Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Biol Int ; 48(5): 737-754, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38410054

RESUMEN

Macrophages in the endometrium promote receptivity and implantation by secreting proinflammatory cytokines and other factors like fractalkine (FKN). Macrophages are closely linked to regulating iron homeostasis and can modulate iron availability in the tissue microenvironment. It has been revealed that the iron metabolism of the mother is crucial in fertility. Iron metabolism is strictly controlled by hepcidin, the principal iron regulatory protein. The inflammatory cytokines can modulate hepcidin synthesis and, therefore, the iron metabolism of the endometrium. It was proven recently that FKN, a unique chemokine, is implicated in maternal-fetal communication and may contribute to endometrial receptivity and implantation. In the present study, we investigated the effect of activated THP-1 macrophages and FKN on the iron metabolism of the HEC-1A endometrial cells. We established a noncontact coculture with or without recombinant human FKN supplementation to study the impact of the macrophage-derived factors and FKN on the regulation of hepcidin synthesis and iron release and storage of endometrial cells. Based on our findings, the conditioned medium of the activated macrophages could modify hepcidin synthesis via the nuclear factor kappa-light-chain-enhancer of activated B cells, the signal transducer and activator of transcription 3, and the transferrin receptor 2/bone morphogenetic protein 6/suppressor of mothers against decapentaplegic 1/5/8 signaling pathways, and FKN could alter this effect on the endometrial cells. It was also revealed that the conditioned macrophage medium and FKN modulated the iron release and storage of HEC-1A cells. FKN signaling may be involved in the management of iron trafficking of the endometrium by the regulation of hepcidin. It can contribute to the iron supply for fetal development at the early stage of the pregnancy.


Asunto(s)
Quimiocina CX3CL1 , Hepcidinas , Femenino , Humanos , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/farmacología , Hepcidinas/metabolismo , Endometrio/metabolismo , Macrófagos/metabolismo , Hierro/metabolismo
2.
Photochem Photobiol ; 100(1): 214-224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37212452

RESUMEN

Intrauterine adhesion (IUA), a major cause of uterine infertility, is pathologically characterized by endometrial fibrosis. Current treatments for IUA have poor efficacy with high recurrence rate, and restoring uterine functions is difficult. We aimed to determine the therapeutic efficacy of photobiomodulation (PBM) therapy on IUA and elucidate its underlying mechanisms. A rat IUA model was established via mechanical injury, and PBM was applied intrauterinely. The uterine structure and function were evaluated using ultrasonography, histology, and fertility tests. PBM therapy induced a thicker, more intact, and less fibrotic endometrium. PBM also partly recovered endometrial receptivity and fertility in IUA rats. A cellular fibrosis model was then established with human endometrial stromal cells (ESCs) cultured in the presence of TGF-ß1. PBM alleviated TGF-ß1-induced fibrosis and triggered cAMP/PKA/CREB signaling in ESCs. Pretreatment with the inhibitors targeting this pathway weakened PBM's protective efficacy in the IUA rats and ESCs. Therefore, we conclude that PBM improved endometrial fibrosis and fertility via activating cAMP/PKA/CREB signaling in IUA uterus. This study sheds more lights on the efficacy of PBM as a potential treatment for IUA.


Asunto(s)
Terapia por Luz de Baja Intensidad , Enfermedades Uterinas , Femenino , Ratas , Animales , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Enfermedades Uterinas/terapia , Enfermedades Uterinas/metabolismo , Enfermedades Uterinas/patología , Endometrio/metabolismo , Endometrio/patología , Adherencias Tisulares/tratamiento farmacológico , Adherencias Tisulares/patología
3.
J Nat Med ; 78(1): 42-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37698739

RESUMEN

Ligustilide (LIG) is the main active ingredient of Angelica sinensis (Oliv.) Diels, which could promote focal angiogenesis to exert neuroprotection. However, there was no report that verified the exact effects of LIG on endometrial angiogenesis and the pregnancy outcomes. To explore the effects of LIG on low endometrial receptivity (LER) and angiogenesis, pregnancy rats were assigned into Control (saline treatment), LER (hydroxyurea-adrenaline treatment), LIG 20 mg/kg and LIG 40 mg/kg groups. Hematoxylin and eosin (H&E) staining was performed to evaluate endometrial morphology. Quantitative real-time PCR, immunofluorescence staining, western blot and immunohistochemistry staining were employed to assess the expression of endometrial receptivity factors and angiogenesis-related gene/protein, respectively. RNA sequencing was used to analyze the effects of LIG on LER caused by Kidney deficiency and blood stasis. We found that endometrial thickness and the implanted embryo number were substantially reduced in the hydroxyurea-adrenaline-treated pregnancy rats. At the same time, the gene and protein expressions of ERα, LIF, VEGFA and CD31 in the endometrium were markedly reduced, while the expressions of MUC1, E-cadherin were increased in the LER group. Administration of LIG raised the endometrial thickness and implanted embryos, as well as reversed the expressions of these factors. Collectively, our findings revealed that LIG could facilitate embryo implantation via recovery of the endometrium receptivity and promotion of endometrial angiogenesis.


Asunto(s)
Hidroxiurea , Resultado del Embarazo , Embarazo , Femenino , Ratas , Animales , Hidroxiurea/metabolismo , Hidroxiurea/farmacología , Angiogénesis , Endometrio/metabolismo , Epinefrina/metabolismo , Epinefrina/farmacología
4.
Reprod Sci ; 31(3): 675-686, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37816991

RESUMEN

Recurrent implantation failure (RIF) is a challenging situation for infertility specialists, and its treatment is introduced as a difficult case in the field of assisted reproductive technology (ART). Vitamin D (VD) is one of the supplements that have been suggested to improve the implantation process. In the present study, the effect of VD on the expression and protein levels of VD receptor (VDR), progesterone receptor (PR), prolactin (PRL), insulin-like growth factor binding protein-1 (IGFBP-1), and homeobox protein A10 (HOXA10) in the endometrial cells of unknown RIF women with and without VD deficiency were assessed by qRT-PCR and immunohistochemistry. Twelve women with unknown RIF and VD deficiency (≤ 20 ng/ml) and twelve women with unknown RIF without VD deficiency (≥ 30 ng/ml) from 2021 to 2022 were identified. Endometrial specimens were collected in the mid-luteal stage before treatment or pregnancy. In the group with VD deficiency, oral medication of VD 50,000 units was prescribed for 2 to 3 months and their serum levels of VD were re-measured, then an endometrial biopsy at the same stage of the menstrual cycle was performed. The expression and protein levels of VDR, PR, PRL, IGFBP1, and HOXA10 in RIF patients with VD deficiency were lower than the RIF patients without VD deficiency (P value < 0.05). Our findings suggest that VD can play a key role in the pregnancy process, especially during embryo implantation and decidualization of the endometrial cells.IRCT registration number: IRCT20220528055006N1, Registration date: 2022-10-15, Registration timing: retrospective.


Asunto(s)
Decidua , Endometrio , Embarazo , Humanos , Femenino , Decidua/metabolismo , Estudios Retrospectivos , Endometrio/metabolismo , Implantación del Embrión , Vitamina D/uso terapéutico
5.
Tissue Eng Part A ; 30(3-4): 115-130, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37930721

RESUMEN

Bone marrow-derived mesenchymal stem cells (BMSCs) have been recognized as new candidates for the treatment of serious endometrial injuries. However, owing to the local microenvironment of damaged endometrium, transplantation of BMSCs yielded disappointing results. In this study, Pectin-Pluronic® F-127 hydrogel as scaffolds were fabricated to provide three-dimensional architecture for the attachment, growth, and migration of BMSCs. E2 was encapsulated into the W/O/W microspheres to construct pectin-based E2-loaded microcapsules (E2 MPs), which has the potential to serve as a long-term reliable source of E2 for endometrial regeneration. Then, the BMSCs/E2 MPs/scaffolds system was injected into the uterine cavity of mouse endometrial injury model for treatment. At 4 weeks after transplantation, the system increased proliferative abilities of uterine endometrial cells, facilitated microvasculature regeneration, and restored the ability of endometrium to receive an embryo, suggesting that the BMSCs/E2 MPs/scaffolds system is a promising treatment option for endometrial regeneration. Furthermore, the mechanism of E2 in promoting the repair of endometrial injury was also investigated. Exosomes are critical paracrine mediators that act as biochemical cues to direct stem cell differentiation. In this study, it was found that the expression of endometrial epithelial cell (EEC) markers was upregulated in BMSCs treated by exosomes secreted from endometrial stromal cells (ESCs-Exos). Exosomes derived from E2-stimulated ESCs further promoted the expression level of EECs markers in BMSCs, suggesting exosomes released from ESCs by E2 stimulation could enhance the differentiation efficiency of BMSCs. Therefore, exosomes derived from ESCs play paracrine roles in endometrial regeneration stimulated by E2 and provide optimal estrogenic response.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratas , Animales , Femenino , Ratones , Médula Ósea , Cápsulas/metabolismo , Ratas Sprague-Dawley , Trasplante de Células Madre Mesenquimatosas/métodos , Endometrio/metabolismo , Modelos Animales de Enfermedad , Pectinas
6.
J Ethnopharmacol ; 319(Pt 3): 117346, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37879506

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cryptotanshinone is the main bioactive component of Salvia miltiorrhiza, with various mechanisms of action, including antioxidant, anti-inflammatory, cardiovascular protection, neuroprotection, and hepatoprotection. Salvia miltiorrhiza is used clinically by gynecologists in China. AIM OF THE STUDY: Polycystic ovary syndrome (PCOS) has a significant impact on women's quality of life, leading to infertility and reproductive disorders. Hence, this study aims to assess the pharmacological activity of cryptotanshinone in the treatment of PCOS and investigate its therapeutic mechanism. MATERIALS AND METHODS: Human chorionic gonadotropin (HCG) combined with insulin is used to simulate a PCOS-like rat model and attempt to discover the abnormal changes that occur and the means by which the pathway acts in this model. RESULTS: The transcriptome sequencing method is used to identify 292 differential genes that undergo significant changes, of which 219 were upregulated and 73 were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the signaling pathways reveals that differential expressed genes are significantly enriched in 23 typical pathways. Estrogen signaling pathways are screened in the cryptotanshinone and model groups, and significant differential changes in Fos, ALOX12, and AQP8 are found. This suggests that these signaling pathways and molecules may be the main signaling targets for regulating the differences in endometrial tissue. CONCLUSION: These results indicate that cryptotanshinone has targets for regulating the proliferation of endometrial tissue via estrogen signaling pathways in PCOS-like rats, providing an experimental basis for the clinical application of cryptotanshinone in the treatment of PCOS.


Asunto(s)
Síndrome del Ovario Poliquístico , Femenino , Ratas , Humanos , Animales , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Calidad de Vida , Endometrio/metabolismo , Estrógenos/metabolismo
7.
Zhen Ci Yan Jiu ; 48(12): 1209-1217, 2023 Dec 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38146243

RESUMEN

OBJECTIVES: To investigate the effects of electroacupuncture(EA) combined with bone marrow mesen-chymal stem cells(BMSCs) transplantation on the endometrium of rats with intrauterine adhesions(IUA), so as to explore the possible mechanisms underlying their combined therapeutic effects. METHODS: Forty adult female SD rats were randomly divided into control, model, cell, and combined groups. The IUA rat model was established using a dual injury method of mechanical scratching and lipopolysaccharide infection. After successful modeling, on days 1, 3, and 7, rats in the model group received tail vein injection of phosphate buffered solution, while rats in the cell group received tail vein injection of BMSCs suspension for BMSCs transplantation;and rats in the combined group received BMSCs transplantation combined with EA treatment (2 Hz/15 Hz, 1-2 mA), targeting the "Guanyuan"(CV4), bilateral "Zusanli"(ST36) and "Sanyinjiao"(SP6) for 20 min daily for 3 consecutive estrous cycles. After intervention, uterine tissue was collected from 5 rats in each group. Histological analysis was performed using hematoxylin and eosin staining to evaluate endometrial thickness and glandular number. Masson staining was used to assess endometrial fibrosis area. Immunohistochemistry was performed to detect the positive expressions of vascular endothelial growth factor(VEGF), proliferating cell nuclear antigen(PCNA), and estrogen receptor(ER). Western blot analysis was conducted to determine the protein expressions of homeobox A10(HoxA10) and leukemia inhibitory factor(LIF), both key regulators of endometrial receptivity. The remaining 5 rats in each group were co-housed with male rats, and the uterine function recovery was evaluated by assessing the number of embryo implantations. RESULTS: Compared with the control group, the model group showed thinning endometrium(P<0.001), decreased glandular number(P<0.001), increased endometrial fibrosis area(P<0.001), reduced positive expressions of VEGF, PCNA, ER, expressions of HoxA10 and LIF, and decreased embryo implantation number (P<0.001) on the injured side of the uterus. Compared with the model group, the combined group showed a reversal of the aforementioned indicators(P<0.001, P<0.01);the cell group exhibited thicker endometrium(P<0.001) and reduced endometrial fibrosis area(P<0.001). Compared with the cell group, the combined group showed increased endometrial thickness(P<0.01), elevated glandular number(P<0.05), significantly decreased endometrial fibrosis area(P<0.05), enhanced positive expressions of VEGF, PCNA and ER, expressions of HoxA10 and LIF in the endometrium, and a significant increase in embryo implantation number (P<0.001, P<0.05, P<0.01) on the injured side of the uterus, indicating better results than the cell group. CONCLUSIONS: The combination of EA and BMSCs synergistically promotes the repair of damaged endometrium, improves endometrial morphology, reduces fibrosis levels, enhances vascular regeneration and matrix cell proliferation, improves endometrial receptivity, which ultimately facilitates embryo implantation.


Asunto(s)
Electroacupuntura , Trasplante de Células Madre Mesenquimatosas , Enfermedades Uterinas , Humanos , Ratas , Masculino , Femenino , Animales , Factor A de Crecimiento Endotelial Vascular/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/farmacología , Ratas Sprague-Dawley , Trasplante de Células Madre Mesenquimatosas/métodos , Médula Ósea/patología , Enfermedades Uterinas/genética , Enfermedades Uterinas/terapia , Enfermedades Uterinas/metabolismo , Endometrio/metabolismo , Fibrosis
8.
Biol Reprod ; 109(3): 299-308, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37334936

RESUMEN

Melatonin is important for oocyte maturation, fertilization, early embryonic development, and embryo implantation, but less knowledge is available regarding its role in decidualization. The present study found that melatonin did not alter the proliferation of human endometrial stromal cells (ESCs), as well as cell cycle progress, but suppressed stromal differentiation after binding to the melatonin receptor 1B (MTNR1B), which was visualized in decidualizing ESCs. Further analysis evidenced that application of melatonin resulted in the diminishment for NOTCH1 and RBPJ expression. Supplementation of recombinant NOTCH1 protein (rNOTCH1) counteracted the impairment of stromal differentiation conferred by melatonin, while the addition of the NOTCH signaling pathway inhibitor DAPT aggravated the differentiation progress. Meanwhile, melatonin might restrain the expression and transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2), whose blockage accelerated the fault of stromal differentiation under the context of melatonin, but this restraint was subsequently ameliorated by rNOTCH1. Forkhead box O 1 (FOXO1) was identified as a downstream target of melatonin in decidualization. Repression of NRF2 antagonized the retrieval of rNOTCH1 due to aberrant FOXO1 expression elicited by melatonin. Moreover, melatonin brought about the occurrence of oxidative stress accompanied by an obvious accumulation of intracellular reactive oxygen species and a significant reduction in glutathione (GSH) content, as well as enzymatic activities of glutathione peroxidase and glutathione reductase, whereas supplementation of rNOTCH1 improved the above-mentioned effects. Nevertheless, this improvement was disrupted by the blockage of NRF2 and FOXO1. Furthermore, addition of GSH rescued the defect of stromal differentiation by melatonin. Collectively, melatonin might impair endometrial decidualization by restraining the differentiation of ESCs dependent on NOTCH1-NRF2-FOXO1-GSH pathway after binding to the MTNR1B receptor.


Asunto(s)
Decidua , Melatonina , Femenino , Humanos , Embarazo , Decidua/metabolismo , Endometrio/metabolismo , Proteína Forkhead Box O1/metabolismo , Glutatión/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Células del Estroma/metabolismo
9.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240143

RESUMEN

Mercury (Hg) cytotoxicity, which is largely mediated through oxidative stress (OS), can be relieved with antioxidants. Thus, we aimed to study the effects of Hg alone or in combination with 5 nM N-Acetyl-L-cysteine (NAC) on the primary endometrial cells' viability and function. Primary human endometrial epithelial cells (hEnEC) and stromal cells (hEnSC) were isolated from 44 endometrial biopsies obtained from healthy donors. The viability of treated endometrial and JEG-3 trophoblast cells was evaluated via tetrazolium salt metabolism. Cell death and DNA integrity were quantified following annexin V and TUNEL staining, while the reactive oxygen species (ROS) levels were quantified following DCFDA staining. Decidualization was assessed through secreted prolactin and the insulin-like growth factor-binding protein 1 (IGFBP1) in cultured media. JEG-3 spheroids were co-cultured with the hEnEC and decidual hEnSC to assess trophoblast adhesion and outgrowth on the decidual stroma, respectively. Hg compromised cell viability and amplified ROS production in trophoblast and endometrial cells and exacerbated cell death and DNA damage in trophoblast cells, impairing trophoblast adhesion and outgrowth. NAC supplementation significantly restored cell viability, trophoblast adhesion, and outgrowth. As these effects were accompanied by the significant decline in ROS production, our findings originally describe how implantation-related endometrial cell functions are restored in Hg-treated primary human endometrial co-cultures by antioxidant supplementation.


Asunto(s)
Antioxidantes , Endometrio , Femenino , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Endometrio/metabolismo , Implantación del Embrión/fisiología , Trofoblastos/metabolismo , Suplementos Dietéticos , Células del Estroma/metabolismo , Decidua , Células Cultivadas
10.
Cell Rep Med ; 4(5): 101026, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37137303

RESUMEN

Recurrent spontaneous miscarriage (RSM) affects 1%-2% of fertile women worldwide and poses a risk of future pregnancy complications. Increasing evidence has indicated that defective endometrial stromal decidualization is a potential cause of RSM. Here, we perform liquid chromatography with mass spectrometry (LC-MS)-based metabolite profiling in human endometrial stromal cells (ESCs) and differentiated ESCs (DESCs) and find that accumulated α-ketoglutarate (αKG) derived from activated glutaminolysis contributes to maternal decidualization. Contrarily, ESCs obtained from patients with RSM show glutaminolysis blockade and aberrant decidualization. We further find that enhanced Gln-Glu-αKG flux decreases histone methylation and supports ATP production during decidualization. In vivo, feeding mice a Glu-free diet leads to a reduction of αKG, impaired decidualization, and an increase of fetal loss rate. Isotopic tracing approaches demonstrate Gln-dependent oxidative metabolism as a prevalent direction during decidualization. Our results demonstrate an essential prerequisite of Gln-Glu-αKG flux to regulate maternal decidualization, suggesting αKG supplementation as a putative strategy to rectify deficient decidualization in patients with RSM.


Asunto(s)
Aborto Espontáneo , Decidua , Embarazo , Humanos , Femenino , Ratones , Animales , Decidua/metabolismo , Ácidos Cetoglutáricos/metabolismo , Aborto Espontáneo/metabolismo , Células Cultivadas , Endometrio/metabolismo
11.
Mol Biol Rep ; 50(5): 4273-4284, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36914869

RESUMEN

INTRODUCTION: MicroRNAs (miRNAs)-a class of small endogenous non-coding RNAs-are widely involved in post-transcriptional gene regulation of numerous physiological processes. High-throughput sequencing revealed that the miR-192 expression level appeared to be significantly higher in the blood exosomes of sows at early gestation than that in non-pregnant sows. Furthermore, miR-192 was hypothesized to have a regulatory role in embryo implantation; however, the target genes involved in exerting the regulatory function of miR-192 required further elucidation. METHODS: In the present study, potential target genes of miR-192 in porcine endometrial epithelial cells (PEECs) were identified through biotin-labeled miRNA pull-down; functional and pathway enrichment analysis was performed via gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Bioinformatic analyses were concurrently used to predict the potential target genes associated with sow embryo implantation. In addition, double luciferase reporter vectors, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), and Western blot were performed to verify the targeting and regulatory roles of the abovementioned target genes. RESULTS: A total of 1688 differentially expressed mRNAs were identified via miRNA pull-down. Through RT-qPCR, the accuracy of the sequencing data was verified. In the bioinformatics analysis, potential target genes of miR-192 appeared to form a dense inter-regulatory network and regulated multiple signaling pathways, such as metabolic pathways and the PI3K-Akt, MAPKs, and mTOR signaling pathways, that are relevant to the mammalian embryo implantation process. In addition, CSK (C-terminal Src kinase) and YY1 (Yin-Yang-1) were predicted to be potential candidates, and we validated that miR-192 directly targets and suppresses the expression of the CSK and YY1 genes. CONCLUSION: We screened 1688 potential target genes of miR-192 were screened, and CSK and YY1 were identified as miR-192 target genes. The outcomes of the present study provide novel insights into the regulatory mechanism of porcine embryo implantation and the identification of miRNA target genes.


Asunto(s)
Endometrio , MicroARNs , Animales , Femenino , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Mamíferos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Mensajero/genética , Transducción de Señal/genética , Porcinos/genética , Endometrio/metabolismo
12.
Cells ; 11(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36231141

RESUMEN

Extracellular vesicles (EVs) are nanosized vesicles that act as snapshots of cellular components and mediate cellular communications, but they may contain cargo contents with undesired effects. We developed a model to improve the effects of endometrium-derived EVs (Endo-EVs) on the porcine embryo attachment in feeder-free culture conditions. Endo-EVs cargo contents were analyzed using conventional and real-time PCR for micro-RNAs, messenger RNAs, and proteomics. Porcine embryos were generated by parthenogenetic electric activation in feeder-free culture conditions supplemented with or without Endo-EVs. The cellular uptake of Endo-EVs was confirmed using the lipophilic dye PKH26. Endo-EVs cargo contained miR-100, miR-132, and miR-155, together with the mRNAs of porcine endogenous retrovirus (PERV) and ß-catenin. Targeting PERV with CRISPR/Cas9 resulted in reduced expression of PERV mRNA transcripts and increased miR-155 in the Endo-EVs, and supplementing these in embryos reduced embryo attachment. Supplementing the medium containing Endo-EVs with miR-155 inhibitor significantly improved the embryo attachment with a few outgrowths, while supplementing with Rho-kinase inhibitor (RI, Y-27632) dramatically improved both embryo attachment and outgrowths. Moreover, the expression of miR-100, miR-132, and the mRNA transcripts of BCL2, zinc finger E-box-binding homeobox 1, ß-catenin, interferon-γ, protein tyrosine phosphatase non-receptor type 1, PERV, and cyclin-dependent kinase 2 were all increased in embryos supplemented with Endo-EVs + RI compared to those in the control group. Endo-EVs + RI reduced apoptosis and increased the expression of OCT4 and CDX2 and the cell number of embryonic outgrowths. We examined the individual and combined effects of RI compared to those of the miR-155 mimic and found that RI can alleviate the negative effects of the miR-155 mimic on embryo attachment and outgrowths. EVs can improve embryo attachment and the unwanted effects of the de trop cargo contents (miR-155) can be alleviated through anti-apoptotic molecules such as the ROCK inhibitor.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Amidas , Animales , Quinasa 2 Dependiente de la Ciclina/metabolismo , Endometrio/metabolismo , Vesículas Extracelulares/metabolismo , Femenino , Interferón gamma/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Piridinas , ARN Mensajero/metabolismo , Porcinos , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , beta Catenina/metabolismo , Quinasas Asociadas a rho/metabolismo
13.
Eur J Obstet Gynecol Reprod Biol ; 277: 32-41, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35987076

RESUMEN

OBJECTIVE: To explore the mechanism of intracavitary physiotherapy combined with acupuncture to improve the receptivity of thin endometrium. METHODS: From October 2020 to April 2021, 40 patients diagnosed with thin endometrium and preparing for hormone replacement cycle freeze-thaw embryo transfer in our centre for Reproduction were included, 40 patients were randomized to treatment group and control group. 20 patients with normal endometrium during the same period were selected as the normal group.All patients underwent freeze-thaw embryo transfer using hormone replacement cycles.The treatment group added endovascular physiotherapy combined with acupuncture. RESULTS: The endometrial receptivity of the patients with thin endometrium was significantly lower than that of the normal group(P < 0.01). Endovascular therapy combined with acupuncture can significantly increase endometrial thickness in patients with thin endometrium and the proportion of patients with type A endometrium, reduce bilateral Uterine arterial pulsatilityindex (PI), Uterine arterial resistance index (RI), and peaksystolicvelocity/diastolicvelocity (S/D), upregulate the expression of HOXA10 protein and mRNA in endometrium tissue, and improve the rate of embryo implantation and clinical pregnancy(P < 0.01).there was no significant difference between the treatment group and the normal group (P > 0.05). This may be related to the regulation of the AMPK/mTOR signalling pathway by intracavitary physiotherapy combined with acupuncture, downregulation of the expression of the AMPK gene and protein and upregulation of the expression of the mTOR gene and protein. CONCLUSIONS: 1. Abnormal energy metabolism is present in the endometrium of patients with thin endometrium, which affects the autophagy process and leads to a decrease in the receptivity of thin endometrium. 2. Intracavitary physiotherapy combined with acupuncture mediated the AMPK/mTOR pathway to improve energy metabolism, promote the autophagy process, improve endometrial morphology and ultrasonic indicators of patients, upregulate the expression of endometrial receptivity-related HOXA10 genes and proteins, and improve the embryo implantation rate and clinical pregnancy rate.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Terapia por Acupuntura , Proteínas Quinasas Activadas por AMP/metabolismo , Implantación del Embrión/genética , Endometrio/metabolismo , Femenino , Proteínas Homeobox A10 , Hormonas , Humanos , Modalidades de Fisioterapia , Embarazo , ARN Mensajero/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
14.
Nat Cell Biol ; 24(8): 1306-1318, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35864314

RESUMEN

Endometriosis is characterized by the growth of endometrial-like tissue outside the uterus. It affects many women during their reproductive age, causing years of pelvic pain and potential infertility. Its pathophysiology remains largely unknown, which limits early diagnosis and treatment. We characterized peritoneal and ovarian lesions at single-cell transcriptome resolution and compared them to matched eutopic endometrium, unaffected endometrium and organoids derived from these tissues, generating data on over 122,000 cells across 14 individuals. We spatially localized many of the cell types using imaging mass cytometry. We identify a perivascular mural cell specific to the peritoneal lesions, with dual roles in angiogenesis promotion and immune cell trafficking. We define an immunotolerant peritoneal niche, fundamental differences in eutopic endometrium and between lesion microenvironments and an unreported progenitor-like epithelial cell subpopulation. Altogether, this study provides a holistic view of the endometriosis microenvironment that represents a comprehensive cell atlas of the disease in individuals undergoing hormonal treatment, providing essential information for future therapeutics and diagnostics.


Asunto(s)
Coristoma , Endometriosis , Quistes Ováricos , Neoplasias Ováricas , Coristoma/complicaciones , Coristoma/genética , Coristoma/metabolismo , Endometriosis/genética , Endometriosis/metabolismo , Endometrio/metabolismo , Femenino , Humanos , Quistes Ováricos/complicaciones , Quistes Ováricos/metabolismo , Quistes Ováricos/patología , Neoplasias Ováricas/patología , Análisis de la Célula Individual , Microambiente Tumoral
15.
J Anim Sci ; 100(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35772751

RESUMEN

Widespread regions of the southeast United States have soils, and hence forages, deficient in selenium (Se), necessitating Se supplementation to grazing cattle for optimal immune function, growth, and fertility. We have reported that supplementation with an isomolar 1:1 mix (MIX) of inorganic (ISe) and organic (OSe) forms of Se increases early luteal phase (LP) concentrations of progesterone (P4) above that in cows on ISe or OSe alone. Increased early LP P4 advances embryonic development. Our objective was to determine the effects of the form of Se on the development of the bovine conceptus and the endometrium using targeted real-time PCR (qPCR) on day 17 of gestation, the time of maternal recognition of pregnancy (MRP). Angus-cross yearling heifers underwent 45-d Se-depletion then repletion periods, then at least 90 d of supplementation (TRT) with 35 ppm Se per day as either ISe (n = 10) or MIX (n = 10). Heifers were inseminated to a single sire after detected estrus (day 0). On day 17 of gestation, caruncular (CAR) and intercaruncular (ICAR) endometrial samples and the developing conceptus were recovered from pregnant heifers (ISe, n = 6 and MIX, n = 6). qPCR was performed to determine the relative abundance of targeted transcripts in CAR and ICAR samples, with the expression data subjected to one-way ANOVA to determine TRT effects. The effect of TRT on conceptus development was analyzed using a one-tailed Student's t-test. When compared with ISe-treated heifers, MIX heifers had decreased (P < 0.05) abundance of several P4-induced and interferon-stimulated mRNA transcripts, including IFIT3, ISG15, MX1, OAS2, RSAD2, DGAT2, FGF2 in CAR and DKK1 in ICAR samples and tended (P ≤ 0.10) to have decreased mRNA abundance of IRF1, IRF2, FOXL2, and PGR in CAR samples, and HOXA10 and PAQR7 in ICAR samples. In contrast, MIX-supplemented heifers had increased (P < 0.05) mRNA abundance of MSTN in ICAR samples and an increase in conceptus length (ISe: 17.45 ± 3.08 cm vs. MIX: 25.96 ± 3.95 cm; P = 0.05). Notably, myostatin increases glucose secretion into histotroph and contributes to advanced conceptus development. This advancement in conceptus development occurred in the presence of similar concentrations of serum P4 (P = 0.88) and whole blood Se (P = 0.07) at MRP.


In regions with soils deficient in selenium (Se), it is recommended that this trace mineral is supplemented to the diet of forage-grazing cattle. We have previously reported that the form of Se supplemented to cattle affects the function of multiple tissues, including the testis, liver, ovary, and pituitary. The objective of this study was to determine how the form of Se supplemented to heifers to achieve a Se-adequate status affects endometrial function and development of the conceptus at maternal recognition of pregnancy (MRP). Heifers were supplemented with the industry standard, an inorganic form of Se (ISe), or a 1:1 mix of organic and inorganic forms (MIX), with the reproductive tract recovered on day 17 of pregnancy. Real-time PCR was performed to determine the relative abundance of targeted mRNA transcripts in caruncular (CAR) and intercaruncular (ICAR) endometrial samples. The form of supplemental Se affected the abundance of multiple progesterone-induced and interferon-stimulated mRNA transcripts in CAR and ICAR samples, as well as the length of the conceptus that was recovered at MRP (day 17). Overall, our results indicate differences in endometrial function and increased development of the conceptus in cattle provided with MIX vs. ISe, suggesting that the MIX form of supplemental Se may increase fertility in cattle grazing soils deficient in this trace mineral.


Asunto(s)
Selenio , Alimentación Animal/análisis , Animales , Bovinos , Endometrio/metabolismo , Femenino , Humanos , Interferones , Complejo Hierro-Dextran , Embarazo , Progesterona , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Progesterona , Selenio/farmacología
16.
J Anim Sci ; 100(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35772767

RESUMEN

Heat stress (HS) deleteriously affects multiple components of porcine reproduction and is causal to seasonal infertility. Environment-induced hyperthermia causes a HS response (HSR) typically characterized by increased abundance of intracellular heat shock proteins (HSP). Gilts exposed to HS during the peri-implantation period have compromised embryo survival, however if (or how) HS disrupts the porcine endometrium is not understood. Study objectives were to evaluate the endometrial HSP abundance in response to HS during this period and assess the effect of oral progestin (altrenogest; ALT) supplementation. Postpubertal gilts (n = 42) were artificially inseminated during behavioral estrus (n = 28) or were kept cyclic (n = 14), and randomly assigned to thermal neutral (TN; 21 ± 1 °C) or diurnal HS (35 ± 1 °C for 12 h/31.6 ± 1 °C for 12 h) conditions from day 3 to 12 postestrus (dpe). Seven of the inseminated gilts from each thermal treatment group received ALT (15 mg/d) during this period. Using quantitative PCR, transcript abundance of HSP family A (Hsp70) member 1A (HSPA1A, P = 0.001) and member 6 (HSPA6, P < 0.001), and HSP family B (small) member 8 (HSB8, P = 0.001) were increased while HSP family D (Hsp60) member 1 (HSPD1, P = 0.01) was decreased in the endometrium of pregnant gilts compared to the cyclic gilts. Protein abundance of HSPA1A decreased (P = 0.03) in pregnant gilt endometrium due to HS, while HSP family B (small) member 1 (HSPB1) increased (P = 0.01) due to HS. Oral ALT supplementation during HS reduced the transcript abundance of HSP90α family class B member 1 (HSP90AB1, P = 0.04); but HS increased HSP90AB1 (P = 0.001), HSPA1A (P = 0.02), and HSPA6 (P = 0.04) transcript abundance irrespective of ALT. ALT supplementation decreased HSP90α family class A member 1 (HSP90AA1, P = 0.001) protein abundance, irrespective of thermal environment, whereas ALT only decreased HSPA6 (P = 0.02) protein abundance in TN gilts. These results indicate a notable shift of HSP in the porcine endometrium during the peri-implantation period in response to pregnancy status and heat stress.


Heat stress (HS) deleteriously affects multiple components of porcine reproduction and causes seasonal infertility. Environment-induced hyperthermia causes a HS response (HSR) typically characterized by increased abundance of intracellular heat shock proteins (HSP). Gilts exposed to HS during the peri-implantation period have compromised embryo survival, however if (or how) HS disrupts the porcine endometrium is not understood. Study objectives were to evaluate the endometrial HSP abundance in response to HS during this period and assess the effect of oral progestin (altrenogest; ALT) supplementation. We evaluated the abundance of HSP90, HSP70, HSP60 and HSPB in the porcine endometrium during the peri-implantation period. We demonstrate how a physiological event such as pregnancy and an environmental stressor such as HS, individually and in combination, alter the endometrial abundance of these HSP. Moreover, supplementation of pregnant gilts subjected to HS with ALT also altered the abundance of these HSP in the porcine endometrium.


Asunto(s)
Proteínas de Choque Térmico , Respuesta al Choque Térmico , Animales , Suplementos Dietéticos , Endometrio/metabolismo , Femenino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Embarazo , Sus scrofa/metabolismo , Porcinos , Acetato de Trembolona/análogos & derivados
17.
Dis Markers ; 2022: 9461444, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251378

RESUMEN

PURPOSE: In this study, we evaluated the effect of Tiaojing Cuyun Recipe (TJCYR) on embryo implantation dysfunction- (EID-) induced damage of endometrial receptivity in mice and investigated the mechanisms underlying the effect. METHODS: The main compounds of TJCYR were identified by high-performance liquid chromatography (HPLC). One hundred and twenty pregnant mice were randomly divided into six groups: control, EID only, progesterone (Prog)+EID, TJCYR-low-dose+EID, TJCYR-medium-dose+EID, and TJCYR-high-dose+EID. Mifepristone was injected to make the EID model. On the fourth day of pregnancy, serum was obtained to analyze hormone level by radioimmunoassay, the uterus was collected to analyze morphology by hematoxylin and eosin (H&E) and scanning electron microscopy (SEM), and a combination of immunofluorescence and Western blot was used to identify the related proteins. On the eighth day of pregnancy, the mice were sacrificed and the number of uterus-implanted blastocysts was counted. RESULTS: Treatment with TJCYR significantly improved the number of implanted sites, the number of well-developed pinopodes, and microvascular formation in the mice. Moreover, TJCYR significantly activated PI3K/Akt/eNOS signaling pathways to promote angiogenesis, resulting in significantly improved endometrial receptivity and fertility outcomes when compared to the model group. CONCLUSION: These findings demonstrate that TJCYR was able to protect embryo implantation of EID mice due to TJCYR-mediated improvement in endometrial receptivity by promoting endometrial angiogenesis.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Implantación del Embrión/efectos de los fármacos , Endometrio/metabolismo , Resultado del Embarazo , Transducción de Señal , Animales , Femenino , Ratones , Mifepristona/farmacología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Embarazo , Progesterona/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Biol Reprod ; 106(5): 888-899, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35134855

RESUMEN

Given recent reports of expression of postnatal mineral transport regulators at the maternal-conceptus interface during the peri-implantation period, this study tested the hypothesis that progesterone (P4) and interferon tau (IFNT) regulate phosphate, calcium, and vitamin D signaling in the ovine endometrium. Mature Rambouillet ewes (n = 24) were surgically fitted with intrauterine catheters on day 7 of the estrous cycle. Ewes received daily intramuscular injections of 50 mg of P4 in corn oil vehicle and 75 mg of progesterone receptor antagonist (RU486) in corn oil from days 8 to 15, and twice-daily intrauterine injections of either control proteins (CX) or IFNT (25 µg/uterine horn/day) from days 11 to 15 resulting in four treatment groups: P4 + CX; P4 + IFNT; RU486 + P4 + CX; and RU486 + P4 + IFNT. On day 16, ewes were hysterectomized. RU486 + P4 + CX treated ewes had lower concentrations of 25 (OH) D in plasma than P4 + CX treated ewes (P < 0.05). Endometria from ewes treated with IFNT had greater expression of FGF23 (P < 0.01), S100A9 (P < 0.05), and S100A12 (P = 0.05) mRNAs and lower expression of ADAM10 mRNA (P < 0.01) than of ewes treated with CX proteins. Expression of FGF23 mRNA was greater in endometria of ewes that received RU486 + P4 + IFNT than in ewes that received RU486 + P4 + CX (hormone × protein interaction, P < 0.05). The expression of S100G mRNA was greater in endometria of ewes that received P4 + IFNT compared to ewes that received RU486 + P4 + IFNT (P < 0.05; hormone × protein interaction, P < 0.01). These data implicate P4 and IFNT in the regulation of phosphate, calcium, and vitamin D signaling during the peri-implantation period of pregnancy and provide a platform for continued mechanistic investigations.


Asunto(s)
Interferón Tipo I , Progesterona , Animales , Calcio/metabolismo , Aceite de Maíz/metabolismo , Aceite de Maíz/farmacología , Endometrio/metabolismo , Femenino , Interferón Tipo I/metabolismo , Mifepristona/farmacología , Fosfatos/metabolismo , Fosfatos/farmacología , Embarazo , Proteínas Gestacionales , Progesterona/metabolismo , Progesterona/farmacología , Proteínas/metabolismo , ARN Mensajero/metabolismo , Ovinos , Oveja Doméstica , Vitamina D/farmacología
19.
Biol Reprod ; 106(5): 865-878, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35098299

RESUMEN

Progesterone (P4) and interferon tau (IFNT) are important for establishment and maintenance of pregnancy in ruminants. Agmatine and polyamines (putrescine, spermidine, and spermine) have important roles in the survival, growth, and development of mammalian conceptuses. This study tested the hypothesis that P4 and/or IFNT stimulate the expression of genes and proteins involved in the metabolism and transport of polyamines in the ovine endometrium. Rambouillet ewes (n = 24) were surgically fitted with intrauterine catheters on Day 7 of the estrous cycle. They received daily intramuscular injections of 50 mg P4 in corn oil vehicle and/or 75-mg progesterone receptor antagonist (RU486) in corn oil vehicle from Days 8-15, and twice daily intrauterine injections (25 µg/uterine horn/day) of either control serum proteins (CX) or IFNT from Days 11-15, resulting in four treatment groups: (i) P4 + CX; (ii) P4 + IFNT; (iii) RU486 + P4 + CX; or (iv) RU486 + P4 + IFNT. On Day 16, ewes were hysterectomized. The total amounts of arginine, citrulline, ornithine, agmatine, and putrescine in uterine flushings were affected (P < 0.05) by P4 and/or IFNT. P4 increased endometrial expression of SLC22A2 (P < 0.01) and SLC22A3 (P < 0.05) mRNAs. IFNT affected endometrial expression of MAT2B (P < 0.001), SAT1 (P < 0.01), and SMOX (P < 0.05) mRNAs, independent of P4. IFNT increased the abundance of SRM protein in uterine luminal (LE), superficial glandular (sGE), and glandular epithelia (GE), as well as MAT2B protein in uterine LE and sGE. These results indicate that P4 and IFNT act synergistically to regulate the expression of key genes required for cell-specific metabolism and transport of polyamines in the ovine endometrium during the peri-implantation period of pregnancy.


Asunto(s)
Agmatina , Interferón Tipo I , Agmatina/metabolismo , Agmatina/farmacología , Animales , Aceite de Maíz/metabolismo , Endometrio/metabolismo , Femenino , Interferón Tipo I/metabolismo , Mifepristona , Poliaminas/metabolismo , Embarazo , Proteínas Gestacionales , Progesterona/metabolismo , Proteínas/metabolismo , Putrescina , ARN Mensajero/metabolismo , Ovinos , Oveja Doméstica , Útero/metabolismo
20.
Morphologie ; 106(354): 145-154, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34023214

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is a multifactorial hormonal disorder accompanied by impairment of endometrial function and structure. Pomegranate is recognized for its role in normalizing the female sex hormones in PCOS with little known about its effect on the accompanying endometrial histological alterations. AIM OF THE WORK: To assess the possible ameliorative role of pomegranate juice extract (PJE) on endometrial injury in a rat model of PCOS. MATERIAL AND METHODS: Forty adult albino rats were equally divided into 4 groups; control, PJE-treated (400mg/kg/day for 3 weeks), letrozole-treated (PCOS) (1mg/kg/day for 3 weeks), and PJE & PCOS groups. Serum Follicle-stimulating hormone (FSH), Luteinizing hormone (LH), testosterone, estradiol, and tissue malondialdehyde (MDA) were assayed. Uterine samples were processed for histological staining with hematoxylin & eosin and Masson's trichrome stains, Ki67 and androgen receptor immunohistochemical staining, and scanning electron microscopy. RESULTS: PCOS group revealed a significant increase in serum FSH, LH, testosterone, estradiol, and tissue MDA. Uterine sections depicted various histological alterations in the endometrium with signs of inflammation. A significant increase in the endometrial collagen fiber content, as well as a significant upregulation in Ki67 and androgen receptor immunohistochemical expression were detected. Scanning electron microscopy showed a significant decrease in the mean number of pinopodes. Concomitant administration of PJE efficiently restored the studied biochemical, histological, and immunohistochemical parameters. CONCLUSION: PJE ameliorated PCOS accompanying endometrial histological alterations through its antioxidant, anti-inflammatory, anti-fibrotic, anti-proliferative, and anti-androgenic effects most probably due to its polyphenols content.


Asunto(s)
Extractos Vegetales , Síndrome del Ovario Poliquístico , Granada (Fruta) , Receptores Androgénicos , Andrógenos , Animales , Proliferación Celular , Endometrio/metabolismo , Endometrio/patología , Estradiol , Femenino , Hormona Folículo Estimulante , Antígeno Ki-67 , Hormona Luteinizante , Extractos Vegetales/farmacología , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Granada (Fruta)/química , Ratas , Receptores Androgénicos/metabolismo , Testosterona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA