Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Tipo del documento
Intervalo de año de publicación
1.
Trop Anim Health Prod ; 56(3): 108, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507148

RESUMEN

Saharan population in Algeria still depending on bovine milk, which suffers from serious constraints undermining its sustainability. Camelus dromedarius milk has experienced growing demand following the emerging market requirements for livestock production and dairy farming over the past decade. The present work aimed at analysing the effect of nutritional regime on milk quality. The differences in pH, Acidity D°, Ash and Fats were significant. The pH was negatively influenced by the intensification conditions such as the much higher use of concentrates. The major constituents of milk were strongly and positively correlated with barley, wheat bran, TN/Kg.DM (Total Nitrogen/ Kg. Dry Matter), Kg.DM, Concentrates and daily watering. The results showed that a good energy-protein balance around 73 g PDI/UFL (Protein Digestible in the Intestine/Energetic Forage Unit for milk production) was beneficial for a better milk protein ratio. The use of corn, soybeans, palm dates and VM-premix (Vitamin Mineral) supplementation were also favourable to the synthesis of fats. Crude fiber and cell walls were better valued in the synthesis of fats with the availability of concentrates and the increasing of TN /Kg.DM and VM-premix rate in dietary regime. The vitamin C content elevate following high ratio of UFL /Kg.DM and PDI/UFL. For thus, the influence of nutritional status can lead to major improvements that need also more advanced and detailed studies.


Asunto(s)
Camelus , Lactancia , Femenino , Animales , Leche/química , Proteínas de la Leche/análisis , Zea mays , Grasas/análisis , Grasas/metabolismo , Vitaminas/metabolismo , Dieta/veterinaria , Ensilaje/análisis , Rumen/metabolismo
2.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38442241

RESUMEN

This study evaluated the effect of feeding ergot contaminated grain continuously or intermittently through backgrounding (BG) and finishing (FN) in a mash or pelleted supplement on the growth performance, health and welfare parameters, and carcass characteristics of feedlot beef steers. Sixty black Angus steers (300 ±â€…29.4 kg BW) were used in a complete randomized 238-d study. Steers were stratified by weight and randomly assigned to four different diets (15 steers/treatment) and individually housed. Treatments included: (1) control [CON; no added ergot alkaloids (EA)], (2) continuous ergot mash (CEM; fed continuously at 2 mg total EA/kg of DM), (3) intermittent ergot mash (IEM; fed at 2 mg total EA/kg of DM, during the first week of each 21-d period and CON for the remaining 2 wk, this feeding pattern was repeated in each period), and (4) intermittent ergot pellet (IEP; fed at 2 mg of total EA/kg of DM as a pellet during the first week of each 21-d period and CON for the remaining 2 wk as described for IEM). Steers were fed barley based BG diets containing 40% concentrate:60% silage (DM basis) for 84 d (four 21-d periods), transitioned over 28 d (no ergot fed) to an FN diet (90% concentrate:10% silage DM basis) and fed for 126 d (six 21-d periods) before slaughter. In the BG phase, steer DMI (P < 0.01, 7.45 vs. 8.05 kg/d) and ADG (P < 0.01) were reduced for all EA diets compared to CON. The CEM fed steers had lower ADG (P < 0.01, 0.735 vs. 0.980 kg) and shrunk final BW (P < 0.01, 350 vs. 366 kg) than CON. CEM had lower gain:feed (P < 0.07, 0.130 vs. 0.142) than CON. In the FN phase, steer DMI (P < 0.01, 9.95 vs. 11.05 kg/d) and ADG (P = 0.04) were also decreased for all EA fed steers compared to CON. Total shrunk BW gain (P = 0.03, 202.5 vs. 225.2 kg), final BW (P = 0.03, 617.9 vs. 662.2 kg), and carcass weight (P = 0.06) decreased for all EA fed steers compared to CON. The percentage of AAA carcasses decreased for all EA fed steers (P < 0.01, 46.7 vs. 93.3%) compared to CON. EA fed steers had increased rectal temperatures (P < 0.01, 39.8 vs. 39.4 °C) compared to CON. Pelleting ergot contaminated grain did not reduce the impact of ergot alkaloids on any of the measured parameters during BG or FN. Continuously or intermittently feeding ergot contaminated diets (2 mg total EA/kg of DM) significantly reduced intake, growth performance, and carcass weight, with minimal impact on blood parameters in feedlot steers. Pelleting was not an effective method of reducing ergot toxicity.


Produced by the fungus Claviceps purpurea, ergot alkaloids (EA) are toxic to beef cattle when consumed and can lead to reduction in feed intake and growth performance, vasoconstriction of the blood vessels, hyperthermia, damage to extremities (ears, tails, and hooves) and in severe cases, death. Grain is often cleaned to meet quality standards, and the resulting screenings are often utilized for feeding livestock and can have high concentrations of EA. The application of heat during pelleting of EA contaminated grain has been suggested to reduce its toxicity. Backgrounding and finishing beef cattle feeding experiments were conducted to assess the effect of continuously or intermittently feeding EA contaminated grain (2 mg/kg of diet DM) either as a pellet or as mash on growth performance, health, and animal welfare. Feeding EA grain continuously or intermittently either as a mash or pellet drastically reduced growth performance of steers, with no difference between treatments.


Asunto(s)
Alimentación Animal , Alcaloides de Claviceps , Bovinos , Animales , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos , Ensilaje/análisis , Grano Comestible
3.
Food Chem ; 446: 138764, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38408399

RESUMEN

Red clover (Trifolium pratense) isoflavone was supplemented to dairy cows, and antioxidant capacity of milk was assessed. Treated cows increased the activities of antioxidant enzymes, reduced production of oxidation products, and enhanced the concentrations of vitamin E and vitamin C. Moreover, milk fatty acid profile was positive influenced by 8 g/kg red clover isoflavone, with changes in the lower saturated and higher unsaturated fatty acids. We further demonstrated the efficacy of antioxidant capacity of milk in mice, found that milk from cows feeding red clover isoflavone increased the expressions of antioxidant enzymes, and alleviated lipopolysaccharide (LPS)-stimulated tissue damage of duodenum and jejunum, which was related to upregulated metabolism pathways of carbohydrate, lipid, and amino acid, as well as downregulated inflammatory related pathways. Together, dietary supplementation of red clover isoflavone is an effective way to improve milk antioxidant capacity, providing a natural strategy for developing functional foods.


Asunto(s)
Leche , Trifolium , Femenino , Bovinos , Animales , Ratones , Leche/química , Trifolium/química , Antioxidantes/análisis , Dieta/veterinaria , Lactancia , Ensilaje/análisis , Suplementos Dietéticos , Alimentación Animal/análisis
4.
Trop Anim Health Prod ; 56(2): 72, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326674

RESUMEN

This study aimed to assess the impact of adding forage cactus as an additive to the production of corn silage without the cob on the performance of feedlot sheep and subsequent silage losses. The experimental design was completely randomized, consisting of three treatments: corn silage without cob; 0% = 100% corn plant without the cob; 10% = 90% corn plant without cob + 10% forage cactus; 20% = 80% corn plant without cob + 20% forage cactus. Significant effects were observed for dry matter intake (P = 0.0201), organic matter (P = 0.0152), ether extract (P = 0.0001), non-fiber carbohydrates (P = 0.0007). Notably, nutrient digestibility showed significant differences in organic matter (P = 0.0187), ether extract (P = 0.0095), neutral detergent fiber (P = 0.0005), non-fiber carbohydrates (P = 0.0001), and metabolizable energy (P = 0.0001). Performance variables, including total weight gain (P = 0.0148), average daily weight gain (P = 0.0148), feeding efficiency, and rumination efficiency of dry matter (P = 0.0113), also exhibited significant effects. Consequently, it is recommended to include 20% forage cactus in corn silage, which, based on natural matter, helps meet animals' water needs through feed. This inclusion is especially vital in semi-arid regions and aids in reducing silage losses during post-opening silo disposal.


Asunto(s)
Cactaceae , Zea mays , Animales , Femenino , Dieta/veterinaria , Fibras de la Dieta , Digestión , Éteres , Lactancia , Leche , Extractos Vegetales , Rumen , Ovinos , Ensilaje/análisis , Aumento de Peso
5.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38206107

RESUMEN

Research into the potential use of various dietary feed supplements to reduce methane (CH4) production from ruminants has proliferated in recent years. In this study, two 8-wk long experiments were conducted with mature ewes and incorporated the use of a variety of natural dietary feed supplements offered either independently or in combination. Both experiments followed a randomized complete block design. Ewes were offered a basal diet in the form of ad libitum access to grass silage supplemented with 0.5 kg concentrates/ewe/d. The entire daily dietary concentrate allocation, incorporating the respective feed supplement, was offered each morning, and this was followed by the daily silage allocation. In experiment 1, the experimental diets contained 1) no supplementation (CON), 2) Ascophyllum nodosum (SW), 3) A. nodosum extract (EX1), 4) a blend of garlic and citrus extracts (GAR), and 5) a blend of essential oils (EO). In experiment 2, the experimental diets contained 1) no supplementation (CON), 2) A. nodosum extract (EX2), 3) soya oil (SO), and 4) a combination of EX2 and SO (EXSO). Twenty ewes per treatment were individually housed during both experiments. Methane was measured using portable accumulation chambers. Rumen fluid was collected at the end of both experiments for subsequent volatile fatty acid (VFA) and ammonia analyses. Data were analyzed using mixed models ANOVA (PROC MIXED, SAS v9.4). Statistically significant differences between treatment means were considered when P < 0.05. Dry matter intake was not affected by diet in either experiment (P > 0.05). Ewes offered EO tended to have an increased feed:gain ratio relative to CON (P < 0.10) and SO tended to increase the average daily gain (P < 0.10) which resulted in animals having a higher final body weight (P < 0.05) than CON. Ewes offered EX1 and SO emitted 9% less CH4 g/d than CON. The only dietary treatment to have an effect on rumen fermentation variables relative to CON was SW, which enhanced total VFA production (P < 0.05). In conclusion, the A. nodosum extract had inconsistent results on CH4 emissions whereby EX1 reduced CH4 g/d while EX2 had no mitigating effect on CH4 production, likely due to the differences in PT content reported for EX1 and EX2. SO was the only dietary feed supplement assessed in the current study that enhanced animal performance whilst mitigating daily CH4 production.


Reducing methane emissions from agriculture is vital to minimize the effects of global warming and to meet greenhouse gas reduction targets set by EU policy. In this experiment, a range of natural feed supplements were offered to mature ewes through the concentrated portion of their diet. Soya oil and brown seaweed extract reduced daily methane emissions by 9% when offered independently of each other; however, no reduction in methane was observed when combined. Additionally, inclusion of soya oil improved animal weight gain. Results from the current experiment may contribute to the development of a targeted dietary strategy to reduce methane emissions from livestock.


Asunto(s)
Dieta , Metano , Ovinos , Animales , Femenino , Metano/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Rumiantes , Ensilaje/análisis , Ácidos Grasos Volátiles/metabolismo , Rumen/metabolismo , Aceite de Soja/metabolismo , Extractos Vegetales , Fermentación , Alimentación Animal/análisis , Lactancia , Digestión
6.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 111-125, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37602531

RESUMEN

Hydrolysable tannins (HT) show potential as silage additive for autumn herbage silages, high in (rumen degradable) protein, as they may reduce proteolysis. Additionally, they have abilities to form pH-reversible tannin-protein complexes, non-degradable in the rumen but degradable in the abomasum and intestines of ruminants. Therefore they can improve milk N efficiency and shift N excretions from urine to faeces, possibly mitigating the environmental impact of ruminants. In this study, two small bunker silos were filled with autumn grass. One was treated with 20 g/kg DM HT extract (TAN) (TannoSan-L), the other with 8 mg/kg DM inoculant containing lactic acid bacteria (INO) (Bonsilage Fit G). Secondly, micro-silos (2.75 L) were filled with four treatments; (1) grass without additive (CON) (n = 5); (2) TAN (n = 5); (3) INO (n = 5); and (4) TAN + INO (n = 5). The bunker silos were used in a cross-over feeding experiment with periods of 4 weeks involving 22 lactating Holstein cows (average ± SD: 183 ± 36.3 days in milk, 665 ± 71.0 kg body weight, and 33.8 ± 3.91 kg/day milk yield). The HT dose was insufficient to reduce proteolysis or alter chemical composition and nutritional value in the micro- and bunker silages. Including grass silage added with TAN (3.2 g HT/kg DM) in the diet, did not affect feed intake nor fat and protein corrected milk yield in comparison to feeding the grass silage added with INO in a similar diet. The TAN-fed cows had an increased faecal N excretion and decreased apparent total-tract N and organic matter digestibility, but no improvement in the cows' N utilization could be confirmed in milk and blood urea levels. Overall, feeding an autumn grass silage treated with 20 g/kg chestnut HT extract did not affect the performance of dairy cows in comparison to feeding an autumn grass silage treated with a lactic acid bacteria inoculant.


Asunto(s)
Inoculantes Agrícolas , Lactobacillales , Femenino , Bovinos , Animales , Poaceae/metabolismo , Ensilaje/análisis , Taninos/farmacología , Lactancia , Inoculantes Agrícolas/metabolismo , Fermentación , Ácido Láctico/metabolismo , Digestión , Leche/química , Dieta/veterinaria , Taninos Hidrolizables/análisis , Taninos Hidrolizables/metabolismo , Taninos Hidrolizables/farmacología , Rumen/metabolismo , Extractos Vegetales/farmacología , Rumiantes , Valor Nutritivo , Zea mays/metabolismo
7.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 338-345, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37882147

RESUMEN

The effects of the addition of molasses (5 and 10% of dry matter: DM basis; M5 and M10 respectively) with or without urea (2%; U2, U2 + M5 and U2 + M10) on chemical and mineral composition, silage quality, microbial populations, buffering capacity and fermentation/digestion characteristics of common reed (Phragmites australis) ensiled under anaerobic conditions were investigated. The additives changed the silage quality of common reed compared with the control. Crude protein content was significantly (p < 0.0001) increased in urea-containing silages, whereas ash-free neutral detergent fibre concentration decreased in M10 compared with the control (p = 0.05). Treatment with 2% urea (U2) resulted in the reduction of most measured minerals with a severe decrease in iron concentration. The amount of gas produced after 96 h of incubation was, respectively, higher for U2, M10, U2M10, U2M5 and M5 compared with the control (p < 0.0001). Although the greatest in vitro dry matter digestibility and in vitro organic matter digestibility (96 h) were observed in U2 (p < 0.0001), no significant differences were found between U2 and M10. Supplementation with 10% molasses (M10) significantly increased lactic acid concentration, aerobic stability and total bacteria compared with other treatments (p < 0.0001). Moreover, DM loss (p = 0.0004), total yeast and mould (p < 0.0001) were significantly decreased as a result of 10% molasses treatment. Overall, it can be suggested that treating silage with 10% molasses (M10) has the potential to efficiently improve the nutritive value of common reed.


Asunto(s)
Poaceae , Ensilaje , Animales , Ensilaje/análisis , Fermentación , Carbohidratos , Urea
8.
An Acad Bras Cienc ; 95(4): e20190041, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38055598

RESUMEN

The aim of this study was to evaluate the effects of the inclusion of palm oil on the ruminal environment and nutrient digestibility of sheep diets. Twenty rumen-cannulated sheep were kept in individual stalls equipped with feeding and drinking troughs The animals were fed five diets based on Elephant grass (Pennisetum purpureum Schum. cv. Roxo) silage and supplemented with 0, 25, 50, 75, or 100 g kg-1 of palm oil (based on total DM). The Elephant grass was harvested at 90 days of regrowth and the concentrate was based on ground corn grain, soybean meal and mineral mix (20 g kg-1 DM), offered to the sheep at a ratio of 1.5 g kg-1d-1 of body weight (restricted intake) to maintain a forage-to-concentrate ratio of 1:1, based on DM. There were no differences (P = 0.324) in ruminal disappearance and degradability parameters with up to 75 g of oil per kg of DM. Organic matter showed a linear reduction in apparent digestibility, while ether extract increased linearly. Palm oil affected the digestibility and nutritional parameters in ruminant diets.


Asunto(s)
Dieta , Digestión , Ovinos , Animales , Aceite de Palma , Dieta/veterinaria , Suplementos Dietéticos , Ensilaje/análisis , Nutrientes , Rumen/metabolismo , Fermentación , Alimentación Animal/análisis
9.
Trop Anim Health Prod ; 56(1): 28, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38151553

RESUMEN

The objective was to assess the in vitro rumen fermentation characteristics, methane production, and biohydrogenation of unsaturated fatty acids of diets with two protected fat (PF) sources from soybean or linseed oil, two levels of PF (0 and 6%) and two forage sources (canola silage (CS) or alfalfa hay (AH)) in a factorial 2x2x2 completely randomised design. Only fatty acids content at final incubation was affected (P<0.05) by triple interaction, where C18:2 was highest with AH plus 6% soybean PF (4.41mg/g DM), while C18:3 was with CS plus 6% linseed oil protected (1.98mg/g DM). C18:2 cis-9 trans-11 had high concentration (308 mg/g DM; P<0.05) with AH plus 6% PF regardless PF type, and C18:1 trans-11 was higher with 6% PF than without PF (13.41 vs 7.89 mg/g DM). Cumulative methane production was not affected by treatments (0.9973 ± 0.1549 mmol/g DM; P>0.05). Gas production and in vitro NDF digestibility were lower with 6% PF of linseed than soybean (160.88 vs 150.97 ml; and 69.28vs 62.89 %, respectively P<0.05). With linseed PF the NH3-N concentration was highest in CS than AH (41.27 vs 27.95 mg/dL; P<0.05) but IVDMD had the opposite result (78.54 vs 85.04). In conclusion, although methane production was not affected and in vitro digestibility and gas production were reduced with linseed PF, the concentration of C18:3 and C18:1 trans-11 was increased, which could improve the lipid profile of milk. The negative effects on digestibility were less with AH than of CS regardless of PF type and level.


Asunto(s)
Lino , Aceite de Linaza , Femenino , Animales , Aceite de Linaza/metabolismo , Lactancia , Rumen/metabolismo , Dieta/veterinaria , Ácidos Grasos Insaturados , Ácidos Grasos/metabolismo , Leche , Ensilaje/análisis , Metano/metabolismo , Fermentación , Zea mays
10.
PeerJ ; 11: e16386, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025755

RESUMEN

This study aimed to examine the impact of nitrogen (N) fertilization on phyllosphere microorganisms in silage maize (Zea mays) to enhance the production of high-quality silage. The effects of different N application rates (160, 240, and 320 kg ha-1) and maturity stages (flowering and dough stages) on microbial diversity, abundance and physiochemical properties of the leaf surfaces were evaluated in a field experiment. The results showed that N application rates did not significantly impact the abundance of lactic acid bacteria (LAB), aerobic bacteria (AB), yeasts, or molds on the leaf surfaces. However, these microbes were more abundant during the flowering stage compared to the dough stage. Furthermore, the N application rate had no significant impact on inorganic phosphorus, soluble sugar, free amino acids, total phenolic content, and soluble protein concentrations, or pH levels on the leaf surfaces. Notably, these chemical indices were lower during the dough stage. The abundance of Pantoea decreased with higher N application rates, while that of other microorganisms did not changes significantly. The abundance of AB, LAB, yeasts, and molds were positively correlated with soluble sugar, soluble protein, inorganic phosphorus, free amino acids, and total phenolic concentrations on leaf surfaces. Moreover, water loss was negatively correlated with the abundance of AB, LAB, yeasts, and molds, whereas water retention capacity and stomatal density were positively correlated with microbial abundance. We recommend applying an optimal N rate of 160 kg ha-1 to silage maize and harvesting at the flowering stage is recommended.


Asunto(s)
Microbiota , Ensilaje , Ensilaje/análisis , Zea mays/metabolismo , Nitrógeno/farmacología , Hojas de la Planta , Carbohidratos , Hongos , Levaduras , Azúcares/metabolismo , Aminoácidos/metabolismo , Fósforo/metabolismo , Agua/metabolismo
11.
Anim Sci J ; 94(1): e13887, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37986212

RESUMEN

This study aimed to assess the behavior and stress status of pregnant sows following supplementation with Italian ryegrass silage (IRS) and the impact of feeding the IRS on feeding costs. Six sows with an initial body weight (BW) of 238.6 ± 5.9 kg were allotted to a 6 × 3 Latin square design with a 5-day acclimatization period followed by a 5-day data collection period. A commercial diet was replaced by IRS on a dry matter (DM) basis up to 0%, 9%, and 13% in the control treatment and the two test treatments, respectively. Apart from collecting data on daily feed intake and BW, urine was collected, and video footage was recorded for the last day of each treatment for analysis of urinary cortisol and behavior. There were no leftovers with all diets and nutrient uptake was unaffected (p > 0.05), while BW gain decreased (p < 0.05) to be a limited range from 1% to 3%, with increased inclusion of IRS. Both the behavior of sows and cortisol concentration were unaffected (p > 0.05). Furthermore, it was estimated that feeding 13% DM of IRS would reduce feed costs by 17%. IRS would be acceptable in replacing up to 13% of the commercial diet and cutting feeding costs.


Asunto(s)
Lolium , Ensilaje , Embarazo , Animales , Porcinos , Femenino , Ensilaje/análisis , Lactancia , Hidrocortisona , Alimentación Animal/análisis , Ingestión de Alimentos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Italia
12.
Sci Rep ; 13(1): 12797, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550361

RESUMEN

Enteric methane (CH4) emission is one of the major greenhouse gasses originating from cattle. Iodoform has in studies been found to be a potent mitigator of rumen CH4 formation in vitro. This study aimed to quantify potential of iodoform as an anti-methanogenic feed additive for dairy cows and investigate effects on feed intake, milk production, feed digestibility, rumen microbiome, and animal health indicators. The experiment was conducted as a 4 × 4 Latin square design using four lactating rumen, duodenal, and ileal cannulated Danish Holstein dairy cows. The treatments consisted of four different doses of iodoform (1) 0 mg/day, (2) 320 mg/day, (3) 640 mg/day, and (4) 800 mg/day. Iodoform was supplemented intra-ruminally twice daily. Each period consisted of 7-days of adaptation, 3-days of digesta and blood sampling, and 4-days of gas exchange measurements using respiration chambers. Milk yield and dry matter intake (DMI) were recorded daily. Rumen samples were collected for microbial analyses and investigated for fermentation parameters. Blood was sampled and analyzed for metabolic and health status indicators. Dry matter intake and milk production decreased linearly by maximum of 48% and 33%, respectively, with increasing dose. Methane yield (g CH4/kg DMI) decreased by maximum of 66%, while up to 125-fold increases were observed in hydrogen yield (g H2/kg DMI) with increasing dose of iodoform. Total tract digestibility of DM, OM, CP, C, NDF, and starch were unaffected by treatments, but large shifts, except for NDF, were observed for ruminal to small intestinal digestion of the nutrients. Some indicators of disturbed rumen microbial activity and fermentation dynamics were observed with increasing dose, but total number of ruminal bacteria was unaffected by treatment. Serum and plasma biomarkers did not indicate negative effects of iodoform on cow health. In conclusion, iodoform was a potent mitigator of CH4 emission. However, DMI and milk production were negatively affected and associated with indications of depressed ruminal fermentation. Future studies might reveal if depression of milk yield and feed intake can be avoided if iodoform is continuously administered by mixing it into a total mixed ration.


Asunto(s)
Dieta , Lactancia , Femenino , Bovinos , Animales , Lactancia/fisiología , Dieta/veterinaria , Metano/metabolismo , Suplementos Dietéticos/análisis , Leche/química , Rumen/metabolismo , Fermentación , Digestión , Ensilaje/análisis
13.
J Dairy Sci ; 106(12): 8627-8641, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37641245

RESUMEN

This study aimed to quantify the effects of dietary inclusion of tannin-rich pomegranate peel (PP) on intake, methane and nitrogen (N) losses, and metabolic and health indicators in dairy cows. Four multiparous, late-lactating Brown Swiss dairy cows (796 kg body weight; 29 kg/d of energy corrected milk yield) were randomly allocated to 3 treatments in a randomized cyclic change-over design with 3 periods, each comprising 14 d of adaptation, 7 d of milk, urine, and feces collection, and 2 d of methane measurements. Treatments were formulated using PP that replaced on a dry matter (DM) basis 0% (control), 5%, and 10% of the basal mixed ration (BMR) consisting of corn and grass silage, alfalfa, and concentrate. Gaseous exchange of the cows was determined in open-circuit respiration chambers. Blood samples were collected on d 15 of each period. Individual feed intake as well as feces and urine excretion were quantified, and representative samples were collected for analyses of nutrients and phenol composition. Milk was analyzed for concentrations of fat, protein, lactose, milk urea N, and fatty acids. Total phenols and antioxidant capacity in milk and plasma were determined. In serum, the concentrations of urea and bilirubin as well as the activities of alanine aminotransferase (ALT), aspartate aminotransferase, glutamate dehydrogenase, alkaline phosphatase, and γ-glutamyl transferase were measured. The data were subjected to ANOVA with the Mixed procedure of SAS, with treatment and period as fixed and animal as random effects. The PP and BMR contained 218 and 3.5 g of total extractable tannins per kg DM, respectively, and thereof 203 and 3.3 g of hydrolyzable tannins. Total DM intake, energy corrected milk, and methane emission (total, yield, and intensity) were not affected by PP supplementation. The proportions of C18:2n-6 and C18:3n-3 in milk increased linearly as the amount of PP was increased in the diet. Milk urea N, blood urea N, and urinary N excretion decreased linearly with the increase in dietary PP content. Total phenols and antioxidant capacity in milk and plasma were not affected by the inclusion of PP. The activity of ALT increased in a linear manner with the inclusion of PP. In conclusion, replacing up to 10% of BMR with PP improved milk fatty acid composition and alleviated metabolic and environmental N load. However, the elevated serum ALT activity indicates an onset of liver stress even at 5% PP, requiring the development of adaptation protocols for safe inclusion of PP in ruminant diets.


Asunto(s)
Lactancia , Granada (Fruta) , Femenino , Bovinos , Animales , Nitrógeno/metabolismo , Metano/metabolismo , Antioxidantes/metabolismo , Dieta/veterinaria , Leche/química , Zea mays/metabolismo , Ácidos Grasos/análisis , Ensilaje/análisis , Taninos , Urea/metabolismo , Rumen/metabolismo
14.
Animal ; 17(7): 100871, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37393740

RESUMEN

Information about the amino acid (AA) supply of locally produced protein supplements to dairy cow metabolism is needed to design sustainable diets for milk production. In this dairy cow experiment, grass silage and cereal-based diets supplemented with isonitrogenous amounts of rapeseed meal (RSM), faba beans (FB) and blue lupin seeds (BL) were compared with a control diet (CON) without protein supplementation. The diets were arranged as a 4 × 4 Latin Square using periods of 21 days, and four rumen-cannulated Nordic Red dairy cows were used in the experiment. The intake of all AAs increased in response to protein supplementation and was for many individual AAs higher when RSM rather than the grain legumes FB and BL were fed. The total AA flow at the omasal canal was 3 026, 3 371, 3 373 and 3 045 g/day for cows fed CON, RSM, FB and BL, respectively, but only RSM resulted in higher milk protein output. This may be explained by the higher provision of essential AA for milk protein synthesis when RSM was fed. The cows fed FB showed some positive features such as a tendency for greater omasal flow of branched-chain AA compared with BL. Overall, low plasma methionine and/or glucose concentrations in all treatments suggest that their supply was possibly limiting further production responses under the dietary conditions of the current study. It seems that the benefits of grain legume supplementation are limited when high-quality grass silage and cereal-based diets are used as the basal diet, but higher responses in amino acid supply and subsequent production responses can be expected when RSM is used.


Asunto(s)
Brassica napus , Brassica rapa , Vicia faba , Femenino , Bovinos , Animales , Poaceae/metabolismo , Ensilaje/análisis , Brassica napus/metabolismo , Lactancia/fisiología , Fermentación , Dieta/veterinaria , Suplementos Dietéticos , Proteínas de la Leche/metabolismo , Aminoácidos/metabolismo , Rumen/metabolismo
15.
Animal ; 17(6): 100815, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37167820

RESUMEN

The use of alternative feed ingredients from the Agro-industry could be an efficient tool to improve the sustainability of dairy cow production. Since the richness in polyphenols, olive oil pomace (OOP), produced during olive oil milling, seems a promising by-product to ameliorate milk's nutritional value. The aim of this study was to test the use of OOP produced by means of a new technology (biphasic with stone deprivation) in dairy cow feeding strategy to evaluate the effect on animal performances, rumen microbiota, biohydrogenation processes and milk quality by a multidisciplinary approach. Forty multiparous Italian-Friesian dairy cows, at middle lactation, were randomly allotted into two homogenous groups and fed respectively a commercial diet (CON) and the experimental diet (OOPD) obtained by adding OOP to CON as partial replacement of maize silage. The two diets were formulated to be isoproteic and isoenergetic. The same diets were tested also in an in vitro trial aimed to evaluate their rumen degradability (% DEG). The dietary supplementation with OOP did not affect DM intake, rumen % DEG and milk production. The milk's nutritional quality was improved by increasing several important functional fatty acids (FAs; i.e., linoleic acid, conjugated linoleic acid, oleic acid, vaccenic acid). This finding was related to a decrease in rumen liquor biohydrogenation rate of unsaturated FAs. The stochiometric relation between volatile FA production in the rumen and methanogenesis suggested that OOP lowers the methane potential production (CON = 0.050 mol/L vs OOPD = 0.024 mol/L, SEM = 0.005, P = 0.0011). Rumen microbiota and fungi community did not be strongly altered by OOP dietary inclusion because few bacteria were affected at the genus level only. Particularly, Acetobacter, Prevotellaceae_UCG-004, Prevotellaceae_UCG-001, Eubacterium coprostanoligenes, Lachnospira, Acetitomaulatum, Lachnospiraceae_NK3A20 group were more abundant with OOPD condition (P < 0.05). Data reported in this study confirm that the use of OOP in dairy cow feeding can be an interesting strategy to improve milk nutritional quality increasing functional FA content without compromising the rumen degradability of the diet or causing strong perturbation of rumen ecosystem and maintaining animal performances.


Asunto(s)
Microbiota , Leche , Animales , Bovinos , Femenino , Alimentación Animal/análisis , Dieta/veterinaria , Ácidos Grasos/metabolismo , Fermentación , Lactancia , Aceite de Oliva/metabolismo , Rumen/metabolismo , Ensilaje/análisis
16.
J Dairy Sci ; 106(10): 6903-6920, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37230877

RESUMEN

The objective of this experiment was to investigate the effect of forage type [red clover (51%)-grass silage, i.e., RCG; vs. faba bean (66%)-grass silage, i.e., FBG] and concentrate type (faba bean, FB; vs. rapeseed expeller, RE) on lactational performance, milk composition and nitrogen (N) utilization in lactating dairy cows. Eight lactating multiparous Nordic Red cows were used in a replicated 4 × 4 Latin Square experiment, with 21-d periods, in a 2 × 2 factorial arrangement of treatments. The experimental treatments were as follows: (1) RCG with RE, (2) RCG with FB, (3) FBG with RE, and (4) FBG with FB. Inclusion rates of RE and FB were isonitrogenous. Crude protein contents of the experimental diets were 16.3, 15.9, 18.1, and 17.9% of dry matter, respectively. All diets included oats and barley and were fed ad libitum as total mixed rations with forage-to-concentrate ratio of 55:45. Dry matter intake and milk yield were recorded daily, and spot samples of urine, feces, and blood were collected at the end of each experimental period. Dry matter intake did not differ across diets, averaging 26.7 kg/d. Milk yield averaged 35.6 kg/d and was 1.1 kg/d greater for RCG versus FBG, and milk urea N concentration was lower for RCG compared with FBG. Milk yield was 2.2 kg/d and milk protein yield 66 g/d lower for FB versus RE. Nitrogen intake, urinary N, and urinary urea N excretions were lower, and milk N excretion tended to be lower for RCG compared with FBG. The proportion of the dietary N excreted as fecal N was larger in cows fed RCG than for those fed FBG, and the opposite was true for urinary N. We detected an interaction for milk N as percentage of N intake: it increased with RE compared with FB for RCG-based diet, but only a marginal increase was observed for FBG-based diet. Plasma concentration of His and Lys were lower for RCG than for FBG, whereas His tended to be greater and Lys lower for FB compared with RE. Further, plasma Met concentration was around 26% lower for FB than for RE. Of milk fatty acids, saturated fatty acids were decreased by RCG and increased by FB compared with FBG and RE, respectively, whereas monounsaturated fatty acids were increased by RCG versus FBG, and were lower for FB than for RE. In particular, 18:1n-9 concentration was lower for FB compared with RE. Polyunsaturated fatty acids, such as 18:2n-6 and 18:3n-3, were greater for RCG than for FBG, and 18:2n-6 was greater and 18:3n-3 was lower for FB versus RE. In addition, cis-9,trans-11 conjugated linoleic acid was lower for FB compared with RE. Faba bean whole-crop silage and faba bean meal have potential to be used as a part of dairy cow rations, but further research is needed to improve their N efficiency. Red clover-grass silage from a mixed sward, without inorganic N fertilizer input, combined with RE, resulted in the greatest N efficiency in the conditions of this experiment.


Asunto(s)
Brassica napus , Brassica rapa , Fabaceae , Trifolium , Vicia faba , Femenino , Bovinos , Animales , Ensilaje/análisis , Vicia faba/metabolismo , Brassica napus/metabolismo , Lactancia , Fabaceae/metabolismo , Aminoácidos/metabolismo , Digestión , Dieta/veterinaria , Verduras/metabolismo , Ácidos Grasos/metabolismo , Avena/metabolismo , Trifolium/metabolismo , Aminas/metabolismo , Nitrógeno/metabolismo , Urea/metabolismo
17.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1336-1346, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37129194

RESUMEN

The aim of the previous research was to evaluate the effects of Brazilian spinach pellet (BSP) supplementation and dietary ratios on rumen characteristics, methane estimation, and milk production in dairy cows. Four crossbred Thai dairy cattle, with Holstein Friesian (HF) cows with a body weight of 442 ± 50 kg were assessed in a 2 × 2 factorial in a 4 × 4 Latin square design to obtain diets; factor A was the roughage (R) to concentrate (C) ratio at 40:60 and 30:70, and factor B was level of BSP supplantation at 2% and 6% of dry matter (basis) intake (DMI). R:C ratio and supplementation of BSP had no interaction effect on DMI and nutrient digestibility. On DM, organic matter (OM), crude protein (CP), and acid detergent fiber (ADF) intake, the R:C ratio increased (p < 0.05). The digestibility of OM improved (p < 0.05) when cows were fed a R:C ratio of 30:70. On pH, ammonia-nitrogen, protozoal population, and blood urea-nitrogen, there were no interactions between the R:C ratio and BSP supplementation. Increasing the BSP supplementation to 6% (p < 0.01) decreased the protozoal population. The R:C ratio of 30:70 increased total volatile fatty acid (VFA) and propionate (C3) concentrations while decreasing the acetate (C2) to C3 ratio and methane (CH4 ) estimation (p < 0.01). The average concentration of total VFA has increased by 114.46 mmol/L for 6% of BSP supplementation. Increased BSP supplementation increased the C3 concentration while decreasing the C2:C3 ratio and CH4 emissions (p < 0.05). The R:C ratio and BSP supplementation had no interaction effect on milk yield, 3.5% fat-corrected milk (FCM), or milk composition. The R:C ratio of 30:70 increased milk yield (p < 0.05) to the highest level of 12.18 kg/day. In conclusion, the diet containing a R:C ratio of 30:70 increased feed intake, milk yield, BUN, total VFA, and C3 concentration, and decreased the C2:C3 ratio and CH4 emission. BSP supplementation at 6% could increase TVFA and C3 concentrations while decreasing the protozoal population and CH4 estimation.


Asunto(s)
Leche , Spinacia oleracea , Femenino , Bovinos , Animales , Leche/química , Spinacia oleracea/metabolismo , Lactancia , Rumen/metabolismo , Brasil , Digestión , Ensilaje/análisis , Dieta/veterinaria , Ácidos Grasos Volátiles/metabolismo , Suplementos Dietéticos , Metano , Nitrógeno/metabolismo , Fermentación
18.
J Dairy Sci ; 106(5): 3217-3232, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37028967

RESUMEN

Fava bean offers a sustainable home-grown protein source for dairy cows, but fava bean protein is extensively degraded in the rumen and has low Met concentration. We studied the effects of protein supplementation and source on milk production, rumen fermentation, N use, and mammary AA utilization. The treatments were unsupplemented control diet, and isonitrogenously given rapeseed meal (RSM), processed (dehulled, flaked, and heated) fava bean without (TFB) or with rumen-protected (RP) Met (TFB+). All diets consisted of 50% grass silage and 50% cereal-based concentrate including studied protein supplement. The control diet had 15% of crude protein and protein-supplemented diets 18%. Rumen-protected Met in TFB+ corresponded to 15 g/d of Met absorbed in the small intestine. Experimental design was a replicated 4 × 4 Latin square with 3-wk periods. The experiment was conducted using 12 multiparous mid-lactation Nordic Red cows, of which 4 were rumen cannulated. Protein supplementation increased dry matter intake (DMI), and milk (31.9 vs. 30.7 kg/d) and milk component yields. Substituting RSM with TFB or TFB+ decreased DMI and AA intake but increased starch intake. There were no differences in milk yield or composition between RSM diet and TFB diets. Rumen-protected Met did not affect DMI, or milk or milk component yields but increased milk protein concentration in comparison to TFB. There were no differences in rumen fermentation except for increased ammonium-N concentration with the protein-supplemented diets. Nitrogen-use efficiency for milk production was lower for the supplemented diets versus control diet but tended to be greater for TFB and TFB+ versus RSM. Protein supplementation increased plasma essential AA concentration but there were no differences between TFB diets and RSM. Rumen-protected Met clearly increased plasma Met concentration (30.8 vs. 18.2 µmol/L) but did not affect other AA. Absence of differences between RSM and TFB in milk production together with limited effects of RP Met suggest that TFB is a potential alternative protein source for dairy cattle.


Asunto(s)
Brassica napus , Brassica rapa , Vicia faba , Femenino , Bovinos , Animales , Metionina , Poaceae/metabolismo , Brassica napus/metabolismo , Vicia faba/metabolismo , Ensilaje/análisis , Rumen/metabolismo , Suplementos Dietéticos , Dieta/veterinaria , Lactancia , Racemetionina/metabolismo , Racemetionina/farmacología
19.
J Dairy Res ; 90(2): 111-117, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37039499

RESUMEN

The experiments reported in this research paper address the effects of replacing ground corn (GC) with full-fat corn germ (FFCG) on nutrient intake and digestibility, nitrogen utilization efficiency, performance, and predicted methane production in dairy cows fed cactus cladodes and sugarcane. We hypothesized that the inclusion of FFCG in the diet would not alter the performance of lactating cows but would reduce the predicted methane production in vivo. Ten multiparous Holstein cows at 90 ± 10 d of lactation and yielding 24.2 ± 3.5 kg milk/d were assigned to dietary treatments consisting of different levels of replacement of GC by FFCG (0; 25; 50; 75 and 100% of diet dry matter) in a replicated 5 × 5 Latin square design with 21-d periods. Methane production was predicted using an automated gas in vitro production system. Except for ether extract intake, which increased, the intake of all nutrients decreased linearly with the replacement of GC by FFCG. The digestibility of dry matter, organic matter and neutral detergent fiber reduced, whereas the digestibility of ether extract increased linearly with FFCG. There were no changes in the digestibility of crude protein. The nitrogen intake and daily excretion in urine and feces decreased, while nitrogen use efficiency increased linearly. There was no significant effect of diets on nitrogen balance or microbial protein synthesis and efficiency. The yield of protein, lactose and total solids in milk showed a quadratic behavior. On the other hand, milk fat yield and energy-corrected milk yield decreased linearly with the replacement of GC by FFCG. No effect on pH or ammonia nitrogen was observed. The production of methane (CH4, g/kg DM) and total CH4 (g/d), and CH4 intensity decreased linearly with the replacement of GC by FFCG. In conclusion, FFCG has been shown to be an effective source of fat to reduce methane production in dairy cows, partially supporting our initial hypothesis. However, as it decreases milk fat production, it is not recommended to replace more than 50% of GC by FFCG for lactating cows fed cactus cladodes and sugarcane.


Asunto(s)
Lactancia , Zea mays , Femenino , Bovinos , Animales , Zea mays/metabolismo , Digestión , Ensilaje/análisis , Fibras de la Dieta/metabolismo , Leche/metabolismo , Dieta/veterinaria , Metano/metabolismo , Nitrógeno/metabolismo , Extractos Vegetales , Rumen
20.
Trop Anim Health Prod ; 55(2): 77, 2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36773073

RESUMEN

Four rumen-cannulated cows (Bos taurus × Bos indicus, 657 ± 92 kg body weight, BW) in a rotational grazing (Urochloa sp.) system were assigned to different canola oil (CO) inclusion levels, 0.0, 0.40, 0.80, and 1.2 g/kg according to shrunk body weight (SBW, BW adjusted for gastrointestinal filling) in a 4 × 4 Latin Square design to evaluate CO on the CH4 emissions and dietary energy intake. CH4 emissions were estimated using an infrared analyzer methodology (Sniffer method). Grass intake and fecal production were estimated using Cr2O3 as an external marker. CO supplementation increased (linear effect, P ≤ 0.05) total dry matter and gross energy intake with a linear increase (P = 0.09) in neutral detergent fiber (NDF) intake. While digestible energy (Mcal/kg) linearly increased with increasing CO supplementation level (linear effect, P < 0.05), total tract digestion of organic matter, NDF, and CP was comparable (P > 0.05) between levels. Maximal CO supplementation (1.2 g/kg SBW) significantly decreased total ruminal protozoa population, acetate:propionate ratio, and enteric methane production (g/kg DMI) by 9, 5.3, and 17.5%, respectively. This study showed that, for cows grazing tropical forages, CO can be supplemented up to 1.2 g/kg SBW (5.8% of the total diet) without negatively affecting intake and nutrient digestion while reducing ruminal fermentation efficiency and enteric methane emission (≤ 17.5%).


Asunto(s)
Lactancia , Leche , Femenino , Bovinos , Animales , Aceite de Brassica napus/metabolismo , Aceite de Brassica napus/farmacología , Metano/metabolismo , Fermentación , Digestión , Ensilaje/análisis , Suplementos Dietéticos/análisis , Dieta/veterinaria , Poaceae , Rumen/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA