Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Food Funct ; 13(6): 3368-3380, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35229847

RESUMEN

N-Acetylcysteine (NAC), a well-accepted antioxidant, has been shown to protect against high fat diet (HFD)-induced obesity-associated non-alcoholic fatty liver disease (NAFLD) in mice. However, the underlying mechanism(s) of the beneficial role of NAC is still not fully understood. Our study aimed to evaluate the protective effect of NAC against NAFLD in terms of gut microbiota homeostasis. Thirty-two C57BL/6 mice were divided into four groups, including chow diet (CHOW), high-fat diet (HFD), CHOW + NAC (2 g L-1 in the drinking water), and HFD + NAC groups, and fed for 12 weeks. NAC supplementation significantly improved HFD-induced obesity, dyslipidemia, and liver dysfunction in mice. NAC also rescued HFD-caused disorder of the gut microbiota. Intriguingly, removing intestinal microorganisms by antibiotics (ABX) obviously abolished NAC supplementation-rescued hepatic steatosis and liver injury, indicating the involvement of the gut microbiota in the beneficial role of NAC. The profiles of 1145 expressed hepatic mRNAs were analyzed by whole transcriptome sequencing. Among those, 5 up-expressed mRNAs induced by a HFD, including Cidea, CD36, Acnat2, Mogat1, and GPAT3, were reversed by NAC treatment, which was further verified by a quantitative real-time polymerase chain reaction (qRT-PCR). Meanwhile, those 5 mRNAs exhibited a significant (negative or positive) association with bacterial phyla or genera, including phyla Firmicutes and Bacteroidetes and genera norank_f_Erysipelotrichaceae and Lachnoclostridium, by Spearman's correlation analysis. These results suggested that the homeostasis of the gut microbiota plays an important role in NAC-improved NAFLD by affecting the enterohepatic axis.


Asunto(s)
Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico , 1-Acilglicerol-3-Fosfato O-Aciltransferasa , Acetilcisteína/farmacología , Animales , Dieta Alta en Grasa/efectos adversos , Hígado , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/microbiología
2.
Front Endocrinol (Lausanne) ; 13: 1107071, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36743913

RESUMEN

Objective: As a metabolic disease, one important feature of non-alcoholic fatty liver disease (NAFLD) is the disturbance of the intestinal flora. Spleen-strengthening and liver-draining formula (SLF) is a formula formed according to the theory of "One Qi Circulation" (Qing Dynasty, 1749) of Traditional Chinese Medicine (TCM), which has shown significant therapeutic effect in patients with NAFLD in a preliminary clinical observation. In this study, we aim to explore the mechanism of SLF against NAFLD, especially its effect on glucolipid metabolism, from the perspective of intestinal flora. Methods: A prospective, randomized, controlled clinical study was designed to observe the efficacy and safety of SLF in the treatment of NAFLD. The study participants were randomly and evenly divided into control group and treatment group (SLF group). The control group made lifestyle adjustments, while the SLF group was treated with SLF on top of the control group. Both groups were participated in the study for 12 consecutive weeks. Furthermore, the feces of the two groups were collected before and after treatment. The intestinal flora of each group and healthy control (HC) were detected utilizing 16S rRNA gene sequencing. Results: Compared with the control group, the SLF group showed significant improvements in liver function, controlled attenuation parameter (CAP), and liver stiffness measurement (LSM), meanwhile, patients had significantly lower lipid and homeostasis model assessment of insulin resistance (HOMA-IR) with better security. Intestinal flora 16S rRNA gene sequencing results indicated reduced flora diversity and altered species abundance in patients with NAFLD. At the phylum level, Desulfobacterota levels were reduced. Although Firmicutes and Bacteroidetes did not differ significantly between HC and NAFLD, when grouped by alanine transaminase (ALT) and aspartate transaminase (AST) levels in NAFLD, Firmicutes levels were significantly higher in patients with ALT or AST abnormalities, while Bacteroidetes was significantly lower. Clinical correlation analysis showed that Firmicutes positively correlated with gender, age, ALT, AST, LSM, and Fibroscan-AST (FAST) score, while the opposite was true for Bacteroidetes. At the genus level, the levels of Alistipes, Bilophila, Butyricimonas, Coprococcus, Lachnospiraceae_NK4A136 group Phascolarctobacterium, Ruminococcus, UCG-002, and UCG-003 were reduced, whereas abundance of Tyzzerella increased. There was no statistically significant difference in Firmicutes and Bacteroidota levels in the SLF group before and after treatment, but both bacteria tended to retrace. At the genus level, Coprococcus (Lachnospiraceae family), Lachnospiraceae_NK4A136 group (Lachnospiraceae family), and Ruminococcus (Ruminococcaceae family) were significantly higher in the SLF group after treatment, and there was also a tendency for Bilophila (Desulfovibrionaceae family) to be back-regulated toward HC. Conclusions: SLF can improve liver function and glucolipid metabolism in patients with NAFLD and lower down liver fat content to some extent. SLF could be carried out by regulating the disturbance of intestinal flora, especially Coprococcus, Lachnospiraceae_NK4A136 group, and Ruminococcus genus.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Humanos , Clostridiales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/microbiología , ARN Ribosómico 16S , Bazo/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico
3.
Biomed Pharmacother ; 144: 112314, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34634561

RESUMEN

The consumption of a high-fat diet can cause metabolic syndrome and induces host gut microbial dysbiosis and non-alcoholic fatty liver disease (NAFLD). We evaluated the effect of polyphenol-rich jaboticaba peel and seed powder (JPSP) on the gut microbial community composition and liver health in a mouse model of NAFLD. Three-month-old C57BL/6 J male mice, received either a control (C, 10% of lipids as energy, n = 16) or high-fat (HF, 50% of lipids as energy, n = 64) diet for nine weeks. The HF mice were randomly subdivided into four groups (n = 16 in each group), three of which (HF-J5, HF-J10, and HF-J15) were supplemented with dietary JPSP for four weeks (5%, 10%, and 15%, respectively). In addition to attenuating weight gain, JPSP consumption improved dyslipidemia and insulin resistance. In a dose-dependent manner, JPSP consumption ameliorated the expression of hepatic lipogenesis genes (AMPK, SREBP-1, HGMCoA, and ABCG8). The effects on the microbial community structure were determined in all JPSP-supplemented groups; however, the HF-J10 and HF-J15 diets led to a drastic depletion in the species of numerous bacterial families (Bifidobacteriaceae, Mogibacteriaceae, Christensenellaceae, Clostridiaceae, Dehalobacteriaceae, Peptococcaceae, Peptostreptococcaceae, and Ruminococcaceae) compared to the HF diet, some of which represented a reversal of increases associated with HF. The Lachnospiraceae and Enterobacteriaceae families and the Parabacteroides, Sutterella, Allobaculum, and Akkermansia genera were enriched more in the HF-J10 and HF-J15 groups than in the HF group. In conclusion, JPSP consumption improved obesity-related metabolic profiles and had a strong impact on the microbial community structure, thereby reversing NAFLD and decreasing its severity.


Asunto(s)
Bacterias/crecimiento & desarrollo , Microbioma Gastrointestinal , Intestinos/microbiología , Hígado/metabolismo , Myrtaceae , Enfermedad del Hígado Graso no Alcohólico/terapia , Extractos Vegetales , Prebióticos , Animales , Bacterias/metabolismo , Glucemia/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Disbiosis , Mediadores de Inflamación/sangre , Metabolismo de los Lípidos , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/patología , Polvos
4.
Food Funct ; 12(17): 7836-7850, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34235516

RESUMEN

Fatty liver is associated with intestinal microbiota dysbiosis and low-grade chronic inflammation. Herein we report the interaction of the flavonoid extract from Smilax glabra Roxb. (FSGR) with gut microbiota. Then, FSGR's function of modulating microbiota in a rat model of high-fat diet (HFD) induced fatty liver has been explored. These investigations indicated that the main compound in FSGR, such as astilbin and its isomers, could be metabolized to aglycone, while further splitting resulted in some phenolic acid compounds through a redox reaction. The data obtained clearly showed that FSGR not only alleviated the steatosis degree of liver cells and modulated the contents of short chain fatty acids (SCFAs) in the intestinal tract, but also reversed gut dysbiosis induced by HFD as prognosticated by the decreased ratio of Firmicutes/Bacteroidetes (F/B) and altered gene expression. The results demonstrated that FSGR probably could be used as a prebiotic agent to impede gut dysbiosis and fatty liver-related metabolic disorders.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Flavonoides/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/microbiología , Smilax/química , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Humanos , Masculino , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Prebióticos/análisis , Ratas , Ratas Sprague-Dawley
5.
Int J Biol Macromol ; 186: 501-509, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34271043

RESUMEN

Two homogeneous polysaccharides, GEP-3 and GEP-4, were purified from Gastrodia elata, a precious traditional Chinese medicine. Their structural characteristics were obtained using HPGPC, PMP-HPLC, LC/MS, FT-IR, NMR, and SEM methods. GEP-3 was 1,4-glucan with molecular weight of 20 kDa. Interestingly, GEP-4 comprised of a backbone of →[4)-α-Glcp-(1]10→[4)-α-Glcp-(1→]5[6)-ß-Glcp-(1]11→6)-α-Glcp-(3→ and two branches of ß-Glcp and p-hydroxybenzyl alcohol citrate, with repeating p-hydroxybenzyl alcohol attached to the backbone chain at O-6 position of →4,6)-α-Glcp-(1→ and O-1 position of →3,6)-α-Glcp-(1→. GEP-4 is a novel polysaccharide obtained and characterized for the first time. Bioactivity test indicated that both of them significantly promote the growth of Akkermansia muciniphila (Akk. muciniphila). Furthermore, GEP-3 and GEP-4 promoted the growth of Akk. muciniphila from high-fat diet (HFD) fecal microbiota. These results indicated that GEP-3 and GEP-4 were potential Akk. muciniphila growth promoters.


Asunto(s)
Gastrodia , Extractos Vegetales/farmacología , Polisacáridos/farmacología , Akkermansia/efectos de los fármacos , Akkermansia/crecimiento & desarrollo , Akkermansia/aislamiento & purificación , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Heces/microbiología , Gastrodia/química , Microbioma Gastrointestinal , Ratones , Estructura Molecular , Enfermedad del Hígado Graso no Alcohólico/microbiología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Polisacáridos/química , Polisacáridos/aislamiento & purificación
6.
Int J Biol Macromol ; 183: 1379-1392, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33992651

RESUMEN

Gut microbiota and intestinal permeability have been demonstrated to be the key players in the gut-liver cross talk in nonalcoholic fatty liver disease (NAFLD). Lycium barbarum polysaccharides (LBPs), which seem to be a potential prebiotic, and aerobic exercise (AE) have shown protective effects on NAFLD. However, their combined effects on intestinal microecology remain unclear. This study evaluated the effects of LBP, AE, and its combination (LBP + AE) on gut microbiota composition, intestinal barrier, and hepatic inflammation in NAFLD. LBP + AE showed high abundance and diversity of gut microbiota, restored the gut microbiota composition, increased some Bacteroidetes, short chain fatty acids, but decreased Proteobacteria and the ratio of Firmicutes/Bacteroidetes. Simultaneously, LBP, AE, and LBP + AE could restore the colonic and ileum tight junctions by increasing the expression of zonula occludens-1 and occludin. They also downregulated gut-derived lipopolysaccharides (LPSs), hepatic LPS-binding proteins, inflammatory factors, and related indicators of the LPS/TLR4/NF-κB signaling pathway for the liver. Our results implied that LBP could be considered a prebiotic agent, and LBP + AE might be a promising treatment for NAFLD because it could maintain gut microbiota balance, thereby restoring intestinal barrier and exerting hepatic benefits.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/terapia , Condicionamiento Físico Animal/métodos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/microbiología , Inflamación/terapia , Mucosa Intestinal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/inmunología , Enfermedad del Hígado Graso no Alcohólico/microbiología , Prebióticos
7.
Am J Chin Med ; 49(2): 237-268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33622213

RESUMEN

Intestinal flora is essential for maintaining host health and plays a unique role in transforming Traditional Chinese Medicine (TCM). TCM, as a bodyguard, has saved countless lives and maintained human health in the long history, especially in this COVID-19 pandemic. Pains of diseases have been removed from the effective TCM therapy, such as TCM preparation, moxibustion, and acupuncture. With the development of life science and technology, the wisdom and foresight of TCM has been more displayed. Furthermore, TCM has been also inherited and developed in innovation to better realize the modernization and globalization. Nowadays, intestinal flora transforming TCM and TCM targeted intestinal flora treating diseases have been important findings in life science. More and more TCM researches showed the significance of intestinal flora. Intestinal flora is also a way to study TCM to elucidate the profound theory of TCM. Processing, compatibility, and properties of TCM are well demonstrated by intestinal flora. Thus, it is no doubt that intestinal flora is a core in TCM study. The interaction between intestinal flora and TCM is so crucial for host health. Therefore, it is necessary to sum up the latest results in time. This paper systematically depicted the profile of TCM and the importance of intestinal flora in host. What is more, we comprehensively summarized and discussed the latest progress of the interplay between TCM and intestinal flora to better reveal the core connotation of TCM.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Disbiosis/microbiología , Microbioma Gastrointestinal , Medicina Tradicional China , Enfermedades Autoinmunes/microbiología , Enfermedades Autoinmunes/terapia , COVID-19 , Enfermedades Cardiovasculares/microbiología , Enfermedades Cardiovasculares/terapia , Diabetes Mellitus/microbiología , Diabetes Mellitus/terapia , Electroacupuntura , Enfermedades Gastrointestinales/microbiología , Enfermedades Gastrointestinales/terapia , Humanos , Enfermedades Metabólicas/microbiología , Enfermedades Metabólicas/terapia , Neoplasias/microbiología , Neoplasias/terapia , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/terapia , Obesidad/microbiología , Obesidad/terapia , Insuficiencia Renal Crónica/microbiología , Insuficiencia Renal Crónica/terapia , SARS-CoV-2
8.
Mol Nutr Food Res ; 65(10): e2001178, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33629536

RESUMEN

SCOPE: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease with poor therapeutic strategies. Mastiha possesses antioxidant/anti-inflammatory and lipid-lowering properties. The authors investigate the effectiveness of Mastiha as a nonpharmacological intervention in NAFLD. METHODS AND RESULTS: Ninety-eight patients with NAFLD in three countries (Greece, Italy, Serbia) are randomly allocated to either Mastiha or Placebo for 6 months, as part of a multicenter, randomized, double-blind, placebo-controlled, parallel-group clinical trial. The authors assess NAFLD severity via magnetic resonance imaging (MRI) scanning and LiverMultiScan technique and evaluate the effectiveness of Mastiha through medical, anthropometric, biochemical, metabolomic, and microbiota assessment. Mastiha is not superior to Placebo on changes in iron-corrected T1 (cT1) and Liver Inflammation Fibrosis score (LIF) in entire patient population; however, after BMI stratification (BMI ≤ 35 kg m-2 and BMI > 35 kg m-2 ), severely obese patients show an improvement in cT1 and LIF in Mastiha versus Placebo. Mastiha increases dissimilarity of gut microbiota, as shown by the Bray-Curtis index, downregulates Flavonifractor, a known inflammatory taxon and decreases Lysophosphatidylcholines-(LysoPC) 18:1, Lysophosphatidylethanolamines-(LysoPE) 18:1, and cholic acid compared to Placebo. CONCLUSION: Mastiha supplementation improves microbiota dysbiosis and lipid metabolite levels in patients with NAFLD, although it reduces parameters of liver inflammation/fibrosis only in severely obese patients.


Asunto(s)
Resina Mástique/administración & dosificación , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Adulto , Anciano , Índice de Masa Corporal , Suplementos Dietéticos , Método Doble Ciego , Disbiosis/tratamiento farmacológico , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Grecia , Humanos , Italia , Hígado/patología , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Obesidad/complicaciones , Placebos , Serbia
9.
Biomed Pharmacother ; 135: 111183, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33401222

RESUMEN

BACKGROUND: Our previous studies found that Pure total flavnoids from citrus (PTFC) can effectively improve non-alcoholic steatohepatitis (NASH) in mice. Here, we discuss on the mechanism of PTFC in treating NASH with focus on the regulation of the gut microbiota and bile acid metabolism. METHODS: C57BL/6 J mice were randomly divided into three groups: normal diet group (Normal), high-fat diet group (HFD) and high-fat + PTFC treatment group (PTFC). Mice in the Normal group were fed chow diet, while the other groups were fed high fat diet (HFD) for 16 weeks. In the 5th week, the mice in the PTFC group were treated with 50 mg/kg/day PTFC for an additional twelve weeks. After sacrifice, histopathology of the liver was assessed, and the gut microbial composition was analyzed by 16S rDNA gene sequencing. Bile Acid profiles in serum were determined by ultraperformance liquid chromatography (UPLC-MS/MS). RESULTS: PTFC intervention significantly attenuated HFD-induced NASH symptoms compared with the HFD group in mice. 16S rDNA sequencing showed that PTFC treatment increased the phylogenetic diversity of the HFD-induced microbiota dysbiosis. PTFC intervention significantly increased the relative abundances of Bacteroidaceae and Christensenellaceae. Furthermore, PTFC reduced the content of toxic bile acids, such as TDCA, DCA, TCA, CA and increased the ratio of secondary to primary bile acids. FXR and TGR5 deficiency were significantly alleviated. CONCLUSION: PTFC can improve NASH via the the gut microbiota and bile acid metabolism.


Asunto(s)
Bacterias/efectos de los fármacos , Ácidos y Sales Biliares/metabolismo , Citrus , Flavonoides/farmacología , Microbioma Gastrointestinal , Intestinos/microbiología , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Extractos Vegetales/farmacología , Animales , Bacterias/metabolismo , Citrus/química , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Disbiosis , Flavonoides/aislamiento & purificación , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/patología , Extractos Vegetales/aislamiento & purificación , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
10.
Biomed Pharmacother ; 133: 111014, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33246225

RESUMEN

BACKGROUND: Intestinal microbiota is a novel drug target of metabolic diseases, especially for those with poor oral bioavailability. Nuciferine, with poor bioavailability, has an anti-hyperlipidemic effect at low dosages. PURPOSE: In the present study, we aimed to explore the role of intestinal microbiota in the anti-hyperlipidemic function of nuciferine and identify the key bacterial targets that might confer the therapeutic actions. METHODS: The contribution of gut microbes in the anti-hyperlipidemic effect of nuciferine was evaluated by conventional and antibiotic-established pseudo-sterile mice. Whole-metagenome shotgun sequencing was used to characterize the changes in microbial communities by various agents. RESULTS: Nuciferine exhibited potent anti-hyperlipidemic and liver steatosis-alleviating effects at the doses of 7.5-30 mg/kg. The beneficial effects of nuciferine were substantially abolished when combined with antibiotics. Metagenomic analysis showed that nuciferine significantly shifted the microbial structure, and the enrichment of Akkermansia muciniphila was closely related to the therapeutic effect of nuciferine. CONCLUSIONS: Our results revealed that gut microbiota played an essential role in the anti-hyperlipidemic effect of nuciferine, and enrichment of Akkermansia muciniphila represented a key mechanism through which nuciferine exerted its therapeutic effects.


Asunto(s)
Aporfinas/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Hiperlipidemias/tratamiento farmacológico , Hipolipemiantes/farmacología , Intestinos/microbiología , Lípidos/sangre , Akkermansia/efectos de los fármacos , Akkermansia/genética , Akkermansia/crecimiento & desarrollo , Animales , Antibacterianos/farmacología , Bacteroides/efectos de los fármacos , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Biomarcadores/sangre , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hiperlipidemias/sangre , Hiperlipidemias/microbiología , Masculino , Metagenoma , Metagenómica , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Obesidad/sangre , Obesidad/microbiología , Obesidad/prevención & control , RNA-Seq
11.
Nutrients ; 12(11)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33114130

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a manifestation of metabolic syndrome closely linked to dyslipidemia and gut microbiome dysbiosis. Bilberry anthocyanins (BA) have been reported to have preventive effects against metabolic syndrome. This study aimed to investigate the protective effects and mechanisms of BA in a Western diet (WD)-induced mouse model. The results revealed that supplementation with BA attenuated the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), low-density lipoprotein cholesterol (LDL-c), fat content in liver, 2-thiobarbituric acid reactive substances (TBARS) and α-smooth muscle actin (α-SMA) caused by WD. Furthermore, gut microbiota characterized by 16S rRNA sequencing revealed that BA reduced remarkably the ratio of Firmicutes/Bacteroidetes (F/B) and modified gut microbiome. In particular, BA increased the relative abundance of g_Akkermansia and g_Parabacteroides. Taken together, our data demonstrated that BA might ameliorate WD-induced NAFLD by attenuating dyslipidemia and gut microbiome dysbiosis.


Asunto(s)
Antocianinas/farmacología , Disbiosis/terapia , Dislipidemias/terapia , Microbioma Gastrointestinal/genética , Enfermedad del Hígado Graso no Alcohólico/terapia , Vaccinium myrtillus/química , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , LDL-Colesterol/sangre , Dieta Occidental/efectos adversos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Disbiosis/sangre , Disbiosis/complicaciones , Dislipidemias/sangre , Dislipidemias/microbiología , Hígado/metabolismo , Síndrome Metabólico/microbiología , Síndrome Metabólico/prevención & control , Ratones , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/microbiología , ARN Ribosómico 16S/metabolismo
12.
Nutrients ; 12(11)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105554

RESUMEN

Understanding the importance of the gut microbiota (GM) in non-alcoholic fatty liver disease (NAFLD) has raised the hope for therapeutic microbes. We have shown that high hepatic fat content associated with low abundance of Faecalibacterium prausnitzii in humans and, further, the administration of F. prausnitzii prevented NAFLD in mice. Here, we aimed at targeting F. prausnitzii by prebiotic xylo-oligosaccharides (XOS) to treat NAFLD. First, the effect of XOS on F. prausnitzii growth was assessed in vitro. Then, XOS was supplemented or not with high (HFD, 60% of energy from fat) or low (LFD) fat diet for 12 weeks in Wistar rats (n = 10/group). XOS increased F. prausnitzii growth, having only a minor impact on the GM composition. When supplemented with HFD, XOS ameliorated hepatic steatosis. The underlying mechanisms involved enhanced hepatic ß-oxidation and mitochondrial respiration. Nuclear magnetic resonance (1H-NMR) analysis of cecal metabolites showed that, compared to the HFD, the LFD group had a healthier cecal short-chain fatty acid profile and on the HFD, XOS reduced cecal isovalerate and tyrosine, metabolites previously linked to NAFLD. Cecal branched-chain fatty acids associated positively and butyrate negatively with hepatic triglycerides. In conclusion, XOS supplementation can ameliorate NAFLD by improving hepatic oxidative metabolism and affecting GM.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Glucuronatos/administración & dosificación , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Oligosacáridos/administración & dosificación , Prebióticos/administración & dosificación , Animales , Composición Corporal , Ciego/metabolismo , Ciego/microbiología , Dieta con Restricción de Grasas , Ingestión de Energía , Metabolismo Energético , Faecalibacterium prausnitzii/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Glucosa/metabolismo , Glucuronatos/metabolismo , Glucuronatos/farmacología , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/microbiología , Oligosacáridos/metabolismo , Oligosacáridos/farmacología , Oxidación-Reducción , Ratas , Ratas Wistar , Triglicéridos/metabolismo
13.
Phytomedicine ; 79: 153354, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32992082

RESUMEN

BACKGROUND: Gut microbiota play important roles in insulin homeostasis and the pathogenesis of non-alcoholic fatty liver diseases (NAFLD). Yijin-Tang (YJT), a traditional Korean and Chinese medicine, is used in the treatment of gastrointestinal diseases and obesity-related disorders such as insulin resistance (IR) and NAFLD. PURPOSE: Our aim was to identify the microbiome-mediated effects of YJT on IR and associated NAFLD by integrating metagenomics and hepatic lipid profile. METHODS: C57BL/6J mice were fed a normal chow diet (NC) or high-fat/high-cholesterol (HFHC) diet with or without YJT treatment. Hepatic lipid profiles were analyzed using liquid chromatography/mass spectrometry, and the composition of gut microbiota was investigated using 16S rRNA sequencing. Then, hepatic lipid profiles, gut microbiome, and inflammatory marker data were integrated using multivariate analysis and bioinformatics tools. RESULTS: YJT improved NAFLD, and 39 hepatic lipid metabolites were altered by YJT in a dose-dependent manner. YJT also altered the gut microbiome composition in HFHC-fed mice. In particular, Faecalibaculum rodentium and Bacteroides acidifaciens were altered by YJT in a dose-dependent manner. Also, we found significant correlation among hepatic phosphatidylglycerol metabolites, F. rodentium, and γδ-T cells. Moreover, interleukin (IL)-17, which is secreted by the γδ-T cell when it recognizes lipid antigens, were elevated in HFHC mice and decreased by YJT treatment. In addition, YJT increased the relative abundance of B. acidifaciens in NC or HFHC-fed mice, which is a gut microbiota that mediates anti-obesity and anti-diabetic effects by modulating the gut environment. We also confirmed that YJT ameliorated the gut tight junctions and increased short chain fatty acid (SCFA) levels in the intestine, which resulted in improved IR. CONCLUSION: These data demonstrated that gut microbiome and hepatic lipid profiles are regulated by YJT, which improved the IR and NAFLD in mice with diet-induced obesity.


Asunto(s)
Fármacos Antiobesidad/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Bacteroides/efectos de los fármacos , Colesterol/efectos adversos , Dieta Alta en Grasa/efectos adversos , Firmicutes/efectos de los fármacos , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología , Obesidad/etiología , Fosfatidilgliceroles/metabolismo , Extractos Vegetales/química , ARN Ribosómico 16S
14.
J Nutr Biochem ; 84: 108455, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32688217

RESUMEN

Catechin-rich green tea extract (GTE) protects against nonalcoholic steatohepatitis (NASH) by alleviating gut-derived endotoxin translocation and hepatic Toll-like receptor-4 (TLR4)-nuclear factor κB (NFκB) inflammation. We hypothesized that intact GTE would attenuate NASH-associated responses along the gut-liver axis to a greater extent than purified (-)-epigallocatechin gallate (EGCG) or (+)-catechin (CAT). Male C57BL/6J mice were fed a low-fat diet, a high-fat (HF) diet, or the HF diet with 2% GTE, 0.3% EGCG or 0.3% CAT for 8 weeks prior to assessing NASH relative to endotoxemia, hepatic and intestinal inflammation, intestinal tight junction proteins (TJPs) and gut microbial ecology. GTE prevented HF-induced obesity to a greater extent than EGCG and CAT, whereas GTE and EGCG more favorably attenuated insulin resistance. GTE, EGCG and CAT similarly attenuated serum alanine aminotransferase and serum endotoxin, but only GTE and EGCG fully alleviated HF-induced NASH. However, hepatic TLR4/NFκB inflammatory responses that were otherwise increased in HF mice were similarly attenuated by GTE, EGCG and CAT. Each treatment also similarly prevented the HF-induced loss in expression of intestinal TJPs and hypoxia inducible factor-1α and the otherwise increased levels of ileal and colonic TNFα mRNA and fecal calprotectin protein concentrations. Gut microbial diversity that was otherwise lowered in HF mice was maintained by GTE and CAT only. Further, microbial metabolic functions were more similar between GTE and CAT. Collectively, GTE catechins similarly protect against endotoxin-TLR4-NFκB inflammation in NASH, but EGCG and CAT exert differential prebiotic and antimicrobial activities suggesting that catechin-mediated shifts in microbiota composition are not entirely responsible for their benefits along the gut-liver axis.


Asunto(s)
Catequina/análogos & derivados , Catequina/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Sustancias Protectoras/uso terapéutico , , Animales , Catequina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/patología , Sustancias Protectoras/farmacología , Té/química
15.
J Oleo Sci ; 69(8): 913-927, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32641615

RESUMEN

The present research evaluated the protective effect of basil essential oil nanoemulsion (BNO) and its parent basil essential oil (BO) towards steatohepatitis. Chemical composition of BO was assessed followed by formulation into different BNOs using the low energy spontaneous emulsification technique. An ideal formula of BNO was selected among the others based on its ultra-fine particle size (15.42 nm) and physical stability at 25-37°C, which was then tested in steatohepatitis rat model along with BO. Rats were divided into four groups, the first was fed on balanced diet (C), and the other groups were maintained on high fructose saturated fat diet deficient in choline to induce steatohepatitis, one of such groups served as control steatohepatitis (SC), the other groups received daily oral dose of BO and BNO, respectively. Microbiota (Firmicutes and Bacteroidetes) were counted in colon content and their ratio (F/B) was calculated. Liver fat, plasma lipid profile, plama interlukin-6, plasma lipopolysaccharides and plasma and colon content of lipocaline were assessed with histopathological examination of liver and colon. Results showed that the major volatile components of BO were linalool (60.9 %), eugenol (5.1 %) and eucalyptol (9.5%). SC group exhibited significant increase in liver lipids, plasma triglycerides, total cholesterol (TC), low density lipoprotein cholesterol and significant reduction in high density lipoprotein-cholesterol (HDL-C) compared to C group. Significant increase in plasma TC/HDL-C, interlukin-6, and lipocaline and F/B ratio and lipocaline in colon content were demonstrated in SC group without changes in plasma lipopolysaccharides compared to C. Histopathology of SC group showed liver fatty degeneration and fibroblasts activation while the colon demonstrated erosion and mucosal epithelium detachment. Treatment with either BNO or BO showed improvement compared to SC group. BNO was superior in reducing F/B ratio, liver lipids and histopathological changes. BO was more efficient in reducing TC, triglycerides and low density lipoprotein cholesterol. It is concluded that BO and BNO reduced the progression of nonalcoholic steatohepatitis in rat model. Gut microbiota in relation to steatohepatitis and related new therapies needs further investigations.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/terapia , Aceites Volátiles/administración & dosificación , Fitoterapia , Aceites de Plantas/administración & dosificación , Monoterpenos Acíclicos , Administración Oral , Animales , Modelos Animales de Enfermedad , Emulsiones , Eucaliptol , Eugenol , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Nanopartículas , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Ocimum , Aceites Volátiles/química , Tamaño de la Partícula , Aceites de Plantas/química , Ratas Sprague-Dawley
16.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32717871

RESUMEN

Gut microbiota dysregulation plays a key role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) through its metabolites. Therefore, the restoration of the gut microbiota and supplementation with commensal bacterial metabolites can be of therapeutic benefit against the disease. In this review, we summarize the roles of various bacterial metabolites in the pathogenesis of NAFLD and their therapeutic implications. The gut microbiota dysregulation is a feature of NAFLD, and the signatures of gut microbiota are associated with the severity of the disease through altered bacterial metabolites. Disturbance of bile acid metabolism leads to underactivation of bile acid receptors FXR and TGR5, causal for decreased energy expenditure, increased lipogenesis, increased bile acid synthesis and increased macrophage activity. Decreased production of butyrate results in increased intestinal inflammation, increased gut permeability, endotoxemia and systemic inflammation. Dysregulation of amino acids and choline also contributes to lipid accumulation and to a chronic inflammatory status. In some NAFLD patients, overproduction of ethanol produced by bacteria is responsible for hepatic inflammation. Many approaches including probiotics, prebiotics, synbiotics, faecal microbiome transplantation and a fasting-mimicking diet have been applied to restore the gut microbiota for the improvement of NAFLD.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Mucosa Intestinal , Hígado , Enfermedad del Hígado Graso no Alcohólico , Butiratos/metabolismo , Disbiosis/metabolismo , Disbiosis/microbiología , Disbiosis/patología , Humanos , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Hígado/metabolismo , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/patología , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
17.
Chin J Integr Med ; 26(10): 723-728, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32524395

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases worldwide, causing serious economic and medical burdens. Currently, Chinese medicine (CM) has become an important means in treating NAFLD in China. Intestinal microecology (IM) is an important part of the internal environment in the human body and is involved in the occurrence and development of NAFLD. In this paper, the authors systematically discuss the significance of IM in the pathogenesis of NAFLD and the current status of research on the CM treatment of NAFLD via IM regulation. In combination with our own research practice, we propose that IM is an important target for the treatment of NAFLD with CM and formulate plans for future research to target limitations existing in current studies.


Asunto(s)
Microbioma Gastrointestinal , Medicina Tradicional China/métodos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/microbiología , Humanos
19.
J Agric Food Chem ; 68(24): 6530-6543, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32383865

RESUMEN

This study aimed to investigate the protective mechanism of common buckwheat (Fagopyrum esculentum Moench.) against nonalcoholic fatty liver disease (NAFLD) associated with dyslipidemia in mice that were fed a high-fat and high-cholesterol diet (HFD). Results showed that oral supplementation of common buckwheat significantly improved physiological indexes and biochemical parameters related to dyslipidemia and NAFLD in mice fed with HFD. Furthermore, the HFD-induced reductions in fecal short-chain fatty acids were reversed by common buckwheat intervention, which also increased the fecal bile acid (BA) abundance compared with HFD-induced hyperlipidemic mice. Liver metabolomics based on ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry demonstrated that common buckwheat supplementation made significant regulatory effects on the pentose phosphate pathway, starch and sucrose metabolism, primary BA biosynthesis, and so forth. The results of high-throughput sequencing revealed that common buckwheat supplementation significantly altered the structure of the intestinal microbiota in mice fed with HFD. The correlations between lipid metabolic parameters and intestinal microbial phylotypes were also revealed by the heatmap and network. Additionally, common buckwheat intervention regulated the mRNA expressions of genes responsible for liver lipid metabolism and BA homeostasis, thus promoting BA synthesis and excretion. These findings confirmed that common buckwheat has the outstanding ability of improving lipid metabolism and could be used as a potential functional food for the prevention of NAFLD and hyperlipidemia.


Asunto(s)
Colesterol/metabolismo , Fagopyrum/metabolismo , Hiperlipidemias/dietoterapia , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Animales , Ácidos y Sales Biliares/metabolismo , Colesterol/efectos adversos , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal , Humanos , Hiperlipidemias/etiología , Hiperlipidemias/metabolismo , Hiperlipidemias/microbiología , Hígado/metabolismo , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología
20.
Nutrients ; 12(2)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093158

RESUMEN

Emerging evidence suggests that probiotics are beneficial in non-alcoholic fatty liver disease (NAFLD). This study aimed to explore the effects of two Lactobacillus plantarum strains, ATG-K2 and ATG-K6 (isolated from Korean fermented cabbage), in a rat model of high fat/high fructose (HF/HF) diet-induced NAFLD. Rats with NAFLD were randomized into four groups (HF/HF diet control, (HC); HF/HF diet with silymarin, (PC); HF/HF diet with ATG-K2, (K2); and HF/HF diet with ATG-K6, (K6)) with healthy rats on a normal diet serving as the negative control. After treatment, histopathological and biochemical analyses of the blood and liver tissue were conducted. In addition, fecal microbiota was analyzed using the MiSeq platform. Compared with HC rats, K2 and K6 rats experienced significantly lower body weight gain, displayed decreased hepatic lipid accumulation, had lower serum levels of aspartate aminotransferase and alanine aminotransferase, and showed increased antioxidant enzyme activities. Moreover, de novo lipogenesis-related genes were downregulated following K2 and K6 administration. The fecal microbiota of K2 and K6 rats contained a higher proportion of Bacteriodetes and a lower proportion of Fimicutes than that of HC rats. Taken together, our results suggest that L. plantarum strains ATG-K2 and ATG-K6 are potential therapeutic agents for NAFLD.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Fructosa/efectos adversos , Lactobacillus plantarum , Enfermedad del Hígado Graso no Alcohólico/terapia , Probióticos/uso terapéutico , Alanina Transaminasa/sangre , Animales , Antioxidantes/metabolismo , Aspartato Aminotransferasas/sangre , Dieta de Carga de Carbohidratos/efectos adversos , Heces/microbiología , Lipogénesis , Hígado/metabolismo , Hígado/microbiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/microbiología , Ratas , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA