Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS One ; 18(11): e0294673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37972141

RESUMEN

Podophyllum hexandrum Royle is an alpine medicinal plant of considerable importance, and its seed dormancy severely inhibits population renewal. Although cold stratification can break dormancy to a certain extent, the migration and accumulation of phytochemicals and inorganic elements in the seeds during dormancy release and their functions remain unclear. Changes in phytochemicals and inorganic elements in different seed parts were analyzed during dormancy. The key differential phytochemicals and inorganic elements were screened and their association with dormancy release and their roles in dormancy release were explored. The results showed that dormancy release may have occurred following the decrease in palmitic acid and linoleic acid content in the seeds and the increase in 2,3-dihydro-3,5-dihydro-6-methyl-4 (h)-pyran-4-one content in the endosperm. Meanwhile, 6-propyltridecane and hexadecane in the seed coat may enhance the water permeability of seeds to speed up germination. Mg may migrate from the seed coat to the endosperm and seed embryos, whereas Co may migrate from the seed embryo to the seed coat. Ca, Mn, Mg, and Co are involved in various physiological metabolic processes, which may facilitate the dormancy release of P. hexandrum seeds. These findings have enhanced our understanding of the mechanisms of dormancy release in P. hexandrum seeds and can serve as a reference for the development of more effective dormancy-breaking techniques for the conservation of this endangered medicinal plant.


Asunto(s)
Germinación , Plantas Medicinales , Latencia en las Plantas/fisiología , Semillas , Endospermo , Plantas Medicinales/fisiología
2.
Int J Biol Macromol ; 235: 123837, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36842742

RESUMEN

The effects of nitrogen (N) fertilizer on endosperm development, starch component, key enzyme activity and grain quality of common buckwheat were investigated in this study. The results showed that N fertilization significantly enhanced the number and area of endosperm cells, and significant increases were also observed in the contents of amylose, amylopectin and total starch. With increasing N level, the activities of key enzyme significantly increased showing the maximum under the N2 level (180 kg N ha-1), and then decreased under high N level. As N level increased, the ash, crude protein and amylose content varied from 1.36 to 2.25 %, from 7.99 to 15.84 % and from 22.69 to 27.64 %, respectively. The gelatinization enthalpy significantly increased with the range of 3.46-5.66 J/g, while no change was found in crystalline structure of common buckwheat flour. These results indicated that appropriate N application could effectively improve the endosperm development, starch synthesis and accumulation, and grain properties of common buckwheat, with the best effect under the level of 180 kg N ha-1.


Asunto(s)
Fagopyrum , Oryza , Endospermo/metabolismo , Amilosa/metabolismo , Fertilizantes , Fagopyrum/química , Nitrógeno/metabolismo , Almidón/química , Amilopectina/metabolismo , Grano Comestible/metabolismo , Oryza/química
3.
J Sci Food Agric ; 103(5): 2681-2689, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36350071

RESUMEN

BACKGROUND: Hemp seeds are highly nutritious and a sustainable source of protein and omega-fatty acids. The outer shell of the seeds restricts its utilization in the food industry. Dehulling of the seeds leads to a lot of processing losses due to high oil content and hard shell of the seed. Therefore, in the present study, hydrothermal treatment of the hemp seeds (Cannabis sativa L.) before dehulling was proposed to reduce the endosperm breakage and improve dehulling yield of seeds. RESULT: The hemp seeds were subjected to four types of treatments, namely moisture addition (at 14%) with tempering for 10 min and 60 min followed by drying (28-30 °C) and steaming at atmospheric pressure for 5 min and 10 min. Results from the study showed that the hydrothermal treatments impacted the hardness of the endosperm and therefore improved the dehulling yield by 1.3 to 1.5 folds. Also, the dehulling losses significantly reduced from 26.80% to 9.52% after the steaming treatments. Though steaming to some extent affected the colour of the dehulled seeds compared to other treatments, it showed an increment in protein digestibility from 86.53% to 88.73%. CONCLUSION: Among all the hydrothermal treatments, steaming showed significant improvement in the yield of dehulled hemp seeds. It reduced endosperm breakage without affecting the seeds' fatty acid profile and nutritional quality. It can be concluded that steaming as a pretreatment can be used for improved dehulling of hemp seeds, aiding the better valourization of hemp seeds in the food industry. © 2022 Society of Chemical Industry.


Asunto(s)
Cannabis , Ácidos Grasos , Ácidos Grasos/análisis , Cannabis/química , Semillas/química , Endospermo
4.
Plant Physiol Biochem ; 194: 627-637, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36535102

RESUMEN

Species of the genus Coffea accumulate diterpenes of the ent-kaurane family in the endosperm of their seeds, of which cafestol and kahweol are the most abundant. The diterpenes are mainly stored in esterified form with fatty acids, mostly palmitate. In contrast to the numerous studies on their effects on human health and therapeutic applications, nothing was previously known about their biological and ecological role in planta. The antifungal and anti-insect activities of cafestol and cafestol palmitate were thus investigated in this study. Cafestol significantly affected the mycelial growth of five of the six phytopathogenic fungi tested. It also greatly reduced the percentage of pupation of larvae and the pupae and adult masses of one of the two fruit flies tested. By contrast, cafestol palmitate had no significant effect against any of the fungi and insects studied. Using confocal imaging and oil body isolation and analysis, we showed that diterpenes are localized in endosperm oil bodies, suggesting that esterification with fatty acids enables the accumulation of large amounts of diterpenes in a non-toxic form. Diterpene measurements in all organs of seedlings recovered from whole seed germination or embryos isolated from the endosperm showed that diterpenes are transferred from the endosperm to the cotyledons during seedling growth and then distributed to all organs, including the hypocotyl and the root. Collectively, our findings show that coffee diterpenes are broad-spectrum defence compounds that protect not only the seed on the mother plant and in the soil, but also the seedling after germination.


Asunto(s)
Coffea , Diterpenos , Humanos , Café , Plantones/química , Antifúngicos/farmacología , Endospermo/química , Germinación , Diterpenos/farmacología , Semillas/química , Ácidos Grasos
5.
Carbohydr Polym ; 275: 118693, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34742420

RESUMEN

In recent years enzymatic treatment of maize has been utilized in the wet-milling process to increase the yield of extracted starch, proteins, and other constituents. One of the strategies to obtain this goal is to add enzymes that break down insoluble cell-wall polysaccharides which would otherwise entrap starch granules. Due to the high complexity of maize polysaccharides, this goal is not easily achieved and more knowledge about the substrate and enzyme performances is needed. To gather information of both enzyme performance and increase substrate understanding, a method was developed using mass spectrometry imaging (MSI) to analyze degradation products from polysaccharides following enzymatic treatment of the maize endosperm. Different enzymes were spotted onto cryosections of maize kernels which had been pre-treated with an amylase to remove starch. The cryosections were then incubated for 17 h. before mass spectrometry images were generated with a MALDI-MSI setup. The images showed varying degradation products for the different enzymes observed as pentose oligosaccharides differing with regards to sidechains and the number of linked pentoses. The method proved suitable for identifying the reaction products formed after reaction with different xylanases and arabinofuranosidases and for characterization of the complex arabinoxylan substrate in the maize kernel. HYPOTHESES: Mass spectrometry imaging can be a useful analytical tool for obtaining information of polysaccharide constituents and enzyme performance from maize samples.


Asunto(s)
Oligosacáridos/química , Zea mays/química , Amilasas/metabolismo , Pared Celular/química , Endospermo/química , Endospermo/metabolismo , Espectrometría de Masas/métodos , Oligosacáridos/análisis , Polisacáridos/análisis , Polisacáridos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Almidón/química , Xilanos/química , Zea mays/metabolismo
6.
Cells ; 10(10)2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34685657

RESUMEN

Flax (Linum usitatissimum L.) seed oil, which accumulates in the embryo, and mucilage, which is synthesized in the seed coat, are of great economic importance for food, pharmaceutical as well as chemical industries. Theories on the link between oil and mucilage production in seeds consist in the spatio-temporal competition of both compounds for photosynthates during the very early stages of seed development. In this study, we demonstrate a positive relationship between seed oil production and seed coat mucilage extrusion in the agronomic model, flax. Three recombinant inbred lines were selected for low, medium and high mucilage and seed oil contents. Metabolite and transcript profiling (1H NMR and DNA oligo-microarrays) was performed on the seeds during seed development. These analyses showed main changes in the seed coat transcriptome during the mid-phase of seed development (25 Days Post-Anthesis), once the mucilage biosynthesis and modification processes are thought to be finished. These transcriptome changes comprised genes that are putatively involved in mucilage chemical modification and oil synthesis, as well as gibberellic acid (GA) metabolism. The results of this integrative biology approach suggest that transcriptional regulations of seed oil and fatty acid (FA) metabolism could occur in the seed coat during the mid-stage of seed development, once the seed coat carbon supplies have been used for mucilage biosynthesis and mechanochemical properties of the mucilage secretory cells.


Asunto(s)
Lino/crecimiento & desarrollo , Lino/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mucílago de Planta/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Transcripción Genética , Pared Celular/metabolismo , Endospermo/metabolismo , Ácidos Grasos/metabolismo , Lino/ultraestructura , Giberelinas/metabolismo , Glucosa/metabolismo , Endogamia , Cinética , Metabolómica , Fenotipo , Mucílago de Planta/ultraestructura , Aceites de Plantas/metabolismo , Análisis de Componente Principal , Recombinación Genética/genética , Semillas/ultraestructura , Almidón/metabolismo , Sacarosa/metabolismo , Transcriptoma/genética
7.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34495331

RESUMEN

Plant sexual and asexual reproduction through seeds (apomixis) is tightly controlled by complex gene regulatory programs, which are not yet fully understood. Recent findings suggest that RNA helicases are required for plant germline development. This resembles their crucial roles in animals, where they are involved in controlling gene activity and the maintenance of genome integrity. Here, we identified previously unknown roles of Arabidopsis RH17 during reproductive development. Interestingly, RH17 is involved in repression of reproductive fate and of elements of seed development in the absence of fertilization. In lines carrying a mutant rh17 allele, development of supernumerary reproductive cell lineages in the female flower tissues (ovules) was observed, occasionally leading to formation of two embryos per seed. Furthermore, seed coat, and putatively also endosperm development, frequently initiated autonomously. Such induction of several features phenocopying distinct elements of apomixis by a single mutation is unusual and suggests that RH17 acts in regulatory control of plant reproductive development. Furthermore, an in-depth understanding of its action might be of use for agricultural applications.


Asunto(s)
Proteínas de Arabidopsis/genética , ARN Helicasas DEAD-box/genética , Semillas/genética , Apomixis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , ARN Helicasas DEAD-box/metabolismo , Endospermo/genética , Endospermo/fisiología , Mutación , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Óvulo Vegetal/fisiología , Polen/genética , Polen/metabolismo , Polen/fisiología , Semillas/metabolismo , Semillas/fisiología
8.
J Oleo Sci ; 70(6): 867-874, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33967169

RESUMEN

The neurotrophic hypothesis of depression, that is, a deficiency in hippocampal brain-derived neurotrophic factor (BDNF) leads to depression, has gained widespread acceptance. BDNF is synthesized in various peripheral tissues such as the lung, kidney, liver, heart and testis, besides the brain. Peripheral BDNF can traverse the blood-brain barrier and reach the hippocampus; accordingly, substances that upregulate BDNF production in peripheral tissues may be useful in the treatment of depression. The Mediterranean diet, containing high amounts of whole grains including unrefined wheat, vegetables, fruits, nuts, and olive oil, reportedly reduces the risk of depression. The association between the high consumption of unrefined wheat in the Mediterranean diet and BDNF production in peripheral tissues is unclear. In this study, we investigated the BDNF production capacity of human lung adenocarcinoma cell line A549 and the effect of wheat on BDNF production in the cells. Methanol extracts of whole-wheat flour and wheat bran, which are forms of unrefined wheat, increased the BDNF level in the culture medium of A549 cells. However, methanol extract of wheat endosperm had no effect on the BDNF level in these cells. Our findings suggest that wheat bran contains ingredients that upregulate BDNF production in peripheral tissues, and unrefined wheat potentially contributes to the elevation in peripheral BDNF level.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Extractos Vegetales/farmacología , Triticum/química , Regulación hacia Arriba/efectos de los fármacos , Células A549 , Fibras de la Dieta/farmacología , Endospermo/química , Harina , Humanos , Magnesio/farmacología , Zinc/farmacología
9.
Genome Biol Evol ; 13(8)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34009298

RESUMEN

Crosses between the wild tomato species Solanum peruvianum and Solanum chilense result in hybrid seed failure (HSF), characterized by endosperm misdevelopment and embryo arrest. We previously showed that genomic imprinting, the parent-of-origin-dependent expression of alleles, is perturbed in the hybrid endosperm, with many of the normally paternally expressed genes losing their imprinted status. Here, we report transcriptome-based analyses of gene and small RNA (sRNA) expression levels. We identified 2,295 genes and 387 sRNA clusters as differentially expressed when comparing reciprocal hybrid seed to seeds and endosperms from the two within-species crosses. Our analyses uncovered a pattern of overdominance in endosperm gene expression in both hybrid cross directions, in marked contrast to the patterns of sRNA expression in whole seeds. Intriguingly, patterns of increased gene expression resemble the previously reported increased maternal expression proportions in hybrid endosperms. We identified physical clusters of sRNAs; differentially expressed sRNAs exhibit reduced transcript abundance in hybrid seeds of both cross directions. Moreover, sRNAs map to genes coding for key proteins involved in epigenetic regulation of gene expression, suggesting a regulatory feedback mechanism. We describe examples of genes that appear to be targets of sRNA-mediated gene silencing; in these cases, reduced sRNA abundance is concomitant with increased gene expression in hybrid seeds. Our analyses also show that S. peruvianum dominance impacts gene and sRNA expression in hybrid seeds. Overall, our study indicates roles for sRNA-mediated epigenetic regulation in HSF between closely related wild tomato species.


Asunto(s)
Solanum lycopersicum , Solanum , Endospermo/genética , Endospermo/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Impresión Genómica , Solanum lycopersicum/genética , ARN , Semillas/genética , Solanum/genética , Transcriptoma
10.
J Dairy Sci ; 104(7): 7641-7652, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33865572

RESUMEN

Our objective was to evaluate effects of corn grain endosperm type and fineness of grind on feed intake, feeding behavior, and productive performance of lactating cows. Eight ruminally and duodenally cannulated Holstein cows in mid lactation (130 ± 42 d in milk; mean ± standard deviation) were used in a duplicated 4 × 4 Latin square design with 21-d periods. A 2 × 2 factorial arrangement of treatments was used with main effects of corn grain endosperm type (floury or vitreous) and fineness of grind (fine or medium). Rations included alfalfa silage, corn treatments, protein supplement, minerals, and vitamins and were formulated to contain 29% starch, 27% neutral detergent fiber, 18.2% forage neutral detergent fiber, and 18% crude protein. Corn grain treatments supplied 86.2% of dietary starch. Endosperm was 25% vitreous for the floury treatment and 66% vitreous for the vitreous treatment. The floury treatment increased rate of starch degradation by 94% (19.2 vs. 9.9%/h) and decreased rate of starch passage by 38% (16.1 vs. 25.8%/h), increasing apparent ruminal starch digestibility by 117% (53.7 vs. 24.7%). The floury treatment increased total-tract starch digestibility by 8% (92.2 vs. 85.1%) despite 37% lower postruminal starch digestion for the floury treatment compared with vitreous corn (38.4 vs. 60.7% of starch intake). Fine grind size increased apparent ruminal starch digestibility by 52% (47.2 vs. 31.1%) compared with medium grind size by increasing the rate of starch degradation by 105% (19.5 vs. 9.5%/h) with no effect on rate of starch passage. However, total-tract starch digestibility was not affected by fineness of grind because postruminal starch digestibility was 37% greater for medium compared with fine grind size (57.2 vs. 41.9% of starch intake). Endosperm type did not affect flow of nitrogen (N) fractions to the duodenum or microbial N efficiency, whereas fine grind size increased duodenal flow of nonammonia N by increasing duodenal flow of microbial N by 22% compared with medium grind size (438 vs. 359 g/d) but did not affect apparent total-tract N digestibility. No interactions were detected for any measure of starch digestion, ruminal N metabolism, or flow of N fractions to the duodenum. Endosperm type greatly affected ruminal and total-tract starch digestibility independent of the fineness of grind of corn grain with no effects on flow of N fractions.


Asunto(s)
Lactancia , Zea mays , Animales , Bovinos , Digestión , Duodeno/metabolismo , Endospermo , Femenino , Fermentación , Cinética , Leche , Nitrógeno/metabolismo , Rumen/metabolismo
11.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562710

RESUMEN

In angiosperm seeds, the endosperm develops to varying degrees and accumulates different types of storage compounds remobilized by the seedling during early post-germinative growth. Whereas the molecular mechanisms controlling the metabolism of starch and seed-storage proteins in the endosperm of cereal grains are relatively well characterized, the regulation of oil metabolism in the endosperm of developing and germinating oilseeds has received particular attention only more recently, thanks to the emergence and continuous improvement of analytical techniques allowing the evaluation, within a spatial context, of gene activity on one side, and lipid metabolism on the other side. These studies represent a fundamental step toward the elucidation of the molecular mechanisms governing oil metabolism in this particular tissue. In particular, they highlight the importance of endosperm-specific transcriptional controls for determining original oil compositions usually observed in this tissue. In the light of this research, the biological functions of oils stored in the endosperm of seeds then appear to be more diverse than simply constituting a source of carbon made available for the germinating seedling.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Endospermo/metabolismo , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Grano Comestible/genética , Grano Comestible/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metabolismo de los Lípidos
12.
Food Chem ; 346: 128657, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476949

RESUMEN

Highland barley (HB) was subjected to three thermal treatments (heat fluidization, microwave, and baking) and assessed for physicochemical, ultrastructural and nutritional properties. After thermal treatments, the hardness, bulk density, thousand kernel weight, length/breadth ratio, and color difference decreased significantly, while puffing index increased. Meanwhile, the formation of fissure was observed in the appearance. Microstructure images illustrated that numerous micropores were evenly distributed in the endosperm structure, and aleurone layer cells were deformed by compression. Furthermore, a dramatically disruption of endosperm cell walls and slightly deformation of outer layers were observed by confocal laser scanning microscopy. Moreover, a notably decrease in total phenolics (14.02%-36.91%), total flavonoids (25.28%-44.94%), and bound phenolics (8.99%-27.53%) was detected, while free phenolics (8.81%-43.40%), ß-glucan extractability (4.71%-43.66%), antioxidant activity (71.87%-349.77%), and reducing power (3.05%-56.13%) increased significantly. Greatest increase in nutritional values was caused by heat fluidization, which possessed the potential for development of ready-to-eat functional foods.


Asunto(s)
Hordeum/química , Granos Enteros/química , Antioxidantes/farmacología , Pared Celular/metabolismo , Endospermo , Calor , Fenoles/metabolismo , Proteínas de Plantas/metabolismo , beta-Glucanos/metabolismo
13.
PLoS One ; 15(10): e0240939, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33091041

RESUMEN

The plasma seed treatment is effective for promoting seed germination in many crops. However, the biological mechanism remains unclear. Therefore, mRNA sequencing was used to screen differentially expressed genes in the germination process of Andrographis paniculata seeds treated with air plasma (power density = 8.99 J/cm3). Following plasma treatment, the germination percentages were significantly higher than those of the control, they were 3.5±0.6% vs. 0 at 28 hours after sowing (HAS) and 50.3±2.6% vs. 37.3±1.7% at 48 HAS. After unigenes were assembled and annotated, 125 differentially expressed genes (DEGs) were detected at 28 HAS, compared with nine DEGs at 48 HAS, but no DEGs were detected at 0 HAS, indicating that air plasma treatment mainly changed the gene expression of A. paniculata seeds at 28 HAS. The NCED5 expression level of the treated group was less than one-fifth of the control, and the expressions of three ethylene response factors were significantly higher than the control at 28 HAS, indicating that lower abscisic acid levels play an important role and ethylene signal transduction also participates in radicle protrusion. ACO, NRT1 and PRP3 expressions were significantly higher than in the control at 48 HAS, suggesting that higher ethylene levels cause the endosperm cap to weaken and start to grow root hairs and lateral roots earlier. These findings reveal that plasma promotes seed germination mainly by regulating the expression of hormone-related genes. And the possible signal transduction of related hormones was discussed.


Asunto(s)
Andrographis/genética , Germinación/genética , Semillas/genética , Transcriptoma/genética , Ácido Abscísico/metabolismo , Aire , Andrographis/metabolismo , Endospermo/genética , Etilenos/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Semillas/metabolismo
14.
Diabetes Metab Syndr ; 14(5): 1317-1322, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32755829

RESUMEN

AIM: This study aimed to investigate the nutrient contents and the anti-hyperglycemic effect of the immature endosperm of sugar palm (IESP) (Borassus flabellifer L.) fruit on type-2 diabetes mellitus (T2DM) patients. METHODS: This is a short type case study where patients (n = 30) with T2DM were randomly selected and fed IESP (100 mL) twice a day after a regular meal and continued this experiment up to 4th weeks. RESULT: The mean fasting blood glucose (FBG) level was markedly reduced from 1st week (15.74 mmol/L) to 4th week (10.53 mmol/L) among the patients who had normal body mass index (18.5-24.9). Only 16.67% diabetic patients had irregular FBG levels where 10% were in the previous stages after finishing the experimental period, and exceptionally in the case of 6.67% diabetic patients, this therapeutic juice was unsuccessful because of their irregular intake of insulin. The IESP was more effective on female (p ≤ 0.001) patients than males (p ≤ 0.05). CONCLUSION: The IESP could be considered as anti-hyperglycemic fruit, and this might be due to its nutrient contents, especially phytochemicals, fiber, sodium, potassium, copper, and zinc.


Asunto(s)
Arecaceae/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Endospermo/química , Frutas/química , Hipoglucemiantes/uso terapéutico , Fitoterapia/métodos , Extractos Vegetales/uso terapéutico , Adulto , Biomarcadores/análisis , Glucemia/análisis , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Estudios de Seguimiento , Hemoglobina Glucada/análisis , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
15.
Food Chem ; 330: 127318, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32569935

RESUMEN

The objective of this study was to determine the biophysical properties of buckwheat (BW) endosperm and their influences on detachment of intact cells, starch gelatinization and digestibility. The intact cells were isolated from BW kernels by dry milling and sieving. The microscopy and texture analysis showed intact endosperm cells could be detached easily due to the fragile structure and low hardness of BW endosperm. More than 70% intact cells were found in commercial light flour. The starch granules entrapped in intact cells exhibited a delay gelatinization and restricted swelling behavior (2-3 â„ƒ higher onset gelatinization temperature than isolated starch). Starch in BW flour had a markedly lower extent of digestion compared to the broken cells and isolated starch. This study provided a new mechanistic understanding of low glycemic index of BW food, and could guide the processing of BW flour to retain slow digestion properties.


Asunto(s)
Endospermo/citología , Fagopyrum/citología , Fagopyrum/metabolismo , Harina , Almidón/farmacocinética , Culinaria , Digestión , Endospermo/química , Endospermo/metabolismo , Fagopyrum/química , Harina/análisis , Gelatina , Índice Glucémico , Tamaño de la Partícula , Células Vegetales/química , Células Vegetales/metabolismo , Almidón/química , Temperatura
16.
Plant J ; 103(4): 1477-1489, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32412127

RESUMEN

The architecture of endosperm cell walls in Hordeum vulgare (barley) differs remarkably from that of other grass species and is affected by germination or malting. Here, the cell wall microstructure is investigated using (bio)chemical analyses, cryogenic scanning electron microscopy (cryo-SEM) and confocal laser scanning microscopy (CLSM) as the main techniques. The relative proportions of ß-glucan, arabinoxylan and pectin in cell walls were 61, 34 and 5%, respectively. The average thickness of a single endosperm cell wall was 0.30 µm, as estimated by the cryo-SEM analysis of barley seeds, which was reduced to 0.16 µm after malting. After fluorescent staining, 3D confocal multiphoton microscopy (multiphoton CLSM) imaging revealed the complex cell wall architecture. The endosperm cell wall is composed of a structure in which arabinoxylan and pectin are colocalized on the outside, with ß-glucan depositions on the inside. During germination, arabinoxylan and ß-glucan are hydrolysed, but unlike ß-glucan, arabinoxylan remains present in defined cell walls in malt. Integrating the results, an enhanced model for the endosperm cell walls in barley is proposed.


Asunto(s)
Pared Celular/metabolismo , Endospermo/metabolismo , Hordeum/metabolismo , Pectinas/metabolismo , Xilanos/metabolismo , beta-Glucanos/metabolismo , Pared Celular/ultraestructura , Microscopía por Crioelectrón , Endospermo/ultraestructura , Hordeum/ultraestructura , Microscopía Confocal , Microscopía Electrónica de Rastreo
17.
BMC Plant Biol ; 20(1): 235, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32450804

RESUMEN

BACKGROUND: Cereal grains, including wheat (Triticum aestivum L.), are major sources of food and feed, with wheat being dominant in temperate zones. These end uses exploit the storage reserves in the starchy endosperm of the grain, with starch being the major storage component in most cereal species. However, oats (Avena sativa L.) differs in that the starchy endosperm stores significant amounts of oil. Understanding the control of carbon allocation between groups of storage compounds, such as starch and oil, is therefore important for understanding the composition and hence end use quality of cereals. WRINKLED1 is a transcription factor known to induce triacylglycerol (TAG; oil) accumulation in several plant storage tissues. RESULTS: An oat endosperm homolog of WRI1 (AsWRI1) expressed from the endosperm-specific HMW1Dx5 promoter resulted in drastic changes in carbon allocation in wheat grains, with reduced seed weight and a wrinkled seed phenotype. The starch content of mature grain endosperms of AsWRI1-wheat was reduced compared to controls (from 62 to 22% by dry weight (dw)), TAG was increased by up to nine-fold (from 0.7 to 6.4% oil by dw) and sucrose from 1.5 to 10% by dw. Expression of AsWRI1 in wheat grains also resulted in multiple layers of elongated peripheral aleurone cells. RNA-sequencing, lipid analyses, and pulse-chase experiments using 14C-sucrose indicated that futile cycling of fatty acids could be a limitation for oil accumulation. CONCLUSIONS: Our data show that expression of oat endosperm WRI1 in the wheat endosperm results in changes in metabolism which could underpin the application of biotechnology to manipulate grain composition. In particular, the striking effect on starch synthesis in the wheat endosperm indicates that an important indirect role of WRI1 is to divert carbon allocation away from starch biosynthesis in plant storage tissues that accumulate oil.


Asunto(s)
Proteínas de Arabidopsis/genética , Avena/genética , Endospermo/metabolismo , Aceites de Plantas/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Triticum/genética , Proteínas de Arabidopsis/metabolismo , Avena/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo , Triticum/metabolismo
18.
Plant Mol Biol ; 103(4-5): 457-471, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32274640

RESUMEN

KEY MESSAGE: In this manuscript, we disclosed the influence of light on the accumulation of storage reserves in B. napus embryos.1.Light induced the gene expression in the developing embryos of B. napus.2.Light promoted the starch synthesis in chloroplasts of B. napus embryos.3.Light enhanced the metabolic activity of storage reserve synthesis in B. napus embryos. Light influences the accumulation of storage reserves in embryos, but the molecular mechanism was not fully understood. Here, we monitored the effects of light on reserve biosynthesis in Brassica napus by comparing embryos from siliques grown in normal light conditions to those that were shaded or masked (i.e., darkened completely). Masked embryos developed more slowly, weighed less, and contained fewer proteins and lipids than control embryos. They also had fewer and smaller oil bodies than control embryos and lacked chloroplasts, where starch grains are usually synthesized. The levels of most amino acids, carbohydrates, and fatty acids were higher in masked embryos than in control or shaded embryos, whereas the levels of these metabolites in the masked endosperms were lower than those in control and shaded endosperm. Transcriptome analysis indicated that genes involved in photosynthesis (42 genes), amino acid biosynthesis (51 genes), lipid metabolism (61 genes), and sugar transport (13 genes) were significantly repressed in masked embryos. Our results suggest that light contributes to reserve accumulation in embryos by inducing the expression of metabolic genes, thereby enhancing the biosynthesis of storage reserves.


Asunto(s)
Brassica napus/embriología , Brassica napus/genética , Brassica napus/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Semillas/genética , Semillas/efectos de la radiación , Aminoácidos/metabolismo , Brassica napus/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono , Clorofila/análisis , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Endospermo/metabolismo , Endospermo/efectos de la radiación , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Metabolismo de los Lípidos , Fotosíntesis , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Semillas/citología , Semillas/crecimiento & desarrollo , Almidón/biosíntesis , Transcriptoma
19.
Plant Cell Rep ; 39(6): 779-798, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32232559

RESUMEN

KEY MESSAGE: Differences in the composition and the structural organisation of the extracellular matrix correlate with the morphogenic competence of the callus tissue that originated from the isolated endosperm of kiwifruit. The chemical composition and structural organisation of the extracellular matrix, including the cell wall and the layer on its surface, may correspond with the morphogenic competence of a tissue. In the presented study, this relationship was found in the callus tissue that had been differentiated from the isolated endosperm of the kiwiberry, Actinidia arguta. The experimental system was based on callus samples of exactly the same age that had originated from an isolated endosperm but were cultured under controlled conditions promoting either an organogenic or a non-organogenic pathway. The analyses which were performed using bright field, fluorescence and scanning electron microscopy techniques showed significant differences between the two types of calli. The organogenic tissue was compact and the outer walls of the peripheral cells were covered with granular structures. The non-organogenic tissue was composed of loosely attached cells, which were connected via a net-like structure. The extracellular matrices from both the non- and organogenic tissues were abundant in pectic homogalacturonan and extensins (LM19, LM20, JIM11, JIM12 and JIM20 epitopes), but the epitopes that are characteristic for rhamnogalacturonan I (LM5 and LM6), hemicellulose (LM25) and the arabinogalactan protein (LM2) were detected only in the non-organogenic callus. Moreover, we report the epitopes, which presence is characteristic for the Actinidia endosperm (LM21 and LM25, heteromannan and xyloglucan) and for the endosperm-derived cells that undergo dedifferentiation (loss of LM21 and LM25; appearance or increase in the content of LM5, LM6, LM19, JIM11, JIM12, JIM20, JIM8 and JIM16 epitopes).


Asunto(s)
Actinidia/citología , Actinidia/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Anticuerpos Monoclonales , Callo Óseo/citología , Pared Celular/química , Pared Celular/ultraestructura , Endospermo , Epítopos , Matriz Extracelular/ultraestructura , Frutas , Glucanos , Inmunohistoquímica , Microscopía Electrónica de Rastreo , Mucoproteínas , Pectinas , Proteínas de Plantas , Polisacáridos , Xilanos
20.
Lipids ; 55(5): 537-548, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32115716

RESUMEN

Castor oil contains approximately 90% ricinoleic acid (RA) which is stored mainly in the form of tri-ricinoleic acid containing triacylglycerols (TAG). Ricinoleate is synthesized from oleate (18:1n-9) esterified to the sn-2 position of phosphatidylcholine (PtdCho) catalyzed by oleoyl-12-hydroxylase. PtdCho-derived diacylglycerol (DAG) is an important substrate pool for TAG synthesis, and the interconversion between PtdCho and DAG has been shown to play a critical role in channeling hydroxy fatty acids (HFA) to TAG. Although phospholipase D (PLD) has been reported to catalyze the hydrolysis of PtdCho to produce phosphatidic acid which can then be converted to DAG, its potential functions in the channeling of RA from PtdCho to DAG and the assembly of RA on TAG is largely unknown. In the present study, 11 PLD genes were identified from the Castor Bean Genome Database. Gene expression analysis indicated that RcPLD9 is expressed at relatively high levels in developing seeds compared to other plant tissues. Sequence and phylogenetic analyses revealed that RcPLD9 is a homolog of Arabidopsis PLDζ2. Overexpression of RcPLD9 in the Arabidopsis CL7 line producing C18-HFA resulted in RA content reductions in the polar lipid fraction (mainly PtdCho) and mono-HFA-TAG, but increased RA content in di-HFA-TAG. Since part of RA in di-HFA-TAG is derived from HFA-DAG, the results indicated that RcPLD9 facilitates the channeling of RA from PtdCho to DAG for its assembly on TAG in developing seeds.


Asunto(s)
Proteínas de Arabidopsis/genética , Fosfolipasa D/genética , Ácidos Ricinoleicos/metabolismo , Ricinus communis/genética , Triglicéridos/metabolismo , Arabidopsis/genética , Ricinus communis/metabolismo , Aceite de Ricino/química , Aceite de Ricino/genética , Aceite de Ricino/metabolismo , Endospermo/genética , Endospermo/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Ácidos Ricinoleicos/química , Semillas/genética , Semillas/metabolismo , Triglicéridos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA