Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269938

RESUMEN

The endogenous protease furin is a key protein in many different diseases, such as cancer and infections. For this reason, a wide range of studies has focused on targeting furin from a therapeutic point of view. Our main objective consisted of identifying new compounds that could enlarge the furin inhibitor arsenal; secondarily, we assayed their adjuvant effect in combination with a known furin inhibitor, CMK, which avoids the SARS-CoV-2 S protein cleavage by means of that inhibition. Virtual screening was carried out to identify potential furin inhibitors. The inhibition of physiological and purified recombinant furin by screening selected compounds, Clexane, and these drugs in combination with CMK was assayed in fluorogenic tests by using a specific furin substrate. The effects of the selected inhibitors from virtual screening on cell viability (293T HEK cell line) were assayed by means of flow cytometry. Through virtual screening, Zeaxanthin and Kukoamine A were selected as the main potential furin inhibitors. In fluorogenic assays, these two compounds and Clexane inhibited both physiological and recombinant furin in a dose-dependent way. In addition, these compounds increased physiological furin inhibition by CMK, showing an adjuvant effect. In conclusion, we identified Kukoamine A, Zeaxanthin, and Clexane as new furin inhibitors. In addition, these drugs were able to increase furin inhibition by CMK, so they could also increase its efficiency when avoiding S protein proteolysis, which is essential for SARS-CoV-2 cell infection.


Asunto(s)
Clorometilcetonas de Aminoácidos/farmacología , Enoxaparina/farmacología , Furina/antagonistas & inhibidores , Espermina/análogos & derivados , Zeaxantinas/farmacología , Clorometilcetonas de Aminoácidos/química , Clorometilcetonas de Aminoácidos/metabolismo , COVID-19/transmisión , COVID-19/virología , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Enoxaparina/química , Enoxaparina/metabolismo , Furina/química , Furina/metabolismo , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Proteolisis , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Espermina/química , Espermina/metabolismo , Espermina/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Replicación Viral , Zeaxantinas/química , Zeaxantinas/metabolismo
2.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33173010

RESUMEN

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic, or prophylactic. As with other betacoronaviruses, attachment and entry of SARS-CoV-2 are mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin-converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third-generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in antiviral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6-O-desulfated UFH, and 6-O-desulfated enoxaparin with 50% inhibitory concentrations (IC50s) of 5.99 µg/liter, 1.08 mg/liter, 1.77 µg/liter, and 5.86 mg/liter, respectively. In summary, several sulfated polysaccharides show potent anti-SARS-CoV-2 activity and can be developed for prophylactic as well as therapeutic purposes.IMPORTANCE The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in Wuhan, China, in late 2019 and its subsequent spread to the rest of the world has created a pandemic situation unprecedented in modern history. While ACE2 has been identified as the viral receptor, cellular polysaccharides have also been implicated in virus entry. The SARS-CoV-2 spike glycoprotein (SGP) binds to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we report structure-based differences in antiviral activity and affinity to SGP for several sulfated polysaccharides, including both well-characterized FDA-approved drugs and novel marine sulfated polysaccharides, which can be developed for prophylactic as well as therapeutic purposes.


Asunto(s)
Antivirales/farmacología , Heparina/farmacología , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/química , Antivirales/metabolismo , Evaluación Preclínica de Medicamentos , Enoxaparina/química , Enoxaparina/metabolismo , Enoxaparina/farmacología , Vectores Genéticos/genética , Células HEK293 , Heparina/química , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Concentración 50 Inhibidora , Lentivirus/genética , Estructura Molecular , Peso Molecular , Polisacáridos/química , Polisacáridos/metabolismo , Polisacáridos/farmacología , Unión Proteica , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Transducción Genética , Acoplamiento Viral/efectos de los fármacos
3.
Carbohydr Polym ; 99: 339-44, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24274516

RESUMEN

Low molecular weight heparins (LMWHs) are structurally complex, highly sulfated and negatively charged, linear carbohydrate polymers prepared by chemical or enzymatic depolymerization of heparin. They are widely used as anticoagulant drugs possessing better bioavailability, longer half-life, and lower side effects than heparin. Comprehensive structure characterization of LMWHs is important for drug quality assurance, generic drug application, and new drug research and development. However, fully characterization of all oligosaccharide chains in LMWHs is not feasible for current available analytical technologies due to their structure complexity and heterogeneity. Fingerprinting profiling is an efficient way for LMWHs' characterization and comparison. In this work, we present a simple, sensitive, and powerful analytical approach for structural characterization of LMWHs. Two different LMWHs, enoxaparin and nadroparin, were analyzed using reversed phase ion pair electrospray ionization mass spectrometry (RPIP-ESI-MS). More than 200 components were identified, including major structures, minor structures, and process related impurities. This approach is robust for high resolution and complementary fingerprinting analysis of LMWHs.


Asunto(s)
Anticoagulantes/química , Enoxaparina/química , Nadroparina/química , Animales , Anticoagulantes/aislamiento & purificación , Secuencia de Carbohidratos , Cromatografía de Fase Inversa , Enoxaparina/aislamiento & purificación , Espectrometría de Masas , Datos de Secuencia Molecular , Nadroparina/aislamiento & purificación , Porcinos
4.
Anal Bioanal Chem ; 405(18): 6043-52, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23712644

RESUMEN

It is well known that enoxaparin, a widely used anticoagulant and low-molecular-weight heparin containing a large number of oligosaccharides, possesses anti-inflammatory activity. Whilst enoxaparin has shown promising results in various inflammatory disorders, some of its oligosaccharides have anti-inflammatory properties and others increase the risk of bleeding due to their anticoagulant effects. The aim of this study was to develop an effective ion exchange chromatographic (IC) technique which allows the separation, isolation and, consequently, the identification of different oligosaccharides of enoxaparin with or without anticoagulant activity. The developed method utilises a semi-preparative CarboPac PA100 (9 × 250 mm) ion exchange column with sodium chloride gradient elution and UV detection at 232 nm. The method successfully resolved enoxaparin into more than 30 different peaks. IC-derived oligosaccharides with high, moderate, low or no anticoagulant activity were identified using an anti-factor Xa assay. The anti-inflammatory activity of selected oligosaccharides was investigated using the Griess assay. Using this technique, the oligosaccharides of enoxaparin with low or no anticoagulant activity, whilst exhibiting significant anti-inflammatory activity, could be fractionated. This technique can provide a platform to identify the oligosaccharides which are devoid of significant anticoagulant activity and are responsible for the therapeutic effects of enoxaparin that have been observed in various inflammatory conditions.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Anticoagulantes/farmacología , Cromatografía por Intercambio Iónico/métodos , Enoxaparina/química , Heparina de Bajo-Peso-Molecular/química , Oligosacáridos/aislamiento & purificación , Animales , Secuencia de Carbohidratos , Línea Celular , Cromatografía por Intercambio Iónico/instrumentación , Evaluación Preclínica de Medicamentos/métodos , Enoxaparina/farmacología , Diseño de Equipo , Inhibidores del Factor Xa , Heparina de Bajo-Peso-Molecular/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Datos de Secuencia Molecular , Peso Molecular , Oligosacáridos/farmacología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA