostasis. Monoacylglycerol lipase (MAGL) is the key enzyme that degrades 2-AG in the brain. The immediate metabolite of 2-AG is arachidonic acid (AA), a precursor of prostaglandins (PGs) and leukotrienes. Several lines of evidence indicate that pharmacological or genetic inactivation of MAGL, which boosts 2-AG levels and reduces its hydrolytic metabolites, resolves neuroinflammation, mitigates neuropathology, and improves synaptic and cognitive functions in animal models of neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and traumatic brain injury (TBI)-induced neurodegenerative disease. Thus, it has been proposed that MAGL is a potential therapeutic target for treatment of neurodegenerative diseases. As the main enzyme hydrolyzing 2-AG, several MAGL inhibitors have been identified and developed. However, our understanding of the mechanisms by which inactivation of MAGL produces neuroprotective effects in neurodegenerative diseases remains limited. A recent finding that inhibition of 2-AG metabolism in astrocytes, but not in neurons, protects the brain from TBI-induced neuropathology might shed some light on this unsolved issue. This review provides an overview of MAGL as a potential therapeutic target for neurodegenerative diseases and discusses possible mechanisms underlying the neuroprotective effects of restraining degradation of 2-AG in the brain.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Animales , Endocannabinoides/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
12.
Poult Sci ; 102(3): 102460, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36680863

RESUMEN

With restricted usage of growth-promoting antibiotics, identifying alternative feed additives that both improve intestinal barrier function and reduce inflammation is the center to improve chickens' health. This study examined the effects of a microencapsulated feed additive containing citric acid, sorbic acids, thymol, and vanillin on intestinal barrier function and inflammation status. A total of 240 birds were assigned to either a commercial control diet or control diet supplemented with 500 g/MT of the microencapsulated additive product. Birds were raised by feeding a 2-phase diet (starter, d 1 to d 21; and grower, d 15 to d 42). Growth performance was recorded weekly. At d 21 and d 42, total gastrointestinal tract permeability was evaluated by FITC-dextran (FD4) oral gavage. Jejunum-specific barrier functions were evaluated by Ussing chamber. Intestinal gene expression of selected epithelial cell markers, tight junction (TJ) proteins, inflammatory cytokines, and endocannabinoid system (ECS) markers were determined by RT-PCR. Statistical analysis was performed using Student t test. Results showed significant improvement of feed efficiency in the birds supplemented with the blend of organic acids and botanicals. At d 21, both oral and jejunal FD4 permeability were lower in the supplemented group. Jejunal transepithelial resistance was higher in the supplemented birds. At d 21, expression of TJs mRNA (CLDN1 and ZO2) was both upregulated in the jejunum and ileum of supplemented birds, while CLDN2 was downregulated in cecum. Proliferating cell marker SOX9 was higher expressed in jejunum and ceca. Goblet cell marker (MUC2) was upregulated, while Paneth cell marker (LYZ) was downregulated in the ileum. Proinflammatory cytokine expressions of IL1B, TNFA, and IFNG were downregulated in jejunum, while anti-inflammatory IL10 expression was higher in jejunum, ileum, cecum, and cecal tonsil. The ECS markers expressions were upregulated in most intestinal regions. Together, these results demonstrated that the blend of organic acids and botanical supplementation reduced inflammation, improved the TJs expression and intestinal barrier function, and thus improved chicken feed efficiency. The activated ECS may play a role in reducing intestinal tissue inflammation.


Asunto(s)
Pollos , Suplementos Dietéticos , Endocannabinoides , Fitoquímicos , Animales , Alimentación Animal/análisis , Pollos/genética , Pollos/metabolismo , Citocinas/metabolismo , Dieta/veterinaria , Endocannabinoides/metabolismo , Expresión Génica , Inflamación/veterinaria , Fitoquímicos/metabolismo , Fitoquímicos/farmacología , Composición de Medicamentos/veterinaria
13.
Cannabis Cannabinoid Res ; 8(2): 254-269, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36413346

RESUMEN

Introduction: Cannabidiol (CBD) is the second most abundant Phytocannabinoid in Cannabis extracts. CBD has a binding affinity for several cannabinoid and cannabinoid-associated receptors. Epidiolex (oral CBD solution) has been lately licensed by the Food and Drug Administration (FDA) for the treatment of pediatric epileptic seizures. Methods: In this review, we discussed the most promising applications of CBD for chronic inflammatory conditions, namely CBD's anti-inflammatory effects during inflammatory bowel disease, coronavirus disease (antiviral effect), brain pathologies (neuroprotective and anti-inflammatory properties), as well as CBD immunomodulatory and antitumoral activities in the tumor microenvironment. Special focus was shed on the main therapeutic mechanisms of action of CBD, particularly in the control of the immune system and the endocannabinoid system. Results: Findings suggest that CBD is a potent immunomodulatory drug as it has manifested immunosuppressive properties in the context of sterile inflammation (e.g., inflammatory bowel disease, rheumatoid arthritis, and neurodegenerative diseases), and immunoprotective effects during viral infections (e.g. COVID-19) Similarly, CBD has exhibited a selective response toward cancer types by engaging different targets and signaling pathways. These results are in favor of the primary function of the endocannabinoid system which is homeostatic maintenance. Conclusion: The presented evidence suggests that the endocannabinoid system is a prominent target for the treatment of inflammatory and autoimmune diseases, rheumatoid diseases, viral infections, neurological and psychological pathologies, and cancer. Moreover, the antitumoral activities of CBD have been suggested to be potentially used in combination with chemo- or immunotherapy during cancer. However, clinical results are still lacking, which raises a challenge to apply translational cannabis research to the human immune system.


Asunto(s)
COVID-19 , Cannabidiol , Cannabinoides , Cannabis , Alucinógenos , Enfermedades Inflamatorias del Intestino , Estados Unidos , Niño , Humanos , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Endocannabinoides/metabolismo , Agonistas de Receptores de Cannabinoides , Factores Inmunológicos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico
14.
Br J Pharmacol ; 180(7): 894-909, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34877650

RESUMEN

The use of opioids in pain management is hampered by the emergence of analgesic tolerance, which leads to increased dosing and side effects, both of which have contributed to the opioid epidemic. One promising potential approach to limit opioid analgesic tolerance is activating the endocannabinoid system in the CNS, via activation of CB1 receptors in the descending pain inhibitory pathway. In this review, we first discuss preclinical and clinical evidence revealing the potential of pharmacological activation of CB1 receptors in modulating opioid tolerance, including activation by phytocannabinoids, synthetic CB1 receptor agonists, endocannabinoid degradation enzyme inhibitors, and recently discovered positive allosteric modulators of CB1 receptors. On the other hand, as non-pharmacological pain relief is advocated by the US-NIH to combat the opioid epidemic, we also discuss contributions of peripheral neuromodulation, involving the electrostimulation of peripheral nerves, in addressing chronic pain and opioid tolerance. The involvement of supraspinal endocannabinoid systems in peripheral neuromodulation-induced analgesia is also discussed. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.


Asunto(s)
Analgésicos Opioides , Endocannabinoides , Humanos , Endocannabinoides/metabolismo , Analgésicos Opioides/efectos adversos , Manejo del Dolor , Epidemia de Opioides , Tolerancia a Medicamentos , Dolor/tratamiento farmacológico , Dolor/metabolismo , Analgésicos/farmacología , Receptor Cannabinoide CB1
15.
Nat Rev Gastroenterol Hepatol ; 20(1): 5-25, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36168049

RESUMEN

The management of visceral pain in patients with disorders of gut-brain interaction, notably irritable bowel syndrome, presents a considerable clinical challenge, with few available treatment options. Patients are increasingly using cannabis and cannabinoids to control abdominal pain. Cannabis acts on receptors of the endocannabinoid system, an endogenous system of lipid mediators that regulates gastrointestinal function and pain processing pathways in health and disease. The endocannabinoid system represents a logical molecular therapeutic target for the treatment of pain in irritable bowel syndrome. Here, we review the physiological and pathophysiological functions of the endocannabinoid system with a focus on the peripheral and central regulation of gastrointestinal function and visceral nociception. We address the use of cannabinoids in pain management, comparing them to other treatment modalities, including opioids and neuromodulators. Finally, we discuss emerging therapeutic candidates targeting the endocannabinoid system for the treatment of pain in irritable bowel syndrome.


Asunto(s)
Cannabinoides , Cannabis , Síndrome del Colon Irritable , Humanos , Endocannabinoides/uso terapéutico , Endocannabinoides/metabolismo , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/tratamiento farmacológico , Cannabinoides/uso terapéutico , Cannabinoides/metabolismo , Dolor Abdominal/tratamiento farmacológico , Dolor Abdominal/etiología , Cannabis/metabolismo
16.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499556

RESUMEN

Recurrent Binge Eating (BE) episodes characterize several eating disorders. Here, we attempted to reassemble a condition closer to BE disorder, and we analyzed whether recurrent episodes might evoke molecular alterations in the hypothalamus of rats. The hypothalamus is a brain region which is sensitive to stress and relevant in motivated behaviors, such as food intake. A well-characterized animal model of BE, in which a history of intermittent food restriction and stress induce binge-like palatable food consumption, was used to analyze the transcriptional regulation of the endocannabinoid system (ECS). We detected, in rats showing the BE behavior, an up-regulated gene expression of cannabinoid type-1 receptor (CB1), sn-1-specific diacylglycerol lipase, as well as fatty acid amide hydrolase (Faah) and monoacylglycerol lipase. A selective reduction in DNA methylation was also observed at the promoter of Faah, which is consistent with the changes in the gene expression. Moreover, BE behavior in rats was associated with an increase in anandamide (AEA) levels. Our findings support the relevant role of the ECS in the regulation of food intake in rats subjected to repeated BE episodes, and, in particular, on AEA signaling, acting via CB1 and FAAH modulation. Notably, the epigenetic regulation of the Faah gene might suggest this enzyme as a possible target for developing new therapeutical approaches.


Asunto(s)
Trastorno por Atracón , Ratas , Femenino , Animales , Trastorno por Atracón/genética , Epigénesis Genética , Endocannabinoides/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Receptores de Cannabinoides/metabolismo , Hipotálamo/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Ingestión de Alimentos
17.
Pharmacol Biochem Behav ; 221: 173492, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36379443

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, onset in early childhood and associated with cognitive, social, behavioral, and sensory impairments. The pathophysiology is still unclear, and it is believed that genetic and environmental factors are fully capable of influencing ASD, especially cell signaling and microglial functions. Furthermore, the endocannabinoid system (ECS) participates in the modulation of various brain processes and is also involved in the pathophysiological mechanisms of this condition. Due to the health and quality of life impacts of autism for the patient and his/her family and the lack of effective medications, the literature has elucidated the possibility that Cannabis phytocannabinoids act favorably on ASD symptoms, probably through the modulation of neurotransmitters, in addition to endogenous ligands derived from arachidonic acid, metabolizing enzymes and even transporters of the membrane. These findings support the notion that there are links between key features of ASD and ECS due to the favorable actions of cannabidiol (CBD) and other cannabinoids on symptoms related to behavioral and cognitive disorders, as well as deficits in communication and social interaction, hyperactivity, anxiety and sleep disorders. Thus, phytocannabinoids emerge as therapeutic alternatives for ASD.


Asunto(s)
Trastorno del Espectro Autista , Cannabidiol , Cannabinoides , Humanos , Preescolar , Femenino , Masculino , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Endocannabinoides/metabolismo , Trastorno del Espectro Autista/tratamiento farmacológico , Calidad de Vida , Cannabidiol/uso terapéutico
18.
Horm Behav ; 146: 105277, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36356457

RESUMEN

The mechanisms involved in hedonic regulation of food intake, including endocannabinoid system (ECs) are scarcely known in fish. We recently demonstrate in rainbow trout the presence of a rewarding response mediated by ECs in hypothalamus and telencephalon when fish fed a lipid-enriched diet, and that central administration of main agonists of ECs namely AEA or 2-AG exert a bimodal effect on feed intake in fish with low doses inducing an increase that disappears with the high dose of both endocannabinoids (EC). To assess the precise involvement of the different receptors of the ECs (CNR1, TRPV1, and GPR55) in this response we injected intracerebroventricularly AEA or 2-AG in the absence/presence of specific receptor antagonists (AM251, capsazepine, and ML193; respectively). The presence of antagonists clearly counteracts the effect of EC supporting the specificity of EC action inducing changes not only in ECs but also in GABA and glutamate metabolism ultimately leading to the increase observed in food intake response.


Asunto(s)
Endocannabinoides , Oncorhynchus mykiss , Animales , Endocannabinoides/farmacología , Endocannabinoides/metabolismo , Oncorhynchus mykiss/fisiología , Hipotálamo/metabolismo , Ingestión de Alimentos , Telencéfalo
19.
Molecules ; 27(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36235308

RESUMEN

The enteric nervous system (ENS) is a part of the autonomic nervous system that intrinsically innervates the gastrointestinal (GI) tract. Whereas enteric neurons have been deeply studied, the enteric glial cells (EGCs) have received less attention. However, these are immune-competent cells that contribute to the maintenance of the GI tract homeostasis through supporting epithelial integrity, providing neuroprotection, and influencing the GI motor function and sensation. The endogenous cannabinoid system (ECS) includes endogenous classical cannabinoids (anandamide, 2-arachidonoylglycerol), cannabinoid-like ligands (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)), enzymes involved in their metabolism (FAAH, MAGL, COX-2) and classical (CB1 and CB2) and non-classical (TRPV1, GPR55, PPAR) receptors. The ECS participates in many processes crucial for the proper functioning of the GI tract, in which the EGCs are involved. Thus, the modulation of the EGCs through the ECS might be beneficial to treat some dysfunctions of the GI tract. This review explores the role of EGCs and ECS on the GI tract functions and dysfunctions, and the current knowledge about how EGCs may be modulated by the ECS components, as possible new targets for cannabinoids and cannabinoid-like molecules, particularly those with potential nutraceutical use.


Asunto(s)
Cannabinoides , Endocannabinoides , Cannabinoides/metabolismo , Cannabinoides/farmacología , Ciclooxigenasa 2 , Suplementos Dietéticos , Endocannabinoides/metabolismo , Neuroglía/metabolismo , Receptores Activados del Proliferador del Peroxisoma
20.
Cells ; 11(16)2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-36010645

RESUMEN

Cannabinoids (CBs) are used to treat chronic pain, chemotherapy-induced nausea and vomiting, and multiple sclerosis spasticity. Recently, the medicinal use of CBs has attracted increasing interest as a new therapeutic in many diseases. Data indicate a correlation between CBs and PPARs via diverse mechanisms. Both the endocannabinoid system (ECS) and peroxisome proliferator-activated receptors (PPARs) may play a significant role in PCOS and PCOS related disorders, especially in disturbances of glucose-lipid metabolism as well as in obesity and fertility. Taking into consideration the ubiquity of PCOS in the human population, it seems indispensable to search for new potential therapeutic targets for this condition. The aim of this review is to examine the relationship between metabolic disturbances and obesity in PCOS pathology. We discuss current and future therapeutic interventions for PCOS and related disorders, with emphasis on the metabolic pathways related to PCOS pathophysiology. The link between the ECS and PPARs is a promising new target for PCOS, and we examine this relationship in depth.


Asunto(s)
Cannabinoides , Síndrome del Ovario Poliquístico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Endocannabinoides/metabolismo , Femenino , Fertilidad , Humanos , Ligandos , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Receptores Activados del Proliferador del Peroxisoma , Síndrome del Ovario Poliquístico/complicaciones , Síndrome del Ovario Poliquístico/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA