Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
J Neuroimmunol ; 387: 578280, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171046

RESUMEN

BACKGROUND: A method that can be used in the early stage of multiple sclerosis (MS) to predict the progression of brain volume loss (BVL) has not been fully established. METHODS: To develop a method of predicting progressive BVL in patients with MS (pwMS), eighty-two consecutive Japanese pwMS-with either relapsing-remitting MS (86%) or secondary progressive MS (14%)-and 41 healthy controls were included in this longitudinal retrospective analysis over an observational period of approximately 3.5 years. Using a hierarchical cluster analysis with multivariate imaging data obtained by FreeSurfer analysis, we classified the pwMS into clusters. RESULTS: At baseline and follow-up, pwMS were cross-sectionally classified into three major clusters (Clusters 1, 2, and 3) in ascending order by disability and BVL. Among the patients included in Cluster 1 at baseline, approximately one-third of patients (12/52) transitioned into Cluster 2 at follow-up. The volumes of the corpus callosum, the thalamus, and the whole brain excluding the ventricles were significantly decreased in the transition group compared with the nontransition group and were found to be the most important predictors of transition. CONCLUSION: Decreased volumes of the corpus callosum and thalamus in the relatively early stage of MS may predict the development of BVL.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Atrofia/etiología , Atrofia/patología , Tálamo/diagnóstico por imagen , Enfermedades Neurodegenerativas/patología
2.
Arch Pharm Res ; 47(2): 146-164, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225532

RESUMEN

The gut microbiota that exists in the human gastrointestinal tract is incredibly important for the maintenance of general health as it contributes to multiple aspects of host physiology. Recent research has revealed a dynamic connection between the gut microbiota and the central nervous system, that can influence neurodegenerative diseases (NDs). Indeed, imbalances in the gut microbiota, or dysbiosis, play a vital role in the pathogenesis and progression of human diseases, particularly NDs. Herbal medicine has been used for centuries to treat human diseases, including NDs. These compounds help to relieve symptoms and delay the progression of NDs by improving intestinal barrier function, reducing neuroinflammation, and modulating neurotransmitter production. Notably, herbal medicine can mitigate the progression of NDs by regulating the gut microbiota. Therefore, an in-depth understanding of the potential mechanisms by which herbal medicine regulates the gut microbiota in the treatment of NDs can help explain the pathogenesis of NDs from a novel perspective and propose novel therapeutic strategies for NDs. In this review, we investigate the potential neuroprotective effects of herbal medicine, focusing on its ability to regulate the gut microbiota and restore homeostasis. We also highlight the challenges and future research priorities of the integration of herbal medicine and modern medicine. As the global population ages, access to this information is becoming increasingly important for developing effective treatments for these diseases.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Humanos , Microbioma Gastrointestinal/fisiología , Enfermedades Neurodegenerativas/patología , Sistema Nervioso Central , Encéfalo/patología , Extractos Vegetales/farmacología , Disbiosis/tratamiento farmacológico , Disbiosis/patología
3.
J Integr Neurosci ; 23(1): 11, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38287859

RESUMEN

Parkinson's disease (PD) is a chronic neurodegenerative disease whose main pathological features are the degeneration of dopamine neurons and deposition of α-synuclein in neurons. At present, the most important treatment strategy for PD is drugs, and one of the most used drugs is levodopa. However, this therapy shows many problems, such as tolerance and long-term effects, so other treatment strategies need to be explored. As a traditional Chinese medicine treatment method with effective and few side effects, electroacupuncture is considered a non-drug therapy. It serves as a novel, promising therapeutic approach for the treatment of PD. In this review, the application and the effects of electroacupuncture on PD have been described. Besides, the underlying molecular mechanisms of electroacupuncture on PD that contribute to protecting dopaminergic neurons and reducing α-synuclein levels have been illustrated, including ① anti-oxidant stress response, ② anti-neuroinflammatory response, ③ up-regulation of neurotrophic factors and reduction of nerve cell apoptosis, ④ down-regulation of endoplasmic reticulum stress and improvement of mitochondrial function, ⑤ improvement of the function of the ubiquitin-proteasome system, ⑥ anti-excitatory toxicity response, ⑦ activation of autophagy, and ⑧ modulation of gut microbiota. Achieving a better understanding of the neuroprotective effects of electroacupuncture on PD will provide a theoretical basis and facilitate the application of electroacupuncture on PD.


Asunto(s)
Electroacupuntura , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , alfa-Sinucleína , Fármacos Neuroprotectores/farmacología , Enfermedades Neurodegenerativas/patología , Neuronas Dopaminérgicas/patología
4.
Curr Opin Struct Biol ; 80: 102573, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36966690

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease with no cure where the underlying causes remain elusive. Mitochondrial dysfunction has become a prime suspect in AD pathogenesis since bioenergetic deficits precede the pathology. With advancing structural biology techniques at synchrotrons and cryo-electron microscopes, it is becoming possible to determine the structures of key proteins suspected to contribute to the initiation and propagation of AD, and investigate their interactions. In this review, we provide an overview of the recent developments concerning the structural aspects of mitochondrial protein complexes and their assembly factors involved the production of energy, in pursuit of therapies to halt or even reverse this disease in the early stages when mitochondria are most sensitive to amyloid toxicity.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Mitocondrias/metabolismo , Metabolismo Energético , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo
5.
Handb Clin Neurol ; 192: 73-86, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36796949

RESUMEN

Neurodegenerative diseases are multifactorial. This means that several genetic, epigenetic, and environmental factors contribute to their emergence. Therefore, for the future management of these highly prevalent diseases, it is necessary to change perspective. If a holistic viewpoint is assumed, the phenotype (the clinicopathological convergence) emerges from the perturbation of a complex system of functional interactions among proteins (systems biology divergence). The systems biology top-down approach starts with the unbiased collection of sets of data generated through one or more -omics techniques and has the aim to identify the networks and the components that participate in the generation of a phenotype (disease), often without any available a priori knowledge. The principle behind the top-down method is that the molecular components that respond similarly to experimental perturbations are somehow functionally related. This allows the study of complex and relatively poorly characterized diseases without requiring extensive knowledge of the processes under investigation. In this chapter, the use of a global approach will be applied to the comprehension of neurodegeneration, with a particular focus on the two most prevalent ones, Alzheimer's and Parkinson's diseases. The final purpose is to distinguish disease subtypes (even with similar clinical manifestations) to launch a future of precision medicine for patients with these disorders.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Biología de Sistemas/métodos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/patología , Fenotipo , Medicina de Precisión , Enfermedad de Alzheimer/genética
6.
Handb Clin Neurol ; 193: 53-66, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36803823

RESUMEN

Parkinson disease (PD) is the second most common neurodegenerative disease in the world. Despite its enormous human and societal cost, there is no disease-modifying therapy for PD. This unmet medical need reflects our limited understanding of PD pathogenesis. One of the most important clues comes from the recognition that PD motor symptoms arises from the dysfunction and degeneration of a very select group of neurons in the brain. These neurons have a distinctive set of anatomic and physiologic traits that reflect their role in brain function. These traits elevate mitochondrial stress, potentially making them particularly vulnerable to age, as well as to genetic mutations and environmental toxins linked to PD incidence. In this chapter, the literature supporting this model is outlined, along with gaps in our knowledge base. The translational implications of this hypothesis are then discussed, with a focus on why disease-modification trials have failed to date and what this means for the development of new strategies for altering disease course.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/patología , Mitocondrias/genética , Neuronas/patología , Encéfalo/patología
7.
J Alzheimers Dis ; 91(1): 245-261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36373322

RESUMEN

BACKGROUND: Macrophages of healthy subjects have a pro-resolution phenotype, upload amyloid-ß (Aß) into endosomes, and degrade Aß, whereas macrophages of patients with Alzheimer's disease (AD) generally have a pro-inflammatory phenotype and lack energy for brain clearance of Aß. OBJECTIVE: To clarify the pathogenesis of sporadic AD and therapeutic effects of polyunsaturated fatty acids (PUFA) with vitamins B and D and antioxidants on monocyte/macrophage (MM) migration in the AD brain, MM transcripts in energy and Aß degradation, MM glycome, and macrophage clearance of Aß. METHODS: We followed for 31.3 months (mean) ten PUFA-supplemented neurodegenerative patients: 3 with subjective cognitive impairment (SCI), 2 with mild cognitive impairment (MCI), 3 MCI/vascular cognitive impairment, 2 with dementia with Lewy bodies, and 7 non-supplemented caregivers. We examined: monocyte migration in the brain and a blood-brain barrier model by immunochemistry and electron microscopy; macrophage transcriptome by RNAseq; macrophage glycome by N-glycan profiling and LTQ-Orbitrap mass spectrometry; and macrophage phenotype and phagocytosis by immunofluorescence. RESULTS: MM invade Aß plaques, upload but do not degrade Aß, and release Aß into vessels, which develop cerebrovascular amyloid angiopathy (CAA); PUFA upregulate energy and Aß degradation enzyme transcripts in macrophages; PUFA enhance sialylated N-glycans in macrophages; PUFA reduce oxidative stress and increase pro-resolution MM phenotype, mitochondrial membrane potential, and Aß phagocytosis (p < 0.001). CONCLUSION: Macrophages of SCI, MCI, and AD patients have interrelated defects in the transcriptome, glycome, Aß phagocytosis, and Aß degradation. PUFA mend macrophage transcriptome, enrich glycome, enhance Aß clearance, and benefit the cognition of early-stage AD patients.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/patología , Enfermedades Neurodegenerativas/patología , Transcriptoma , Macrófagos , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/farmacología , Fenotipo
8.
Brain ; 146(1): 13-19, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36004509

RESUMEN

Using patient-derived induced pluripotent stem cells, neurodegenerative disease phenotypes have been recapitulated and their pathogenesis analysed leading to significant progress in drug screening. In amyotrophic lateral sclerosis, high-throughput screening using induced pluripotent stem cells-derived motor neurons has identified candidate drugs. Owing to induced pluripotent stem cell-based drug evaluation/screening, three compounds, retigabine, ropinirole and bosutinib, have progressed to clinical trials. Retigabine blocks hyperexcitability and improves survival in amyotrophic lateral sclerosis patient-derived motor neurons. In a randomized clinical trial (n = 65), treatment with retigabine reduced neuronal excitability after 8 weeks. Ropinirole, identified in a high-throughput screening, attenuates pathological phenotypes in patient-derived motor neurons. In a trial limited by a small sample size (n = 20), ropinirole was tolerable and had clinical benefits on function and survival. A phase 1 study of bosutinib has reported safety and tolerability for 12 weeks. Thus, these clinical trials show safety and positive effects and confirm the reliability of stem cell-based drug discovery. This novel strategy leads to reduced costs and time when compared to animal testing and opens new avenues for therapy in intractable diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Animales , Esclerosis Amiotrófica Lateral/genética , Células Madre Pluripotentes Inducidas/patología , Enfermedades Neurodegenerativas/patología , Evaluación Preclínica de Medicamentos , Reproducibilidad de los Resultados
9.
Braz. J. Pharm. Sci. (Online) ; 59: e22381, 2023. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1439529

RESUMEN

Abstract Acai (Euterpe oleracea Mart.) and guarana (Paullinia cupana Kunth) are native species from the Amazon Forest that in folk medicine are used to treat several diseases due to their anti-inflammatory and antioxidant properties. This review brings together findings from different studies on the potential neuroprotective effects of acai and guarana, highlighting the importance of the conservation and sustainable exploitation of the Amazon Forest. A bibliographic survey in the PubMed database retrieved indexed articles written in English that focused on the effects of acai and guarana in in vitro and in vivo models of neurodegenerative diseases. In general, treatment with either acai or guarana decreased neuroinflammation, increased antioxidant responses, ameliorated depression, and protected cells from neurotoxicity mediated by aggregated proteins. The results from these studies suggest that flavonoids, anthocyanins, and carotenoids found in both acai and guarana have therapeutic potential not only for neurodegenerative diseases, but also for depressive disorders. In addition, acai and guarana show beneficial effects in slowing down the physiological aging process. However, toxicity and efficacy studies are still needed to guide the formulation of herbal medicines from acai and guarana.


Asunto(s)
Ecosistema Amazónico , Paullinia/efectos adversos , Euterpe/efectos adversos , Frutas/clasificación , Técnicas In Vitro/métodos , Fármacos Neuroprotectores/clasificación , Enfermedades Neurodegenerativas/patología , Antiinflamatorios/farmacología , Antioxidantes/farmacología
10.
Acta Med Okayama ; 76(4): 373-383, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36123151

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease of both the central and peripheral / enteric nervous systems. Oxidative stress and neuroinflammation are associated with the pathogenesis of PD, suggesting that anti-oxidative and anti-inflammatory compounds could be neuroprotective agents for PD. Eucommia ulmoides (EU) is a traditional herbal medicine which exerts neuroprotective effects by anti-inflammatory and anti-oxidative properties. Our previous study showed that treatment with chlorogenic acid, a component of EU, protected against neurodegeneration in the central and enteric nervous systems in a PD model. In this study, we examined the effects of EU extract (EUE) administration on dopaminergic neurodegeneration, glial response and α-synuclein expression in the substantia nigra pars compacta (SNpc), and intestinal enteric neurodegeneration in low-dose rotenone-induced PD model mice. Daily oral administration of EUE ameliorated dopaminergic neurodegeneration and α-synuclein accumulation in the SNpc. EUE treatment inhibited rotenone-induced decreases in the number of total astrocytes and in those expressing the antioxidant molecule metallothionein. EUE also prevented rotenone-induced microglial activation. Furthermore, EUE treatment exerted protective effects against intestinal neuronal loss in the PD model. These results suggest that EU exerts neuroprotective effects in the central and enteric nervous systems of rotenone-induced parkinsonism mice, in part by glial modification.


Asunto(s)
Eucommiaceae , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Animales , Antioxidantes/metabolismo , Ácido Clorogénico/metabolismo , Ácido Clorogénico/farmacología , Dopamina/metabolismo , Dopamina/farmacología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Eucommiaceae/metabolismo , Metalotioneína/metabolismo , Metalotioneína/farmacología , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Rotenona/metabolismo , Rotenona/farmacología , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacología
11.
Adv Gerontol ; 35(2): 263-273, 2022.
Artículo en Ruso | MEDLINE | ID: mdl-35727933

RESUMEN

The role of neuronal inflammation developing during the formation of amyloid plaques and Lewy bodies has been investigated. The influence of various exogenous and endogenous factors on the development of neuroinflammation has been established, but the role of various infectious agents in the development of this process has been much less studied. Today, the existence of a universal trigger mechanism of the neurodegenerative process is obvious: a specific pathogen of a bacterial or viral nature (including a long-term persistent in the nervous tissue in a latent state), reactivating, penetrates into certain cerebral structures, where it is influenced by either Aß or resident macrophages of the central nervous system, which, in turn, are activated and induce the release of pro-inflammatory cytokines, leading to the development of neuronal inflammation, autophagy and neurodegeneration. Reactivation of latent, such as herpes, infection in individuals who are carriers of APOE4 significantly increases the risk of developing Alzheimer's disease. Class II genes of the HLA locus (HLA II) may be related to the progression of neurodegenerative diseases. The increase in iron levels in the glia is induced by inflammation, which leads to neurodegeneration. Disruption of the homeostasis of redox-active metals, iron and copper, is an integral part of the pathogenesis of Alzheimer's disease and Parkinson's disease. The developing neuroinflammation leads to the intensification of the processes of peroxidation, oxidation of metals and the development of ferroptosis.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Enfermedad de Alzheimer/etiología , Humanos , Inflamación , Hierro , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/etiología
12.
Biomed J ; 45(5): 733-748, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35568318

RESUMEN

Mitochondria are the organelles that generate energy for the cells and act as biosynthetic and bioenergetic factories, vital for normal cell functioning and human health. Mitochondrial bioenergetics is considered an important measure to assess the pathogenesis of various diseases. Dysfunctional mitochondria affect or cause several conditions involving the most energy-intensive organs, including the brain, muscles, heart, and liver. This dysfunction may be attributed to an alteration in mitochondrial enzymes, increased oxidative stress, impairment of electron transport chain and oxidative phosphorylation, or mutations in mitochondrial DNA that leads to the pathophysiology of various pathological conditions, including neurological and metabolic disorders. The drugs or compounds targeting mitochondria are considered more effective and safer for treating these diseases. In this review, we make an effort to concise the available literature on mitochondrial bioenergetics in various conditions and the therapeutic potential of various drugs/compounds targeting mitochondrial bioenergetics in metabolic and neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Mitocondrias/metabolismo , Metabolismo Energético , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Mitocondrial/farmacología , Fosforilación Oxidativa , Estrés Oxidativo
13.
Biochim Biophys Acta Bioenerg ; 1863(5): 148545, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35339437

RESUMEN

Axons are the long, fragile, and energy-hungry projections of neurons that are challenging to sustain. Together with their associated glia, they form the bulk of the neuronal network. Pathological axon degeneration (pAxD) is a driver of irreversible neurological disability in a host of neurodegenerative conditions. Halting pAxD is therefore an attractive therapeutic strategy. Here we review recent work demonstrating that pAxD is regulated by an auto-destruction program that revolves around axonal bioenergetics. We then focus on the emerging concept that axonal and glial energy metabolism are intertwined. We anticipate that these discoveries will encourage the pursuit of new treatment strategies for neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas , Degeneración Walleriana , Axones/metabolismo , Axones/patología , Metabolismo Energético , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología
14.
Microbiome ; 10(1): 47, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35272713

RESUMEN

BACKGROUND: The gut microbiota can affect neurologic disease by shaping microglia, the primary immune cell in the central nervous system (CNS). While antibiotics improve models of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and the C9orf72 model of amyotrophic lateral sclerosis (ALS), antibiotics worsen disease progression the in SOD1G93A model of ALS. In ALS, microglia transition from a homeostatic to a neurodegenerative (MGnD) phenotype and contribute to disease pathogenesis, but whether this switch can be affected by the microbiota has not been investigated. RESULTS: In this short report, we found that a low-dose antibiotic treatment worsened motor function and decreased survival in the SOD1 mice, which is consistent with studies using high-dose antibiotics. We also found that co-housing SOD1 mice with wildtype mice had no effect on disease progression. We investigated changes in the microbiome and found that antibiotics reduced Akkermansia and butyrate-producing bacteria, which may be beneficial in ALS, and cohousing had little effect on the microbiome. To investigate changes in CNS resident immune cells, we sorted spinal cord microglia and found that antibiotics downregulated homeostatic genes and increased neurodegenerative disease genes in SOD1 mice. Furthermore, antibiotic-induced changes in microglia preceded changes in motor function, suggesting that this may be contributing to disease progression. CONCLUSIONS: Our findings suggest that the microbiota play a protective role in the SOD1 model of ALS by restraining MGnD microglia, which is opposite to other neurologic disease models, and sheds new light on the importance of disease-specific interactions between microbiota and microglia. Video abstract.


Asunto(s)
Esclerosis Amiotrófica Lateral , Microbiota , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Antibacterianos/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones , Ratones Transgénicos , Microglía/patología , Enfermedades Neurodegenerativas/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa/farmacología , Superóxido Dismutasa/uso terapéutico , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/farmacología , Superóxido Dismutasa-1/uso terapéutico
15.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054808

RESUMEN

The development of cell reprogramming technologies became a breakthrough in the creation of new models of human diseases, including neurodegenerative pathologies. The iPSCs-based models allow for the studying of both hereditary and sporadic cases of pathologies and produce deep insight into the molecular mechanisms underlying neurodegeneration. The use of the cells most vulnerable to a particular pathology makes it possible to identify specific pathological mechanisms and greatly facilitates the task of selecting the most effective drugs. To date, a large number of studies on patient-specific models of neurodegenerative diseases has been accumulated. In this review, we focused on the alterations of such a ubiquitous and important intracellular regulatory pathway as calcium signaling. Here, we reviewed and analyzed the data obtained from iPSCs-based models of different neurodegenerative disorders that demonstrated aberrant calcium signaling.


Asunto(s)
Señalización del Calcio , Células Madre Pluripotentes Inducidas/patología , Modelos Biológicos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Evaluación Preclínica de Medicamentos , Humanos , Enfermedades Neurodegenerativas/terapia
16.
Biomed Pharmacother ; 147: 112654, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35086031

RESUMEN

As the important active ingredients of Astragali Radix (AR), Astragalus polysaccharides (APs) have therapeutic potential for multiple diseases including nervous system diseases, cardiovascular diseases, diabetes mellitus, and cancer. A large number of cell experiments combined with animal experiments have shed light on the therapeutic mechanisms and therapeutic effects of APs on a variety of diseases. However, the clinical application of APs is not widespread, except for the use of injected APs in the clinical adjuvant therapy of cancer. Due to the excessive molecular weight, bulky, low solubility and negatively charged characteristics, APs have low bioavailability which limits their clinical application. With the deepening of researches on the pharmaceutics of APs, the nanocrystals and moderate structural modification enormously boost the bioavailability, which may expand the application of APs. This review summarizes the studies in pharmacodynamic properties and pharmaceutics of APs, with the purpose of providing experimental researches and clinical application data for expanding the clinical development through expounding the therapeutic mechanisms and pharmaceutical researches of APs.


Asunto(s)
Planta del Astrágalo/química , Polisacáridos/farmacología , Animales , Enfermedades Cardiovasculares/patología , Química Farmacéutica , Diabetes Mellitus/patología , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Hipoxia/patología , Proteínas de Punto de Control Inmunitario/efectos de los fármacos , Enfermedades del Sistema Inmune/patología , Enfermedades Metabólicas/patología , Peso Molecular , Nanopartículas , Neoplasias/patología , Enfermedades Neurodegenerativas/patología , Estrés Oxidativo/efectos de los fármacos , Polisacáridos/química , Polisacáridos/farmacocinética
17.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34768858

RESUMEN

Functional amino acids provide great potential for treating autophagy-related diseases by regulating autophagy. The purpose of the autophagy process is to remove unwanted cellular contents and to recycle nutrients, which is controlled by many factors. Disordered autophagy has been reported to be associated with various diseases, such as cancer, neurodegeneration, aging, and obesity. Autophagy cannot be directly controlled and dynamic amino acid levels are sufficient to regulate autophagy. To date, arginine, leucine, glutamine, and methionine are widely reported functional amino acids that regulate autophagy. As a signal relay station, mammalian target of rapamycin complex 1 (mTORC1) turns various amino acid signals into autophagy signaling pathways for functional amino acids. Deficiency or supplementation of functional amino acids can immediately regulate autophagy and is associated with autophagy-related disease. This review summarizes the mechanisms currently involved in autophagy and amino acid sensing, diverse signal transduction among functional amino acids and autophagy, and the therapeutic appeal of amino acids to autophagy-related diseases. We aim to provide a comprehensive overview of the mechanisms of amino acid regulation of autophagy and the role of functional amino acids in clinical autophagy-related diseases and to further convert these mechanisms into feasible therapeutic applications.


Asunto(s)
Aminoácidos/metabolismo , Autofagia/fisiología , Transducción de Señal/fisiología , Envejecimiento/fisiología , Arginina/metabolismo , Glutamina/metabolismo , Humanos , Leucina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metionina/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/patología , Obesidad/patología
18.
Biomolecules ; 11(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34680088

RESUMEN

Metabolic syndrome increases the risk of vascular dementia and other neurodegenerative disorders. Recent studies underline that platelets play an important role in linking peripheral with central metabolic and inflammatory mechanisms. In this narrative review, we address the activation of platelets in metabolic syndrome, their effects on neuronal processes and the role of the mediators (e.g., serotonin, platelet-derived growth factor). Emerging evidence shows that nutritional compounds and their metabolites modulate these interactions-specifically, long chain fatty acids, endocannabinoids and phenolic compounds. We reviewed the role of activated platelets in neurovascular processes and nutritional compounds in platelet activation.


Asunto(s)
Plaquetas/metabolismo , Síndrome Metabólico/dietoterapia , Enfermedades Neurodegenerativas/dietoterapia , Nutrientes/uso terapéutico , Coagulación Sanguínea/efectos de los fármacos , Endocannabinoides/genética , Humanos , Síndrome Metabólico/sangre , Síndrome Metabólico/complicaciones , Síndrome Metabólico/patología , Enfermedades Neurodegenerativas/sangre , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neurodegenerativas/patología , Activación Plaquetaria/efectos de los fármacos
19.
Biomolecules ; 11(10)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34680155

RESUMEN

Hyperbaric oxygen treatment (HBOT)-the medical use of oxygen at environmental pressure greater than one atmosphere absolute-is a very effective therapy for several approved clinical situations, such as carbon monoxide intoxication, incurable diabetes or radiation-injury wounds, and smoke inhalation. In recent years, it has also been used to improve cognition, neuro-wellness, and quality of life following brain trauma and stroke. This opens new avenues for the elderly, including the treatment of neurological and neurodegenerative diseases and improvement of cognition and brain metabolism in cases of mild cognitive impairment. Alongside its integration into clinics, basic research studies have elucidated HBOT's mechanisms of action and its effects on cellular processes, transcription factors, mitochondrial function, oxidative stress, and inflammation. Therefore, HBOT is becoming a major player in 21st century research and clinical treatments. The following review will discuss the basic mechanisms of HBOT, and its effects on cellular processes, cognition, and brain disorders.


Asunto(s)
Oxigenoterapia Hiperbárica/métodos , Inflamación/terapia , Enfermedades Neurodegenerativas/terapia , Oxígeno/uso terapéutico , Anciano , Encéfalo/efectos de los fármacos , Encéfalo/patología , Monóxido de Carbono/metabolismo , Cognición/efectos de los fármacos , Cognición/fisiología , Humanos , Inflamación/metabolismo , Inflamación/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Estrés Oxidativo/efectos de los fármacos , Calidad de Vida
20.
Oxid Med Cell Longev ; 2021: 3149223, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34584616

RESUMEN

Due to its vast therapeutic potential, the plant-derived polyphenol curcumin is utilized in an ever-growing number of health-related applications. Here, we report the extraction methodologies, therapeutic properties, advantages and disadvantages linked to curcumin employment, and the new strategies addressed to improve its effectiveness by employing advanced nanocarriers. The emerging nanotechnology applications used to enhance CUR bioavailability and its targeted delivery in specific pathological conditions are collected and discussed. In particular, new aspects concerning the main strategic nanocarriers employed for treating inflammation and oxidative stress-related diseases are reported and discussed, with specific emphasis on those topically employed in conditions such as wounds, arthritis, or psoriasis and others used in pathologies such as bowel (colitis), neurodegenerative (Alzheimer's or dementia), cardiovascular (atherosclerosis), and lung (asthma and chronic obstructive pulmonary disease) diseases. A brief overview of the relevant clinical trials is also included. We believe the review can provide the readers with an overview of the nanostrategies currently employed to improve CUR therapeutic applications in the highlighted pathological conditions.


Asunto(s)
Artritis/tratamiento farmacológico , Curcumina/uso terapéutico , Portadores de Fármacos/química , Enfermedades Neurodegenerativas/tratamiento farmacológico , Artritis/patología , Disponibilidad Biológica , Curcumina/química , Estabilidad de Medicamentos , Humanos , Nanotecnología , Enfermedades Neurodegenerativas/patología , Plantas Medicinales/química , Plantas Medicinales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA