Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(3): 349-370, mayo 2024. ilus
Artículo en Inglés | LILACS | ID: biblio-1538077

RESUMEN

Age-related neurological disorders (ANDs), including neurodegenerative diseases, are complex illnesses with an increasing risk with advancing years. The central nervous system's neuropathological conditions, including oxidative stress, neuroinflammation, and protein misfolding, are what define ANDs. Due to the rise in age-dependent prevalence, efforts have been made to combat ANDs. Vitis viniferahas a long history of usageto treat a variety of illness symptoms. Because multiple ligand sites may be targeted, Vitis viniferacomponents can be employed to treat ANDs. This is demonstrated by the link between the structure and action of these compounds. This review demonstrates that Vitis viniferaand its constituents, including flavonoids, phenolic compounds, stilbenoidsandaromatic acids, are effective at reducing the neurological symptoms and pathological conditions of ANDs. This is done by acting as an antioxidant and anti-inflammatory. The active Vitis vinifera ingredients have therapeutic effects on ANDs, as this review explains.


Las enfermedades neurológicas asociadas a la edad (AND, por su sigla en inglés) incluyendo las enfermedades neurodegenerativas, son enfermedades complejas con un riesgo creciente con la edad. Las condiciones neuropatológicas del sistema nervioso central, que incluyen el estrés oxidativo, la neuro inflamación, y el plegado erróneo de proteínas, son lo que define las AND. Debido al aumento en la prevalencia dependiente de la edad, se han hecho esfuerzos para combatir las AND. Vitis vinifera tiene una larga historia de uso para el tratamiento de síntomas. Puesto que puede hacer objetivo a muchos sitios ligando, los componentes de Vitis viniferase pueden utilizar para tratar AND. Esto se demuestra por el vínculo entre la estructura y la acción de estos compuestos. Esta revisión demuestra que la Vitis viniferay sus constituyentes, incluídos los flavonoides, componentes fenólicos, estilbenoides, y ácidos aromáticos, son efectivos para reducir los síntomas neurológicos y las condiciones patológicas de AND. Esto se produce por su acción como antioxidante y antiinflamatorio. Los ingredientes activos de Vitis vinifera tienen efectos terapéuticos en AND, y esta revisión lo explica.


Asunto(s)
Extractos Vegetales/uso terapéutico , Vitis/química , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico
2.
Expert Opin Drug Discov ; 19(5): 565-585, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38509691

RESUMEN

INTRODUCTION: Human neurodevelopmental and neurodegenerative diseases (NDevDs and NDegDs, respectively) encompass a broad spectrum of disorders affecting the nervous system with an increasing incidence. In this context, the nematode C. elegans, has emerged as a benchmark model for biological research, especially in the field of neuroscience. AREAS COVERED: The authors highlight the numerous advantages of this tiny worm as a model for exploring nervous system pathologies and as a platform for drug discovery. There is a particular focus given to describing the existing models of C. elegans for the study of NDevDs and NDegDs. Specifically, the authors underscore their strong applicability in preclinical drug development. Furthermore, they place particular emphasis on detailing the common techniques employed to explore the nervous system in both healthy and diseased states. EXPERT OPINION: Drug discovery constitutes a long and expensive process. The incorporation of invertebrate models, such as C. elegans, stands as an exemplary strategy for mitigating costs and expediting timelines. The utilization of C. elegans as a platform to replicate nervous system pathologies and conduct high-throughput automated assays in the initial phases of drug discovery is pivotal for rendering therapeutic options more attainable and cost-effective.


Asunto(s)
Caenorhabditis elegans , Modelos Animales de Enfermedad , Desarrollo de Medicamentos , Descubrimiento de Drogas , Enfermedades Neurodegenerativas , Caenorhabditis elegans/efectos de los fármacos , Animales , Humanos , Descubrimiento de Drogas/métodos , Desarrollo de Medicamentos/métodos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/fisiopatología , Ensayos Analíticos de Alto Rendimiento/métodos , Evaluación Preclínica de Medicamentos/métodos , Trastornos del Neurodesarrollo/tratamiento farmacológico , Trastornos del Neurodesarrollo/fisiopatología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/fisiopatología
3.
Cell Biochem Funct ; 42(2): e3964, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38439154

RESUMEN

Kaempferol, a flavonoid compound found in various fruits, vegetables, and medicinal plants, has garnered increasing attention due to its potential neuroprotective effects in neurological diseases. This research examines the existing literature concerning the involvement of kaempferol in neurological diseases, including stroke, Parkinson's disease, Alzheimer's disease, neuroblastoma/glioblastoma, spinal cord injury, neuropathic pain, and epilepsy. Numerous in vitro and in vivo investigations have illustrated that kaempferol possesses antioxidant, anti-inflammatory, and antiapoptotic properties, contributing to its neuroprotective effects. Kaempferol has been shown to modulate key signaling pathways involved in neurodegeneration and neuroinflammation, such as the PI3K/Akt, MAPK/ERK, and NF-κB pathways. Moreover, kaempferol exhibits potential therapeutic benefits by enhancing neuronal survival, attenuating oxidative stress, enhancing mitochondrial calcium channel activity, reducing neuroinflammation, promoting neurogenesis, and improving cognitive function. The evidence suggests that kaempferol holds promise as a natural compound for the prevention and treatment of neurological diseases. Further research is warranted to elucidate the underlying mechanisms of action, optimize dosage regimens, and evaluate the safety and efficacy of this intervention in human clinical trials, thereby contributing to the advancement of scientific knowledge in this field.


Asunto(s)
Enfermedades del Sistema Nervioso , Fármacos Neuroprotectores , Humanos , Neuroprotección , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Quempferoles/farmacología , Quempferoles/uso terapéutico , Fosfatidilinositol 3-Quinasas , Enfermedades del Sistema Nervioso/tratamiento farmacológico
4.
Phytother Res ; 38(5): 2276-2302, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424688

RESUMEN

Saffron (Crocus sativus), as an herbal medicine, has been extensively investigated for treating neurological and psychiatric disorders. This systematic review aimed to assess the overall effects of saffron on cognition, depression, anxiety, sleep disorders, attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD). Relevant randomized controlled trials (RCTs) were identified by searching PubMed/Medline, Web of Science, and Clinical Trials databases up to June 2023 according to search terms and inclusion criteria. The participants were either healthy or suffering from some diseases, including neurological and psychiatric disorders, and consumed saffron or its extracts as an intervention. The risk of bias was assessed according to the Cochrane guidelines, and the PRISMA statement was followed. The meta-analysis was performed using RevMan and STATA software. A random-effects or fixed-effects model was used to calculate the pooled effect sizes. Forty-six RCTs were enrolled, and the duration of these trials ranged from 4 to 48 weeks with saffron or its extracts, both alone or in combination with conventional drugs. Saffron was more effective than placebo in improving cognition, depression with an overall effect size of -4.26 (95% CI: -5.76, -2.77), anxiety of -3.75 (95% CI: -5.83, -1.67), and sleep disorders of -1.91 (95% CI: -2.88, -0.93). Saffron was non-inferior to conventional drugs for treating cognitive disorders, depression, anxiety, ADHD, and OCD, and it exhibited good tolerance with few side effects. Saffron may exert protective roles for neurological and psychiatric disorders and represents a relatively favorable and safe treatment.


Asunto(s)
Crocus , Extractos Vegetales , Crocus/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Trastornos del Sueño-Vigilia/tratamiento farmacológico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Fitoterapia , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastornos Mentales/tratamiento farmacológico , Depresión/tratamiento farmacológico , Trastorno Obsesivo Compulsivo/tratamiento farmacológico , Ansiedad/tratamiento farmacológico
5.
Peptides ; 174: 171166, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309582

RESUMEN

Vasopressin (VP) is a nonapeptide made of nine amino acids synthesized by the hypothalamus and released by the pituitary gland. VP acts as a neurohormone, neuropeptide and neuromodulator and plays an important role in the regulation of water balance, osmolarity, blood pressure, body temperature, stress response, emotional challenges, etc. Traditionally VP is known to regulate the osmolarity and tonicity. VP and its receptors are widely expressed in the various region of the brain including cortex, hippocampus, basal forebrain, amygdala, etc. VP has been shown to modulate the behavior, stress response, circadian rhythm, cerebral blood flow, learning and memory, etc. The potential role of VP in the regulation of these neurological functions have suggested the therapeutic importance of VP and its analogues in the management of neurological disorders. Further, different VP analogues have been developed across the world with different pharmacotherapeutic potential. In the present work authors highlighted the therapeutic potential of VP and its analogues in the treatment and management of various neurological disorders.


Asunto(s)
Enfermedades del Sistema Nervioso , Vasopresinas , Humanos , Vasopresinas/uso terapéutico , Vasopresinas/metabolismo , Hipotálamo/metabolismo , Hipófisis/metabolismo , Encéfalo/metabolismo , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo , Receptores de Vasopresinas/metabolismo , Arginina Vasopresina/metabolismo
6.
Int J Med Mushrooms ; 26(2): 11-23, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38421693

RESUMEN

Ganoderic acid A (GAA) is one of the major triterpenoids in Ganoderma lucidum (GL). Accumulating evidence has indicated that GAA demonstrates multiple pharmacological effects and exhibits treatment potential for various neurological disorders. Here, the effects and mechanisms of GAA in the treatment of neurological disorders were evaluated and discussed through previous research results. By summarizing previous research results, we found that GAA may play a neuroprotective role through various mechanisms: anti-inflammatory, anti-oxidative stress, anti-apoptosis, protection of nerve cells, and regulation of nerve growth factor. Therefore, GAA is a promising natural neuroprotective agent and this review would contribute to the future development of GAA as a novel clinical candidate drug for treating neurological diseases.


Asunto(s)
Ácidos Heptanoicos , Lanosterol/análogos & derivados , Enfermedades del Sistema Nervioso , Fármacos Neuroprotectores , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Lanosterol/farmacología , Lanosterol/uso terapéutico , Enfermedades del Sistema Nervioso/tratamiento farmacológico
7.
J Agric Food Chem ; 72(5): 2411-2433, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38284360

RESUMEN

As an important signaling pathway in multicellular eukaryotes, the Wnt signaling pathway participates in a variety of physiological processes. Recent studies have confirmed that the Wnt signaling pathway plays an important role in neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. The regulation of Wnt signaling by natural compounds in herbal medicines and nutraceuticals has emerged as a potential strategy for the development of new drugs for neurological disorders. Purpose: The aim of this review is to evaluate the latest research results on the efficacy of natural compounds derived from herbs and nutraceuticals in the prevention and treatment of neurological disorders by regulating the Wnt pathway in vivo and in vitro. A manual and electronic search was performed for English articles available from PubMed, Web of Science, and ScienceDirect from the January 2010 to February 2023. Keywords used for the search engines were "natural products,″ "plant derived products,″ "Wnt+ clinical trials,″ and "Wnt+,″ and/or paired with "natural products″/″plant derived products", and "neurological disorders." A total of 22 articles were enrolled in this review, and a variety of natural compounds from herbal medicine and nutritional foods have been shown to exert therapeutic effects on neurological disorders through the Wnt pathway, including curcumin, resveratrol, and querctrin, etc. These natural products possess antioxidant, anti-inflammatory, and angiogenic properties, confer neurovascular unit and blood-brain barrier integrity protection, and affect neural stem cell differentiation, synaptic formation, and neurogenesis, to play a therapeutic role in neurological disorders. In various in vivo and in vitro studies and clinical trials, these natural compounds have been shown to be safe and tolerable with few adverse effects. Natural compounds may serve a therapeutic role in neurological disorders by regulating the Wnt pathway. This summary of the research progress of natural compounds targeting the Wnt pathway may provide new insights for the treatment of neurological disorders and potential targets for the development of new drugs.


Asunto(s)
Productos Biológicos , Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Plantas Medicinales , Humanos , Vía de Señalización Wnt , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Suplementos Dietéticos , Productos Biológicos/farmacología
8.
Curr Nutr Rep ; 12(4): 813-829, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37996669

RESUMEN

PURPOSE OF REVIEW: Docosahexaenoic acid and eicosapentaenoic acid are the two essential long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFAs) promoting human health which are obtained from diet or supplementation. The eicosanoids derived from ω-6 and ω-3 PUFAs have opposite characteristics of pro- and anti-inflammatory activities. The proinflammatory effects of ω-6 PUFAs are behind the pathology of the adverse health conditions of PUFA metabolism like cardiovascular diseases, neurological disorders, and inflammatory diseases. A balanced ω-6 to ω-3 ratio of 1-4:1 is critical to prevent the associated disorders. But due to modern agricultural practices, there is a disastrous shift in this ratio to 10-20:1. This review primarily aims to discuss the myriad health potentials of ω-3 PUFAs uncovered through recent research. It further manifests the importance of maintaining a balanced ω-6 to ω-3 PUFA ratio. RECENT FINDINGS: ω-3 PUFAs exhibit protective effects against diabetes mellitus-associated complications including diabetic retinopathy, diabetic nephropathy, and proteinuria. COVID-19 is also not an exception to the health benefits of ω-3 PUFAs. Supplementation of ω-3 PUFAs improved the respiratory and clinical symptoms in COVID-19 patients. ω-3 PUFAs exhibit a variety of health benefits including anti-inflammatory property and antimicrobial property and are effective in protecting against various health conditions like atherosclerosis, cardiovascular diseases, diabetes mellitus, COVID-19, and neurological disorders. In the present review, various health potentials of ω-3 PUFAs are extensively reviewed and summarized. Further, the importance of a balanced ω-6 to ω-3 PUFA ratio has been emphasized besides stating the diverse sources of ω-3 PUFA.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Diabetes Mellitus , Ácidos Grasos Omega-3 , Enfermedades del Sistema Nervioso , Humanos , Enfermedades Cardiovasculares/prevención & control , Ácidos Grasos Omega-3/farmacología , Antiinflamatorios/farmacología , Enfermedades del Sistema Nervioso/tratamiento farmacológico
9.
Neurosci Biobehav Rev ; 155: 105452, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925093

RESUMEN

Traditional and scientific evidence attribute numerous bioactivities of Licorice (Glycyrrhiza glabra Linn.) in aging-related disorders. In this state-of-art review, an extensive search in several databases was conducted to collect all relevant literature and comprehensively analyze Licorice's pharmacological attributes, neuroprotective properties, safety, and its mechanistic role in treating various neurological conditions. Network pharmacology was employed for the first time exploring the mechanistic role of Licorice in neurological disorders. Its neuroprotective role is attributed to phytoconstituents, including liquiritin, glycyrrhizic acid, liquiritigenin, glabridin, 18ß-glycyrrhetinic acid, quercetin, isoliquiritigenin, paratocarpin B, glycyglabrone, and hispaglabridin B, as evident from in vitro and in vivo studies. Network pharmacology analysis reveals that these compounds protect against long-term depression, aging-associated diseases, Alzheimer's disease, and other addictions through interactions with cholinergic, dopaminergic, and serotonergic proteins, validated in animal studies only. Future clinical trials are warranted as Licorice administration has a limiting factor of mild hypertension and hypokalemia. Hopefully, scientific updates on Licorice will propagate a paradigm shift in medicine, research propagation, and development of the central nervous system phytopharmaceuticals.


Asunto(s)
Ácido Glicirretínico , Glycyrrhiza , Enfermedades del Sistema Nervioso , Animales , Alimentos Funcionales , Ácido Glicirretínico/farmacología , Extractos Vegetales/farmacología , Ácido Glicirrínico/farmacología , Enfermedades del Sistema Nervioso/tratamiento farmacológico
10.
Medicine (Baltimore) ; 102(43): e35669, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37904435

RESUMEN

Neurotoxicity could be induced by long exposure to manganese (Mn). The traditional Chinese medicine, Corididius chinensis (Cc) has been proven to have a certain curative effect on Mn poisoning. Therefore, network pharmacology was performed to explore potential therapeutic targets and pharmacological mechanisms of Cc. We found ingredients by building our own database through literature, (which is the first to screen traditional Chinese medicine without traditional Chinese medicine systems pharmacology database and analysis platform databases and it is applicable whenever a Chinese medicine is not found in the traditional Chinese medicine systems pharmacology database and analysis platform database) and potential targets of Mn-induced nervous system diseases from the OMIM, GeneCards, and DrugBank database were identified. A protein-protein interaction network was constructed using Cytoscape. Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analysis was performed for the treatment of Mn-induced nervous system disease, and molecular docking was carried out to verify the results of network pharmacology analysis. After screening disease-related genes, 12 intersecting genes overlapped between 284 target proteins of the active compound and 195 potential disease targets. The pathways of neurodegeneration_multiple diseases and Alzheimer disease pathway may be the most potential pathway of Cc treating Mn-induced nervous system diseases. CASP9 and PTGS2 in neurodegeneration_multiple diseases, NOS1, NOS2 in Alzheimer disease pathway were identified as core targets. Especially, molecule docking analysis unveil that aspongpyrazine A docking NOS2 is the most potential therapeutic drug and target, which primarily involved in the processes of oxidative stress and inflammation.


Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Enfermedades del Sistema Nervioso , Humanos , Simulación del Acoplamiento Molecular , Manganeso , Farmacología en Red , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedades del Sistema Nervioso/inducido químicamente , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
11.
Mol Neurobiol ; 60(11): 6383-6394, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37453993

RESUMEN

Neurological diseases place a substantial burden on public health and have a serious impact on the quality of life of patients. Despite the multifaceted pathological process involved in the occurrence and development of these neurological diseases, each disease has its own unique pathological characteristics and underlying molecular mechanisms which trigger their onset. Thus, it is unlikely to achieve effective treatment of neurological diseases by means of a single approach. To this end, we reason that it is pivotal to seek an efficient strategy that implements multitherapeutic targeting and addresses the multifaceted pathological process to overcome the complex issues related to neural dysfunction. In recent years, natural medicinal plant-derived monomers have received extensive attention as new neuroprotective agents for treatment of neurological disorders. Fisetin, a flavonoid, has emerged as a novel potential molecule that enhances neural protection and reverses cognitive abnormalities. The neuroprotective effects of fisetin are attributed to its multifaceted biological activity and multiple therapeutic mechanisms associated with different neurological disorders. In this review article, we summarize recent research progression regarding the pharmacological effects of fisetin in treating several neurological diseases and the potential mechanisms.


Asunto(s)
Enfermedades del Sistema Nervioso , Fármacos Neuroprotectores , Humanos , Neuroprotección , Calidad de Vida , Flavonoles , Flavonoides/farmacología , Flavonoides/uso terapéutico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
12.
Biomed Pharmacother ; 162: 114692, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37058817

RESUMEN

Neurological disorders with various etiologies impacting the nervous system are prevalent in clinical practice. Long non-coding RNA (lncRNA) molecules are functional RNA molecules exceeding 200 nucleotides in length that do not encode proteins, but participate in essential activities. Research indicates that lncRNAs may contribute to the pathogenesis of neurological disorders, and may be potential targets for their treatment. Phytochemicals in traditional Chinese herbal medicine (CHM) have been found to exert neuroprotective effects by targeting lncRNAs and regulating gene expression and various signaling pathways. We aim to establish the development status and neuroprotective mechanism of phytochemicals that target lncRNAs through a thorough literature review. A total of 369 articles were retrieved through manual and electronic searches of PubMed, Web of Science, Scopus and CNKI databases from inception to September 2022. The search utilized combinations of natural products, lncRNAs, neurological disorders, and neuroprotective effects as keywords. The included studies, a total of 31 preclinical trials, were critically reviewed to present the current situation and the progress in phytochemical-targeted lncRNAs in neuroprotection. Phytochemicals have demonstrated neuroprotective effects in preclinical studies of various neurological disorders by regulating lncRNAs. These disorders include arteriosclerotic ischemia-reperfusion injury, ischemic/hemorrhagic stroke, Alzheimer's disease, Parkinson's disease, glioma, peripheral nerve injury, post-stroke depression, and depression. Several phytochemicals exert neuroprotective roles through mechanisms such as anti-inflammatory, antioxidant, anti-apoptosis, autophagy regulation, and antagonism of Aß-induced neurotoxicity. Some phytochemicals targeted lncRNAs and served a neuroprotective role by regulating microRNA and mRNA expression. The emergence of lncRNAs as pathological regulators provides a novel direction for the study of phytochemicals in CHM. Elucidating the mechanism of phytochemicals regulating lncRNAs will help to identify new therapeutic targets and promote their application in precision medicine.


Asunto(s)
Enfermedades del Sistema Nervioso , Fármacos Neuroprotectores , ARN Largo no Codificante , Humanos , Neuroprotección , ARN Largo no Codificante/genética , Fármacos Neuroprotectores/farmacología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Fitoquímicos/farmacología
13.
Biogerontology ; 24(3): 329-346, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36828983

RESUMEN

Genistein (GEN) is a non-steroidal phytoestrogen that belongs to the isoflavone class. It is abundantly found in soy. Soy and its products are used as food components in many countries including India. The present review is focused to address roles of GEN in brain functions in the context of learning and memory as a function of aging and neurological disorders. Memory decline is one of the most disabling features observed during normal aging and age-associated neurodegenerative disorders namely Alzheimer's disease (AD) and Parkinson's disease (PD), etc. Anatomical, physiological, biochemical and molecular changes in the brain with advancement of age and pathological conditions lead to decline of cognitive functions. GEN is chemically comparable to estradiol and binds to estrogen receptors (ERs). GEN acts through ERs and mimics estrogen action. After binding to ERs, GEN regulates a plethora of brain functions including learning and memory; however detailed study still remains elusive. Due to the neuroprotective, anti-oxidative and anti-inflammatory properties, GEN is used to restore or improve memory functions in different animal models and humans. The present review may be helpful to understand roles of GEN in learning and memory during aging and neurological disorders, its direction of research and therapeutic perspectives.


Asunto(s)
Genisteína , Enfermedades del Sistema Nervioso , Animales , Humanos , Genisteína/farmacología , Genisteína/uso terapéutico , Fitoestrógenos/farmacología , Estradiol , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Envejecimiento
14.
Biomed Pharmacother ; 159: 114229, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36652731

RESUMEN

Neurological disorders are characterized by high morbidity, disability, and mortality rates, which seriously threaten human health. However, clinically satisfactory agents for treatment are still currently lacking. Therefore, finding neuroprotective agents with minimum side effects and better efficacy is a challenge. Chinese herbal medicine, particularly natural preparations extracted from herbs or plants, has become an unparalleled resource for discovering new agent candidates. Astragali Radix is an important Qi tonic drug in traditional Chinese medicine and has a long medicinal history. As a natural medicine, it has a good prevention and treatment effect on neurological disorders. Here, the role and mechanism of astragaloside IV in the treatment of neurological disorders were evaluated and discussed through previous research results. Related information from major scientific databases, such as PubMed, MEDLINE, Web of Science, ScienceDirect, Embase, BIOSIS Previews, and the Cochrane Central Register of Controlled Trials and Cochrane Library, covering between 2001 and 2021 was compiled, using "Astragaloside IV" and "Neurological disorders," "Astragaloside IV," and "Neurodegenerative diseases" as reference terms. By summarizing previous research results, we found that astragaloside IV may play a neuroprotective role through various mechanisms: anti-inflammatory, anti-oxidative, anti-apoptotic protection of nerve cells and regulation of nerve growth factor, as well as by inhibiting neurodegeneration and promoting nerve regeneration. Astragaloside IV is a promising natural neuroprotective agent. By determining its pharmacological mechanism, astragaloside IV may be a new candidate drug for the treatment of neurological disorders.


Asunto(s)
Planta del Astrágalo , Medicamentos Herbarios Chinos , Enfermedades del Sistema Nervioso , Fármacos Neuroprotectores , Saponinas , Triterpenos , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Medicina Tradicional China , Neuroprotección , Saponinas/farmacología , Saponinas/uso terapéutico , Triterpenos/farmacología , Triterpenos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
15.
Phytomedicine ; 108: 154483, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36260972

RESUMEN

BACKGROUND: There are many types of neurological diseases with complex etiologies. At present, most clinical drugs can only relieve symptoms but cannot cure these diseases. Radix Polygalae, a famous traditional Chinese medicine from the root of plants of the genus Polygala, has the traditional effect of treating insomnia, forgetfulness, and palpitation and improving intelligence and other symptoms of neurological diseases. Saponins are important bioactive components of plants of the genus Polygala and exhibit neuroprotective effects. PURPOSE: This review aimed to summarize the traditional use of Polygala species and discuss the latest phytochemical, pharmacological, and toxicological findings, mainly with regard to Polygala saponins in the treatment of neurological disorders. METHODS: Literature was searched and collected using databases, including PubMed, Science Direct, CNKI, and Google Scholar. The search terms used included "Polygala", "saponins", "neurological diseases", "Alzheimer's disease", "toxicity", etc., and combinations of these keywords. A total of 1202 papers were retrieved until August 2022, and we included 135 of these papers on traditional uses, phytochemistry, pharmacology, toxicology and other fields. RESULTS: This literature review mainly reports on the traditional use of the Polygala genus and prescriptions containing Radix Polygalae in neurological diseases. Phytochemical studies have shown that plants of the genus Polygala mainly include saponins, flavonoids, oligosaccharide esters, alkaloids, coumarins, lignans, flavonoids, etc. Among them, saponins are the majority. Modern pharmacological studies have shown that Polygala saponins have neuroprotective effects on a variety of neurological diseases. Its mechanism of action involves autophagic degradation of misfolded proteins, anti-inflammatory, anti-apoptotic, antioxidative stress and so on. Toxicological studies have shown that Polygala saponins trigger gastrointestinal toxicity, and honey processing and glycosyl disruption of Polygala saponins can effectively ameliorate its gastrointestinal side effect. CONCLUSION: Polygala saponins are the major bioactive components in plants of the genus Polygala that exhibit therapeutic potential in various neurological diseases. This review provides directions for the future study of Polygala saponins and references for the clinical use of prescriptions containing Radix Polygalae for the treatment of neurological diseases.


Asunto(s)
Enfermedades del Sistema Nervioso , Fármacos Neuroprotectores , Polygala , Saponinas , Humanos , Saponinas/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fitoquímicos/uso terapéutico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Flavonoides , Etnofarmacología
16.
Artículo en Inglés | MEDLINE | ID: mdl-35950266

RESUMEN

Recently, the aging population has increased exponentially around the globe bringing more challenges to improve quality of life in those populations while reducing the economic burden on healthcare systems. Aging is associated with changes in the immune system culminating in detrimental effects such as immune dysfunction, immunosenescence, and chronic inflammation. Age-related decline of immune functions is associated with various pathologies including cardiovascular, autoimmune, neurodegenerative, and infectious diseases to name a few. Conventional treatment addresses the onset of age-related diseases by early detection of risk factors, administration of vaccines as preventive care, immunomodulatory treatment, and other dietary supplements. However, these approaches often come with systemic side-effects, low bioavailability of therapeutic agents, and poor outcomes seen in the elderly. Recent innovations in nanotechnology have led to the development of novel biomaterials/nanomaterials, which explore targeted drug delivery and immunomodulatory interactions in vivo. Current nanotechnology-based immunomodulatory approaches that have the potential to be used as therapeutic interventions for some prominent age-related diseases are discussed here. Finally, we explore challenges and future aspects of nanotechnology in the treatments of age-related disorders to improve quality of life in the elderly. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Asunto(s)
Enfermedades Cardiovasculares , Inmunomodulación , Nanomedicina , Nanopartículas , Enfermedades del Sistema Nervioso , Anciano , Humanos , Sistemas de Liberación de Medicamentos , Nanopartículas/uso terapéutico , Calidad de Vida , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades del Sistema Nervioso/tratamiento farmacológico
17.
Nutr Neurosci ; 26(5): 369-383, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35343876

RESUMEN

Common neurological disorders, including neurodegenerative diseases, stroke, epilepsy, autism and psychiatric disorders, affect many people worldwide and threaten their lives and health by inducing movement disorders, behavioral disorders, or a combination of both. Oxidative stress and neuroinflammation play a central role in neuronal damage and neurological diseases induction and progression. In addition, protein homeostasis (proteostasis) impairment occurs in many neurodegenerative diseases, which plays a critical role in the progression of the pathology. Grape seed contains several flavonoids and non-flavonoids and exerts potent antioxidant and anti-inflammatory effects. In addition, polyphenols and flavanols can maintain cellular proteostasis. Since impaired proteostasis is closely involved in all amyloid diseases, particularly neurodegenerative diseases, grape seeds extract can be a valuable therapeutic agent. Therefore, this review discusses the protective and therapeutic mechanisms of grape seed against neurological disorders and, in the end, links GSE to microRNAs as future therapeutic developments.


Asunto(s)
Extracto de Semillas de Uva , Enfermedades del Sistema Nervioso , Proantocianidinas , Vitis , Humanos , Extracto de Semillas de Uva/uso terapéutico , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Polifenoles/uso terapéutico , Encéfalo , Envejecimiento , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Semillas , Proantocianidinas/farmacología , Proantocianidinas/uso terapéutico
18.
Crit Rev Food Sci Nutr ; 63(28): 9379-9391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35482938

RESUMEN

Aberrant neurogenesis is a major factor in psychiatric and neurological disorders that have significantly attracted the attention of neuroscientists. Curcumin is a primary constituent of curcuminoid that exerts several positive pharmacological effects on aberrant neurogenesis. First, it is important to understand the different processes of neurogenesis, and whether their dysfunction promotes etiology as well as the development of many psychiatric and neurological disorders; then investigate mechanisms by which curcumin affects neurogenesis as an active participant in pathophysiological events. Based on scientometric studies and additional extensive research, we explore the mechanisms by which curcumin regulates adult neurogenesis and in turn affects psychiatric diseases, i.e., depression and neurological disorders among them traumatic brain injury (TBI), stroke, Alzheimer's disease (AD), Gulf War Illness (GWI) and Fragile X syndrome (FXS). This review aims to elucidate the therapeutic effects and mechanisms of curcumin on adult neurogenesis in various psychiatric and neurological disorders. Specifically, we discuss the regulatory role of curcumin in different activities of neural stem cells (NSCs), including proliferation, differentiation, and migration of NSCs. This is geared toward providing novel application prospects of curcumin in treating psychiatric and neurological disorders by regulating adult neurogenesis.


Asunto(s)
Enfermedad de Alzheimer , Curcumina , Enfermedades del Sistema Nervioso , Humanos , Adulto , Curcumina/farmacología , Curcumina/uso terapéutico , Neurogénesis , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Diferenciación Celular , Enfermedad de Alzheimer/tratamiento farmacológico
19.
Nutrients ; 14(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36558528

RESUMEN

Saffron (Crocus sativus L.) is a spice used worldwide as a colouring and flavouring agent. Saffron is also a source of multiple bioactive constituents with potential health benefits. Notably, saffron displays consistent beneficial effects against a range of human neurological disorders (depression, anxiety, sleeping alterations). However, the specific compounds and biological mechanisms by which this protection may be achieved have not yet been elucidated. In this review, we have gathered the most updated evidence of the neurological benefits of saffron, as well as the current knowledge on the main saffron constituents, their bioavailability and the potential biological routes and postulated mechanisms by which the beneficial protective effect may occur. Our aim was to provide an overview of the neuroprotective effects attributed to this product and its main bioactive compounds and to highlight the main research gaps that need to be further pursued to achieve full evidence and understanding of the benefits of saffron. Overall, improved clinical trials and adequately designed pre-clinical studies are needed to support the evidence of saffron and of its main bioactive components (e.g., crocin, crocetin) as a therapeutic product to combat neurological disorders.


Asunto(s)
Productos Biológicos , Disfunción Cognitiva , Crocus , Enfermedades del Sistema Nervioso , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/prevención & control
20.
Pak J Pharm Sci ; 35(5): 1445-1458, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36451575

RESUMEN

Shuganjieyu capsule (SGJY) is the first Chinese herbal medicine approved for treatment of depression; however, the Shuganjieyu capsule efficacy in patients with neurologic disorders combined with depression remains to be determined. Embase, PubMed, Cochrane Library, China National Knowledge Infrastructure (CNKI) and other electronic databases were searched to obtain relevant studies through May 2019. Newcastle-Ottawa and Jadad scales are used for the quality assessed. Sensitivity analysis, subgroup analysis and meta-regression were performed to evaluate sources of heterogeneity. Sixty-seven studies were selected for further analysis. Patients who had Shuganjieyu therapy had a higher effective rate and lower Hamilton Depression Rating Scale (HAM-D) score compared to patients who had non-shuganjieyu therapy. In addition, Shuganjieyu capsule improve symptoms of patients with stroke (National Institutes of Health Stroke Scale (NIHSS) score: Weighted mean difference (WMD)= -2.64; 95% CI: -3.95 to -1.33; P<0.001), Parkinson's disease score: WMD= -2.53; 95% CI: -3.92 to -1.14; P<0.001), and sleep disorders (Pittsburgh Sleep Quality Index (PSQI) score: WMD= -4.97; 95% CI: -7.56 to -2.38; P<0.001). Our results demonstrated that there were clinical benefits for patients with neurologic disorders after Shuganjieyu capsule therapy compared with non-shuganjieyu therapy with respect to effective rate and HAM-D, NIHSS, UPDRS and PSQI scores.


Asunto(s)
Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Trastornos del Sueño-Vigilia , Accidente Cerebrovascular , Estados Unidos , Humanos , Depresión/tratamiento farmacológico , Enfermedades del Sistema Nervioso/complicaciones , Enfermedades del Sistema Nervioso/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA