Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.015
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Food Prot ; 87(5): 100265, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492643

RESUMEN

Limited data exist on the environmental factors that impact pathogen prevalence in the soil. The prevalence of foodborne pathogens, Salmonella and Listeria monocytogenes, and the prevalence and concentration of generic E. coli in Florida's agricultural soils were evaluated to understand the potential risk of microbial contamination at the preharvest level. For all organisms but L. monocytogenes, a longitudinal field study was performed in three geographically distributed agricultural areas across Florida. At each location, 20 unique 5 by 5 m field sampling sites were selected, and soil was collected and evaluated for Salmonella presence (25 g) and E. coli and coliform concentrations (5 g). Complementary data collected from October 2021 to April 2022 included: weather; adjacent land use; soil properties, including macro- and micro-nutrients; and field management practices. The overall Salmonella and generic E. coli prevalence was 0.418% (1/239) and 11.3% (27/239), respectively; with mean E. coli concentrations in positive samples of 1.56 log CFU/g. Farm A had the highest prevalence of generic E. coli, 22.8% (18/79); followed by Farm B, 10% (8/80); and Farm C 1.25% (1/80). A significant relationship (p < 0.05) was observed between generic E. coli and coliforms, and farm and sampling trip. Variation in the prevalence of generic E. coli and changes in coliform concentrations between farms suggest environmental factors (e.g. soil properties) at the three farms were different. While Salmonella was only detected once, generic E. coli was detected in Florida soils throughout the duration of the growing season meaning activities that limit contact between soil and horticultural crops should continue to be emphasized. Samples collected during an independent sampling trip were evaluated for L. monocytogenes, which was not detected. The influence of local environmental factors on the prevalence of indicator organisms in the soil presents a unique challenge when evaluating the applicability of more global models to predict pathogen prevalence in preharvest produce environments.


Asunto(s)
Agricultura , Escherichia coli , Salmonella , Microbiología del Suelo , Suelo , Salmonella/aislamiento & purificación , Florida , Escherichia coli/aislamiento & purificación , Prevalencia , Recuento de Colonia Microbiana , Humanos , Enterobacteriaceae/aislamiento & purificación
2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474041

RESUMEN

Dickeya solani, belonging to the Soft Rot Pectobacteriaceae, are aggressive necrotrophs, exhibiting both a wide geographic distribution and a wide host range that includes many angiosperm orders, both dicot and monocot plants, cultivated under all climatic conditions. Little is known about the infection strategies D. solani employs to infect hosts other than potato (Solanum tuberosum L.). Our earlier study identified D. solani Tn5 mutants induced exclusively by the presence of the weed host S. dulcamara. The current study assessed the identity and virulence contribution of the selected genes mutated by the Tn5 insertions and induced by the presence of S. dulcamara. These genes encode proteins with functions linked to polyketide antibiotics and polysaccharide synthesis, membrane transport, stress response, and sugar and amino acid metabolism. Eight of these genes, encoding UvrY (GacA), tRNA guanosine transglycosylase Tgt, LPS-related WbeA, capsular biosynthesis protein VpsM, DltB alanine export protein, glycosyltransferase, putative transcription regulator YheO/PAS domain-containing protein, and a hypothetical protein, were required for virulence on S. dulcamara plants. The implications of D. solani interaction with a weed host, S. dulcamara, are discussed.


Asunto(s)
Solanum tuberosum , Solanum , Solanum/genética , Dickeya/genética , Solanum tuberosum/genética , Enterobacteriaceae/genética , Sitios Genéticos , Enfermedades de las Plantas
3.
Talanta ; 273: 125841, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460421

RESUMEN

The approach based on a combination of isothermal recombinase polymerase amplification (RPA), 2'-deoxyuridine-5'-triphosphate modified with tyrosine aromatic group (dUTP-Y1), and direct voltammetric detection of RPA product carrying electroactive labels was successfully applied to the potato pathogen Dickeya solani. The artificial nucleotide dUTP-Y1 demonstrated a good compatibility with RPA, enabling by targeting a section of D. solani genome with a unique sequence to produce the full-size modified products at high levels of substitution of dTTP by dUTP-Y1 (up to 80-90 %) in the reaction mixture. The optimized procedure of square wave voltammetry allowed to reliably detect the product generated by RPA at 80 % substitution of dTTP by dUTP-Y1 (dsDNA-Y1) in microliter sample volumes on the surface of disposable carbon screen printed electrodes at the potential of about 0.6 V. The calibration curve for the amplicon detection was linear in coordinates 'Ip, A vs. Log (c, M)' within the 0.05-1 µM concentration range. The limit of detection for dsDNA-Y1 was estimated as 8 nM. The sensitivity of the established electrochemical approach allowed to detect amplicons generated in a single standard 50 µL RPA reaction after their purification with silica-coated magnetic beads. The overall detectability of D. solani with the suggested combination of RPA and voltammetric registration of dsDNA-Y1 can be as low as a few copies of bacterial genome per standard reaction. In total, amplification, purification, and electrochemical detection take about 120-150 min. Considering the potential of direct electrochemical analysis for miniaturization, as well as compliance with low-cost and low-power requirements, the findings provide grounds for future development of microfluidic devices integrating isothermal amplification, amplicon purification and detection based on the tyrosine modified nucleotide for the purpose of 'on-site' detection of various pathogens.


Asunto(s)
Dickeya , Polifosfatos , Recombinasas , Solanum tuberosum , ADN , Enterobacteriaceae , Nucleótidos , Desoxiuridina , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad
4.
BMC Complement Med Ther ; 24(1): 93, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365729

RESUMEN

BACKGROUND: Multidrug resistance (MDR) in the family Enterobacteriaceae is a perniciously increasing threat to global health security. The discovery of new antimicrobials having the reversing drug resistance potential may contribute to augment and revive the antibiotic arsenal in hand. This study aimed to explore the anti-Enterobacteriaceae capability of bioactive polyphenols from Punica granatum (P. granatum) and their co-action with antibiotics against clinical isolates of Enterobacteriaceae predominantly prevalent in South Asian countries. METHODS: The Kandhari P. granatum (Pakistani origin) extracts were tested for anti-Enterobacteriaceae activity by agar well diffusion assay against MDR Salmonella enterica serovar Typhi, serovar Typhimurium and Escherichia coli. Predominant compounds of active extract were determined by mass spectrometry and screened for bioactivity by agar well diffusion and minimum inhibitory concentration (MIC) assay. The active punicalagin was further evaluated at sub-inhibitory concentrations (SICs) for coactivity with nine conventional antimicrobials using a disc diffusion assay followed by time-kill experiments that proceeded with SICs of punicalagin and antimicrobials. RESULTS: Among all P. granatum crude extracts, pomegranate peel methanol extract showed the largest inhibition zones of 25, 22 and 19 mm, and the MICs as 3.9, 7.8 and 7.8 mg/mL for S. typhi, S. typhimurium and E. coli, respectively. Punicalagin and ellagic acid were determined as predominant compounds by mass spectrometry. In plate assay, punicalagin (10 mg/mL) was active with hazy inhibition zones of 17, 14, and 13 mm against S. typhi, S. typhimurium and E. coli, respectively. However, in broth dilution assay punicalagin showed no MIC up to 10 mg/mL. The SICs 30 µg, 100 µg, and 500 µg of punicalagin combined with antimicrobials i.e., aminoglycoside, ß-lactam, and fluoroquinolone act in synergy against MDR strains with % increase in inhibition zone values varying from 3.4 ± 2.7% to 73.8 ± 8.4%. In time-kill curves, a significant decrease in cell density was observed with the SICs of antimicrobials/punicalagin (0.03-60 µg/mL/30, 100, 500 µg/mL of punicalagin) combinations. CONCLUSIONS: The P. granatum peel methanol extract exhibited antimicrobial activity against MDR Enterobacteriaceae pathogens. Punicalagin, the bacteriostatic flavonoid act as a concentration-dependent sensitizing agent for antimicrobials against Enterobacteriaceae. Our findings for the therapeutic punicalagin-antimicrobial combination prompt further evaluation of punicalagin as a potent activator for drugs, which otherwise remain less or inactive against MDR strains.


Asunto(s)
Antiinfecciosos , Taninos Hidrolizables , Granada (Fruta) , Antibacterianos/farmacología , Polifenoles , Enterobacteriaceae , Escherichia coli , Agar , Metanol , Extractos Vegetales/farmacología , Antiinfecciosos/farmacología , Resistencia a Múltiples Medicamentos
5.
Microbiol Spectr ; 12(2): e0301523, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38230931

RESUMEN

Rapid and reliable detection of carbapenemase-producing Enterobacterales (CPE) is crucial for prompt treatment and infection control. Most assays target the primary four enzymes (KPC, OXA-48-like, VIM, and NDM), often missing less common variants (e.g., GES, IMI, OXA-23, and OXA-58). Therefore, assays based on the hydrolysis of carbapenems are recommended in addition to differentiation tests such as PCR or immunochromatographic assays. The aim of this study was to compare the currently Clinical and Laboratory Standards Institute (CLSI)-recommended tests mCIM (modified carbapenem inactivation method) and Carba NP with new colorimetric tests (NitroSpeed-Carba NP) and novel variations of the carbapenem inactivation method (CIM) such as simplified CIM (sCIM) or modified zinc-supplemented CIM (mzCIM). The challenge collection included 205 clinical isolates, 139 CPE vs 66 non-CPE. Among all 205 isolates, the sensitivity/specificity of mCIM was 81.3%/98.5%, Carba NP 76.3%/100%, NitroSpeed-Carba NP 86.3%/78.8%, sCIM 100%/94%, and mzCIM 97.8%/98.5%. For rare carbapenemases (n = 48), the sensitivity of mzCIM (98.3%) and sCIM (100%) was higher than that of mCIM (60.4%), Carba NP (50%), or NitroSpeed-Carba NP (70.2%). Most indeterminate results occurred for mCIM (14.4%), Carba NP (8.2%), and sCIM (6.3%). The detection of rare carbapenemases remains challenging with the currently recommended assays. The CIM-based tests demonstrated superior sensitivity, with sCIM and mzCIM outperforming the currently recommended mCIM and Carba NP, especially among isolates with weakly hydrolyzing carbapenemases (e.g., OXA-23 and OXA-58). Although colorimetric assays provide more rapid results, laboratories have to be aware of the low sensitivity for rare carbapenemases. Both sCIM and the new mzCIM performed well, are cost-effective, and can easily be implemented in any laboratory.IMPORTANCEDetection of so-called rare carbapenemases (e.g., GES, IMI, OXA-23, and OXA-58) in Enterobacterales is challenging, and data on the performance of currently available assays are scarce. This study systematically assessed the performance of currently recommended and novel hydrolysis-based assays on a set of molecularly characterized isolates. It demonstrates that the currently recommended assays mCIM and Carba NP perform well on isolates producing common carbapenemases such as KPC, VIM, NDM, and OXA-48, but have only a moderate sensitivity in the detection of rare carbapenemases. In contrast, the newer CIM-based variants, sCIM and mzCIM, are equally capable of detecting frequent and uncommon carbapenemases. These assays could potentially help to improve our knowledge on the epidemiology of these "rare" enzymes.


Asunto(s)
Carbapenémicos , Gammaproteobacteria , Enterobacteriaceae , Colorimetría/métodos , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/análisis , Proteínas Bacterianas/análisis , Antibacterianos
6.
Cell Mol Gastroenterol Hepatol ; 17(1): 131-148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37739064

RESUMEN

BACKGROUND & AIMS: Altered plasma acylcarnitine levels are well-known biomarkers for a variety of mitochondrial fatty acid oxidation disorders and can be used as an alternative energy source for the intestinal epithelium when short-chain fatty acids are low. These membrane-permeable fatty acid intermediates are excreted into the gut lumen via bile and are increased in the feces of patients with inflammatory bowel disease (IBD). METHODS: Herein, based on studies in human subjects, animal models, and bacterial cultures, we show a strong positive correlation between fecal carnitine and acylcarnitines and the abundance of Enterobacteriaceae in IBD where they can be consumed by bacteria both in vitro and in vivo. RESULTS: Carnitine metabolism promotes the growth of Escherichia coli via anaerobic respiration dependent on the cai operon, and acetylcarnitine dietary supplementation increases fecal carnitine levels with enhanced intestinal colonization of the enteric pathogen Citrobacter rodentium. CONCLUSIONS: In total, these results indicate that the increased luminal concentrations of carnitine and acylcarnitines in patients with IBD may promote the expansion of pathobionts belonging to the Enterobacteriaceae family, thereby contributing to disease pathogenesis.


Asunto(s)
Enterobacteriaceae , Enfermedades Inflamatorias del Intestino , Animales , Humanos , Enterobacteriaceae/metabolismo , Disbiosis , Enfermedades Inflamatorias del Intestino/microbiología , Carnitina/metabolismo , Ácidos Grasos/metabolismo , Escherichia coli , Biomarcadores
7.
Molecules ; 28(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37687036

RESUMEN

Soft rot Pectobacteriaceae (SRP), such as Pectobacterium and Dickeya, are phytopathogenic agents responsible for blackleg disease on several crops, such as potatoes, affecting the yield and depressing the seed production quality. However, neither conventional nor biocontrol products are available on the market to control this disease. In this study Pseudomonas PA14H7, a bacteria isolated from potato rhizosphere, was selected as a potential antagonist agent against Dickeya solani. In order to understand the mechanism involved in this antagonism, we managed to identify the main active molecule(s) produced by PA14H7. Cell-free supernatant (CFS) of PA14H7 cultures were extracted and analyzed using LC-MS, GC-MS, and NMR. We further correlated the biological activity against Dickeya solani of extracted CFS-PA14H7 to the presence of 7-hydroxytropolone (7-HT) complexed with iron. In a second time, we have synthesized this molecule and determined accurately using LC-UV, LC-MS, and GC-MS that, after 48 h incubation, PA14H7 released, in its CFS, around 9 mg/L of 7-HT. The biological activities of CFS-PA14H7 vs. synthetic 7-HT, at this concentration, were evaluated to have a similar bacteriostatic effect on the growth of Dickeya solani. Even if 7-HT is produced by other Pseudomonas species and is mostly known for its antibacterial and antifungal activities, this is the first description of its involvement as an effective molecule against pectinolytic bacteria. Our work opens the way for the comprehension of the mode of action of PA14H7 as a biocontrol agent against potato blackleg.


Asunto(s)
Infecciones por Clostridium , Solanum tuberosum , Dickeya , Enterobacteriaceae , Hierro
8.
Int J Infect Dis ; 134: 273-279, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37453486

RESUMEN

OBJECTIVES: AmpC ß-lactamase-hyperproducing Enterobacterales (ABLHE) bloodstream infections (BSI) are emerging and leading to therapeutic challenges worldwide. Prescriptions of carbapenems may lead to the emergence of resistance. This study aimed to compare cefepime with carbapenems for the treatment of third-generation cephalosporin-resistant ABLHE BSI. METHODS: This retrospective multicenter study included patients with ABLHE BSI from two tertiary hospitals in France, between July 2017 and July 2022. Non-AmpC-producing Enterobacterales, extended-spectrum ß-lactamase, and carbapenemase-producing Enterobacterales were excluded. Cefepime was prescribed only in case of minimal inhibitory concentration ≤1 mg/l. The primary outcome was 30-day in-hospital mortality from the date of index blood culture. Secondary outcomes were infection recurrence and treatment toxicity. An inverse probability of treatment weighting approach was used to balance the baseline characteristics between the two groups. RESULTS: We analyzed 164 BSI, which included 77 in the cefepime group and 87 in the carbapenem group. In the weighted cohort, the 30-day mortality rates were similar between the cefepime group (23.3%) and the carbapenem group (19.6%) with a relative risk of 1.19 (95% confidence interval, 0.61-2.33 P = 0.614). No significant difference in recurrence or toxicity was found between the two groups. CONCLUSION: This study adds evidence in favor of the use of cefepime for treating third-generation cephalosporin-resistant ABLHE BSI in case of minimal inhibitory concentration ≤ 1 mg/l, which could spare carbapenems.


Asunto(s)
Infecciones por Enterobacteriaceae , Gammaproteobacteria , Sepsis , Humanos , Cefepima/uso terapéutico , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Estudios Retrospectivos , Enterobacteriaceae , Infecciones por Enterobacteriaceae/tratamiento farmacológico , beta-Lactamasas , Sepsis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
9.
Ecotoxicol Environ Saf ; 263: 115232, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37429089

RESUMEN

Polyolefin plastics, such as polyethylene (PE) and polystyrene (PS), are the most widely used synthetic plastics in our daily life. However, the chemical structure of polyolefin plastics is composed of carbon-carbon (C-C) bonds, which is extremely stable and makes polyolefin plastics recalcitrant to degradation. The growing accumulation of plastic waste has caused serious environmental pollution and has become a global environmental concern. In this study, we isolated a unique Raoultella sp. DY2415 strain from petroleum-contaminated soil that can degrade PE and PS film. After 60 d of incubation with strain DY2415, the weight of the UV-irradiated PE (UVPE) film and PS film decreased by 8% and 2%, respectively. Apparent microbial colonization and holes on the surface of the films were observed by scanning electron microscopy (SEM). Furthermore, the Fourier transform infrared spectrometer (FTIR) results showed that new oxygen-containing functional groups such as -OH and -CO were introduced into the polyolefin molecular structure. Potential enzymes that may be involved in the biodegradation of polyolefin plastics were analyzed. These results demonstrate that Raoultella sp. DY2415 has the ability to degrade polyolefin plastics and provide a basis for further investigating the biodegradation mechanism.


Asunto(s)
Petróleo , Poliestirenos , Poliestirenos/metabolismo , Polietileno/química , Suelo , Enterobacteriaceae , Biodegradación Ambiental , Carbono , Plásticos/metabolismo
10.
BMJ Paediatr Open ; 7(1)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37192777

RESUMEN

BACKGROUND: Hospital-acquired strains (HASs) and multiresistant strains in neonatal intensive care unit often harbour virulence and resistance mechanisms, carrying the risk of invasive infections. We describe colonisation with Enterobacteriaceae in neonates receiving early directed versus routine family-integrated care (FIC) within the first month of life. METHODS: A prospective cohort study included neonates with a gestational age below 34 weeks. During the first period, neonates were admitted to an open bay unit with transfer to the single-family room if available; feeding with the mother's own breast milk (MOBM) was introduced within 24 hours, and skin-to-skin contact (SSC) within 5 days of life (the routine care group). During the second period, following a wash-in of 2 months, care in a single-family room within 48 hours, the introduction of MOBM within two and SSC in 48 hours were applied (the intervention group). Enterobacteriaceae isolated from neonatal stool, breast milk and parental skin swabs were genotyped, Simpson's Index of Diversity (SID) calculated, and extended-spectrum beta-lactamases (ESBL) detected. RESULTS: In 64 neonate-parents' groups, 176 Enterobacteriaceae, 87 in routine care and 89 in the intervention group were isolated; 26 vs 18 were HAS and one vs three ESBL positive, respectively. In the intervention group compared with the routine care group, SSC and MOBM feeding was started significantly earlier (p<0.001); during the first week of life, time spent in SSC was longer (median hours per day 4.8 (4-5.1) vs 1.9 (1.4-2.6), p<0.001) and the proportion of MOBM in enteral feeds was higher (median (IQR) 97.8% (95.1-100) vs 95.1% (87.2-97.4), p=0.011). Compared with the routine care group, the intervention group had higher SID and a reduction of HAS by 33.1% (95% CI 24.4% to 42.4%) in time series analysis. CONCLUSIONS: Early implementation of FIC measures may hold the potential to increase diversity and reduce colonisation with HAS Enterobacteriaceae.


Asunto(s)
Prestación Integrada de Atención de Salud , Infecciones por Enterobacteriaceae , Recién Nacido , Femenino , Humanos , Lactante , Enterobacteriaceae/genética , Unidades de Cuidado Intensivo Neonatal , Estudios Prospectivos , Infecciones por Enterobacteriaceae/terapia
11.
Microb Cell Fact ; 22(1): 101, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198660

RESUMEN

The nanoparticles (NPs) formed by Enterococcus thailandicus, Pseudomonas putida, Marinobacter hydrocarbonoclasticus, and P. geniculate were tested against soft rot/blackleg genera. The effects of NPs recorded on bacterial DNA, proteins, and carbohydrates concentration of Pectobacterium carotovorum subsp. carotovorum, Enterobacter cloacae (soft rot), and Dickeya solani (soft rot/blackleg). Treated cells showed degradation in isolated DNA, decreased proteins and carbohydrates concentration compared with untreated cells. Using Scanning Electron Microscope (SEM), the treated cells showed collapsed and small pits in the cell wall. Using Transmission Electron Microscope (TEM), internal changes showed penetration of NPs inside the tested bacterial cells, the appearance of periplasmic space, formation of vacuoles, and condensation of cytoplasm. Disease severity ex vivo of potato tuber infected with tested genera demonstrated that NPs treatment didn't show any rotted tissue compared with untreated. The ability to uptake and accumulate FeNPs from the soil in potato (Solanum tuberosum) seedlings; Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) was used. It recorded an increase in iron content of treated potato (Solanum tuberosum) seedlings with NPs, compared with untreated. FeNPs can be used to control soft rot/blackleg diseases, instead of copper pesticides. It could be a new, approach for disease management and increase the plant's nutritional value.


Asunto(s)
Pectobacterium , Solanum tuberosum , Egipto , Enfermedades de las Plantas/microbiología , Pectobacterium/genética , Enterobacteriaceae/genética , Solanum tuberosum/microbiología , Metales
12.
Environ Sci Pollut Res Int ; 30(31): 76595-76605, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37243771

RESUMEN

The process of phosphine production by phosphate-reducing bacteria Pseudescherichia sp. SFM4 has been well studied. Phosphine originates from the biochemical stage of functional bacteria that synthesize pyruvate. Stirring the aggregated bacterial mass and supplying pure hydrogen could lead to an increase of 40 and 44% phosphine production, respectively. Phosphine was produced when bacterial cells agglomerated in the reactor. Extracellular polymeric substances secreted on microbial aggregates promoted the formation of phosphine due to the presence of groups containing phosphorus element. Phosphorus metabolism gene and phosphorus source analysis implied that functional bacteria used anabolic organic phosphorus, especially containing carbon-phosphorus bonds, as a source with [H] as electron donor to produce phosphine.


Asunto(s)
Fosfinas , Fósforo , Fósforo/análisis , Bacterias/metabolismo , Enterobacteriaceae
13.
Cell Rep ; 42(2): 112102, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36774548

RESUMEN

Nutritional symbionts influence host reproduction, but the underlying molecular mechanisms are largely unclear. We previously found that the bacteriocyte symbiont Hamiltonella impacts the sex ratio of the whitefly Bemisia tabaci. Hamiltonella synthesizes folate by cooperation with the whitefly. Folate deficiency by Hamiltonella elimination or whitefly gene silencing distorted whitefly sex ratio, and folate supplementation restored the sex ratio. Hamiltonella deficiency or gene silencing altered histone H3 lysine 9 trimethylation (H3K9me3) level, which was restored by folate supplementation. Genome-wide chromatin immunoprecipitation-seq analysis of H3K9me3 indicated mitochondrial dysfunction in symbiont-deficient whiteflies. Hamiltonella deficiency compromised mitochondrial quality of whitefly ovaries. Repressing ovary mitochondrial function led to distorted whitefly sex ratio. These findings indicate that the symbiont-derived folate regulates host histone methylation modifications, which thereby impacts ovary mitochondrial function, and finally determines host sex ratio. Our study suggests that a nutritional symbiont can regulate animal reproduction in a way that differs from reproductive manipulators.


Asunto(s)
Hemípteros , Animales , Femenino , Hemípteros/genética , Razón de Masculinidad , Simbiosis/genética , Enterobacteriaceae/genética , Ácido Fólico
14.
Phytopathology ; 113(3): 390-399, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36399025

RESUMEN

Nitrate metabolism plays an important role in bacterial physiology. During the interaction of plant-pathogenic bacteria with their hosts, bacteria face variable conditions with respect to nitrate availability. Perception mechanisms through the chemosensory pathway drive the entry and control the colonization of the plant host in phytopathogenic bacteria. In this work, the identification and characterization of the nitrate- and nitrite-sensing (NIT) domain-containing chemoreceptor of Dickeya dadantii 3937 (Dd3937) allowed us to unveil the key role of nitrate sensing not only for the entry into the plant apoplast through wounds but also for infection success. We determined the specificity of this chemoreceptor to bind nitrate and nitrite, with a slight ligand preference for nitrate. Gene expression analysis showed that nitrate perception controls not only the expression of nitrate reductase genes involved in respiratory and assimilatory metabolic processes but also the expression of gyrA, hrpN, and bgxA, three well-known virulence determinants in Dd3937.


Asunto(s)
Nitratos , Solanum tuberosum , Virulencia/genética , Nitratos/metabolismo , Solanum tuberosum/microbiología , Nitritos/metabolismo , Enfermedades de las Plantas/microbiología , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Plantas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
15.
Phytother Res ; 37(3): 872-884, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36451541

RESUMEN

To investigate the potential effects and mechanism of wogonin on dextran sulfate sodium (DSS)-induced colitis, 70 male mice were administered wogonin (12.5, 25, 50 mg·kg-1 ·d-1 , i.g.) for 10 days, meanwhile, in order to induce colitis, the mice were free to drink 3% DSS for 6 days. We found that wogonin could obviously ameliorate DSS-induced colitis, including preventing colon shortening and inhibiting pathological damage. In addition, wogonin could increase the expression of PPARγ, which not only restores intestinal epithelial hypoxia but also inhibits iNOS protein to reduce intestinal nitrite levels. All these effects facilitated a reduction in the abundance of Enterobacteriaceae in DSS-induced colitis mice. Therefore, compared with the DSS group, the number of Enterobacteriaceae in the intestinal flora was significantly reduced after administration of wogonin or rosiglitazone by 16s rDNA technology. We also verified that wogonin could promote the expression of PPARγ mRNA and protein in Caco-2 cells, and this effect disappeared when PPARγ signal was inhibited. In conclusion, our study suggested that wogonin can activate the PPARγ signal of the Intestinal epithelium to ameliorate the Intestinal inflammation caused by Enterobacteriaceae bacteria expansion.


Asunto(s)
Colitis , PPAR gamma , Humanos , Masculino , Ratones , Animales , PPAR gamma/metabolismo , Sulfato de Dextran/efectos adversos , Células CACO-2 , Enterobacteriaceae/metabolismo , Colitis/inducido químicamente , Colon , Mucosa Intestinal , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
16.
J Infect Chemother ; 29(1): 26-32, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36100144

RESUMEN

BACKGROUND: Several carbapenemases have been identified globally in Enterobacteriaceae. In Japan, IMP-type carbapenemase is the most prevalent, although cases of carbapenemase-producing Enterobacteriaceae (CPE) bacteremia are still scarce. The present case series and literature review aimed to elucidate the clinical characteristics and treatment strategies for IMP-type CPE bacteremia. METHODS: Clinical data on pediatric cases of IMP-type CPE bacteremia at the Tokyo Metropolitan Children's Medical Center between 2010 and 2020 were collected, and a review of past studies of IMP-type CPE bacteremia has been provided. RESULTS: Five pediatric episodes of IMP-type CPE bacteremia were identified. Our review of previous literature on IMP-type CPE bacteremia revealed 24 adult patients, but no pediatric patients. All 29 cases had underlying diseases, and 23 (79%) received combination therapy. The median duration of antibiotic therapy was 14 days (interquartile range: 9-14 days). The overall mortality rate was 38% (11/29). The mortality rates associated with monotherapy and combination therapy were 67% (4/6) and 30% (7/23), respectively. CONCLUSIONS: We report the first case series of IMP-type CPE bacteremia in children. Our review of past studies suggests that combination therapy might lead to better survival outcomes in patients with IMP-type CPE bacteremia. Further research is needed to establish an optimal treatment strategy for IMP-type CPE bacteremia.


Asunto(s)
Bacteriemia , Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Enterobacteriaceae , Adulto , Niño , Humanos , Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Proteínas Bacterianas , beta-Lactamasas , Enterobacteriaceae , Infecciones por Enterobacteriaceae/diagnóstico , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
17.
Braz. j. biol ; 83: 1-7, 2023. ilus, tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468862

RESUMEN

ncreasing trend in antimicrobial resistance and failure of chemically synthesized antibiotics lead to discover alternative methods for the treatment of bacterial infections. Various medicinal plants are in use traditionally and their active compounds can be further applied for treatment of bacterial diseases. This study was designed to determine the antibacterial activity of Punica granatum (P. granatum L.) (pomegranate) peel extract against Enterobacteriaceae [Escherichia coli (E. coli), Salmonella Typhimurium (S. Typhimurium) and Shigella Dysenteriae (S. Dysenteriae)] and gram-positive bacterium [Staphylococcus aureus (Staph aureus)]. Methanolic extract of P. granatum L. peel was prepared by Soxhlet apparatus method. Total flavonoid and phenolic contents from the extract were determined by High Performance Liquid Chromatography (HPLC). The antibacterial activity of P. granatum L. peel extract was evaluated through agar well diffusion method. HPLC showed the range of phenolics (gallic acid, caffeic acid, benzoic acid, cinnamic acid) and flavonoid compounds. The chemical structures of flavonoid and phenolics found in the methanolic extract of P. granatum L. peel have been reported for the first time. The methanolic peel extract (50 ul) of yellow P. granatum L. showed 26, 10, 10 and 9mm zones of inhibition (ZOI) against S. aureus, S. Typhimurium, S. Dysenteriae and E. coli, respectively. The methanolic extract of red P. granatum L. (100 ul) showed 27, 8, 12 and 15 mm ZOI against Staph. aureus, S. Typhimurium, S. Dysenteriae and E. coli, respectively. Highest ZOI was observed against Staph. aureus. Many of the bacteria studied in the present work may cause serious gastrointestinal infections, which can lead to hemorrhagic diarrhea in children. These [...].


A tendência crescente na resistência antimicrobiana e na falha dos antibióticos sintetizados quimicamente leva à descoberta de métodos alternativos para o tratamento de infecções bacterianas. Várias plantas medicinais estão em uso tradicionalmente e seus compostos ativos podem ser posteriormente aplicados para o tratamento de doenças bacterianas. Este estudo foi desenhado para determinar a atividade antibacteriana do extrato de casca de Punica granatum (P. granatum L.) (romã) contra Enterobacteriaceae [Escherichia coli (E. coli), Salmonella Typhimurium (S. Typhimurium) e Shigella Dysenteriae (S. Dysenteriae) ] e bactéria gram-positiva [Staphylococcus aureus (Staph aureus)]. O extrato metanólico da casca de P. granatum L. foi preparado pelo método do aparelho de Soxhlet. O conteúdo total de flavonoides e fenólicos do extrato foi determinado por cromatografia líquida de alta eficiência (HPLC). A atividade antibacteriana do extrato da casca de P. granatum L. foi avaliada através do método de difusão em ágar. HPLC mostrou a gama de compostos fenólicos (ácido gálico, ácido cafeico, ácido benzoico, ácido cinâmico) e flavonoides. As estruturas químicas de flavonoides e fenólicos encontradas no extrato metanólico da casca de P. granatum L. foram relatadas pela primeira vez. O extrato metanólico da casca (50 ul) de P. granatum L. amarelo apresentou zonas de inibição (ZOI) de 26, 10, 10 e 9mm contra S. aureus, S. Typhimurium, S. Dysenteriae e E. coli, respectivamente. O extrato metanólico de P. granatum L. vermelho (100 ul) apresentou 27, 8, 12 e 15 mm IOI contra Staph. aureus, S. Typhimurium, S. Dysenteriae e E. coli, respectivamente. O ZOI mais alto foi observado contra Staph. aureus. Muitas das bactérias estudadas no presente trabalho podem causar infecções gastrointestinais graves, que podem levar à diarreia [...].


Asunto(s)
Antibacterianos/análisis , Antibacterianos/uso terapéutico , Enterobacteriaceae/efectos de los fármacos , Lythraceae/química , Staphylococcus aureus/efectos de los fármacos , Cromatografía Liquida
18.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361875

RESUMEN

The sequestration of iron in case of infection, termed nutritional immunity, is an established strategy of host defense. However, the interaction between pathogens and the mammalian iron storage protein ferritin is hitherto not completely understood. To better characterize the function of ferritin in Gram-negative infections, we incubated iron-starved cultures of Salmonella Typhimurium and knockout mutant strains defective for major iron uptake pathways or Escherichia coli with horse spleen ferritin or ionic iron as the sole iron source. Additionally, we added bovine superoxide dismutase and protease inhibitors to the growth medium to assess the effect of superoxide and bacterial proteases, respectively, on Salmonella proliferation and reductive iron release. Compared to free ionic iron, ferritin-bound iron was less available to Salmonella, but was still sufficient to significantly enhance the growth of the bacteria. In the absence of various iron acquisition genes, the availability of ferritin iron further decreased. Supplementation with superoxide dismutase significantly reduced the growth of the ΔentC knockout strain with holoferritin as the sole iron source in comparison with ionic ferrous iron. In contrast, this difference was not observed in the wildtype strain, suggesting that superoxide dismutase undermines bacterial iron uptake from ferritin by siderophore-independent mechanisms. Ferritin seems to diminish iron availability for bacteria in comparison to ionic iron, and its iron sequestering effect could possibly be enhanced by host superoxide dismutase activity.


Asunto(s)
Ferritinas , Hierro , Bovinos , Animales , Caballos , Ferritinas/metabolismo , Hierro/metabolismo , Enterobacteriaceae , Salmonella typhimurium , Superóxido Dismutasa/metabolismo , Escherichia coli/metabolismo , Mamíferos/metabolismo
19.
Biomed Pharmacother ; 154: 113571, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36007273

RESUMEN

Ulcerative colitis (UC) is a chronic and relapsing inflammatory disease of the intestine. Dysbiosis, especially the expansion of facultative anaerobic Enterobacteriaceae, maybe the main pathogenesis of UC. Gegen Qinlian decoction (GD), a traditional Chinese medicinal formula chronicled in the Shang Han Lun, is commonly used to treat UC and has shown an excellent effect on inducing disease remission. However, the role of GD in regulating gut microbiota has not been fully clarified. Herein, we investigated the potential effect of GD on inhibiting the expansion of Enterobacteriaceae and further explored the potential mechanism of this action. Our study demonstrated that GD remarkably reduced body weight loss of colitis mice, shortening of colon length, and inflammation of the colon. Peroxisome proliferator-activated receptor-γ (PPAR-γ) signaling was inactivated in colitis colon tissue, and the abundance of Escherichia coli (E. coli, family of Enterobacteriaceae) in colonic contents and the concentration of lipopolysaccharide (LPS) in colonic tissue were significantly upregulated after DSS-treatment. Notably, GD administration can result in the activation of PPAR-γ and inactivation of iNOS, which lead to the reduction of nitrate, the inhibition of E. coli, and less production of LPS. Combined GD with PPAR-γ antagonist, the effect of GD on the treatment of UC was weakened, and effectless in inhibiting the expansion of Enterobacteriaceae. Therefore, GD ameliorates UC by preventing a dysbiotic expansion of potentially pathogenic E. coli by reducing nitrate levels in the lumen through activating PPAR-γ signaling.


Asunto(s)
Colitis Ulcerosa , Colitis , Medicamentos Herbarios Chinos , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colon , Sulfato de Dextran , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Disbiosis , Enterobacteriaceae , Escherichia coli , Lipopolisacáridos , Ratones , Ratones Endogámicos C57BL , Nitratos , PPAR gamma
20.
PLoS One ; 17(8): e0273481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36037153

RESUMEN

Dickeya solani is a soft rot bacterium with high virulence. In potato, D. solani, like the other potato-infecting soft rot bacteria, causes rotting and wilting of the stems and rotting of tubers in the field and in storage. Latent, asymptomatic infections of potato tubers are common in harvested tubers, and if the storage conditions are not optimal, the latent infection turns into active rotting. We characterized potato gene expression in artificially inoculated tubers in nonsymptomatic, early infections 1 and 24 hours post-inoculation (hpi) and compared the results to the response in symptomatic tuber tissue 1 week (168 hpi) later with RNA-Seq. In the beginning of the infection, potato tubers expressed genes involved in the detection of the bacterium through pathogen-associated molecular patterns (PAMPs), which induced genes involved in PAMPs-triggered immunity, resistance, production of pathogenesis-related proteins, ROS, secondary metabolites and salicylic acid (SA) and jasmonic acid (JA) biosynthesis and signaling genes. In the symptomatic tuber tissue one week later, the PAMPs-triggered gene expression was downregulated, whereas primary metabolism was affected, most likely leading to free sugars fueling plant defense but possibly also aiding the growth of the pathogen. In the symptomatic tubers, pectic enzymes and cell wall-based defenses were activated. Measurement of hormone production revealed increased SA concentration and almost no JA in the asymptomatic tubers at the beginning of the infection and high level of JA and reduced SA in the symptomatic tubers one week later. These findings suggest that potato tubers rely on different defense strategies in the different phases of D. solani infection even when the infection takes place in fully susceptible plants incubated in conditions leading to rotting. These results support the idea that D. solani is a biotroph rather than a true necrotroph.


Asunto(s)
Solanum tuberosum , Dickeya , Enterobacteriaceae/genética , Expresión Génica , Moléculas de Patrón Molecular Asociado a Patógenos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas , Ácido Salicílico , Solanum tuberosum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA