Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Microbiol ; 80(9): 306, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501023

RESUMEN

Endophytic fungi play important roles in regulating plant growth and development and usually used as a promising strategy to enhance the biosynthesis of host valuable secondary metabolite, but the underlying growth-promoting mechanisms are only partly understood. In this study, the wild-type Arabidopsis thaliana seedlings co-cultured with fungal endophyte Epichloë bromicola showed auxin (IAA)-stimulated phenotypes, and the growth-promoting effects caused by E. bromicola were further verified by the experiments of spatially separated co-culture and fungal extract treatment. IAA was detected and identified in the extract of E. bromicola culture by LC-HRMS/MS, whereas 2,3-butanediol was confirmed to be the predominant volatile active compound in the diethyl ether and ethyl acetate extracts by GC-MS. Further study observed that IAA-related genes including synthesis key enzyme genes (CYP79B2, CYP79B3, NIT1, TAA1 and YUCCA1) and controlling polar transport genes (AUX1, BIG, EIR1, AXR3 and ARF1), were highly expressed at different periods after E. bromicola inoculation. More importantly, the introduction of fungal endophyte E. bromicola could effectively promote the growth and accumulation of coixol in Coix under soil conditions. Our study showed that endophytic fungus E. bromicola might be considered as a potential inoculant for improving medicinal plant growth.


Asunto(s)
Coix , Epichloe , Coix/microbiología , Epichloe/genética
2.
Mol Plant Pathol ; 24(11): 1430-1442, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37477276

RESUMEN

Epichloë festucae uses a siderophore-mediated system to acquire iron, which is important to maintain endophyte-grass symbioses. Here we investigate the roles of the alternative iron acquisition system, reductive iron assimilation (RIA), via disruption of the fetC gene, which encodes a multicopper ferroxidase, either alone (i.e., ΔfetC) or in combination with disruption of the gene sidA, which encodes a siderophore biosynthesis enzyme (i.e., ΔfetC/ΔsidA). The phenotypic characteristics of these mutants were compared to ΔsidA and wild-type (WT) strains during growth under axenic culture conditions (in culture) and in symbiosis with the host grass, perennial ryegrass (in planta). Under iron deficiency, the colony growth rate of ΔfetC was slightly slower than that of WT, while the growth of ΔsidA and ΔfetC/ΔsidA mutants was severely suppressed. Siderophore analyses indicated that ΔfetC mutants hyperaccumulate ferriepichloënin A (FEA) at low iron concentrations and ferricrocin and FEA at higher iron concentrations. When compared to WT, all mutant strains displayed hyperbranching hyphal structures and a reduced ratio of Epichloë DNA to total DNA in planta. Furthermore, host colonization and vertical transmission through infection of the host seed were significantly reduced in the ΔfetC/ΔsidA mutants, confirming that high-affinity iron uptake is a critical process for Epichloë transmission. Thus, RIA and siderophore iron uptake are complementary systems required for the maintenance of iron metabolism, fungal growth, and symbiosis between E. festucae and perennial ryegrass.


Asunto(s)
Epichloe , Lolium , Lolium/microbiología , Sideróforos/metabolismo , Epichloe/metabolismo , Simbiosis/genética , Endófitos , Hierro/metabolismo , Semillas/metabolismo , ADN/metabolismo
3.
Chem Biodivers ; 20(1): e202200841, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36471540

RESUMEN

Potato late blight caused by Phytophthora infestans is still one of the main factors limiting potato production. Epichloë spp. can provide host plants with various resistances, which makes them show great potential in the biological control of diseases. In this study, we explored the potential biological activity of crude extracts of 20 strains of Epichloë bromicola to control P. infestans. The crude extracts of strains 1 and 8 showed significant antifungal activity with an inhibition rate of 88 % and 81 %, respectively, and showed different effects on the mycelium morphology of P. infestans observed by scanning electron microscopy. Moreover, the two crude extracts demonstrated an interesting therapeutic and protective effect on potato late blight, and none of the extracts had an adverse effect against zebrafish embryos. A total of 13 metabolites were isolated from the crude extract of strain 8, and these tested compounds showed a weak antifungal effect and the inhibition rate was less than 80 %. These findings suggested that strains 1 and 8 have potential for biocontrol of late potato blight.


Asunto(s)
Epichloe , Phytophthora infestans , Solanum tuberosum , Animales , Antifúngicos , Pez Cebra , Enfermedades de las Plantas/microbiología
4.
Biol Trace Elem Res ; 200(11): 4865-4879, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34973128

RESUMEN

Selenium (Se) is an essential micronutrient with many beneficial effects for humans and other living organisms. Numerous microorganisms in culture systems enrich and convert inorganic selenium to organic selenium. In this study, Epichloë sp. from Festuca sinensis was exposed to increasing Na2SeO3 concentrations (0, 0.1, 0.2, 0.3, and 0.4 mmol/L) in Petri dishes with potato dextrose agar (PDA) for 8 weeks. Epichloë sp. mycelia were immediately collected after mycelial diameters were measured at 4, 5, 6, 7, and 8 weeks of cultivation, respectively. Gas chromatography-mass spectrometer (GC-MS) analysis was performed on different groups of Epichloë sp. mycelia. Different changes were observed as Epichloë sp. was exposed to different selenite conditions and cultivation time. The colony diameter of Epichloë sp. decreased in response to increased selenite concentrations, whereas the inhibitory effects diminished over time. Seventy-two of the 203 identified metabolites did not differ significantly across selenite treatments within the same time point, while 82 compounds did not differ significantly between multiple time points of the same Se concentration. However, the relative levels of 122 metabolites increased the most under selenite conditions. Specifically, between the 4th and 8th weeks, there were increases in 2-keto-isovaleric acid, uridine, and maltose in selenite treatments compared to controls. Selenium increased glutathione levels and exhibited antioxidant properties in weeks 4, 5, and 7. Additionally, we observed that different doses of selenite could promote the production of carbohydrates such as isomaltose, cellobiose, and sucrose; fatty acids such as palmitoleic acid, palmitic acid, and stearic acid; and amino acids such as lysine and tyrosine in Epichloë sp. mycelia. Therefore, Epichloë sp. exposed to selenite stress may benefit from increased levels of some metabolite compounds.


Asunto(s)
Epichloe , Festuca , Selenio , Agar , Antioxidantes/farmacología , Celobiosa , Epichloe/química , Epichloe/metabolismo , Ácidos Grasos , Festuca/metabolismo , Glucosa , Glutatión , Humanos , Isomaltosa , Lisina , Maltosa , Micronutrientes , Ácidos Palmíticos , Ácido Selenioso , Selenio/metabolismo , Selenio/farmacología , Selenito de Sodio/metabolismo , Selenito de Sodio/farmacología , Ácidos Esteáricos , Sacarosa , Tirosina , Uridina
5.
J Agric Food Chem ; 63(48): 10355-65, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26550846

RESUMEN

Widespread infection of Epichloë occultans in annual ryegrass in Australia suggests that infection provides its weedy host, Lolium rigidum, some ecological advantage. Initial studies determined the distribution and profiles of known Epichloë alkaloids (epoxy-janthitrems, ergovaline, lolines, lolitrem B, and peramine) in plant extracts using a combination of GC-FID and HPLC techniques utilizing a single accession of Australian L. rigidum. However, the lolines N-acetylnorloline (NANL) and N-formylloline (NFL) were the only alkaloids detected and were highly concentrated in the immature inflorescences of mature plants. Additional glasshouse studies subjected a wide range of Australian L. rigidum haplotypes and international annual Lolium accessions to a suite of analyses to determine alkaloid levels and profiles. Again, NFL and NANL were the key lolines produced, with NFL consistently predominating. Considerable variation in alkaloid production was found both within and between biotypes and accessions evaluated under identical conditions, at the same maturation stage and on the same tissue type. The pyrrolopyrazine alkaloid peramine was also present in 8 out of 17 Australian biotypes of L. rigidum and 7 out of 33 international accessions infected with Epichloë spp.; the highest peramine concentrations were observed in seed extracts from L. rigidum collected from Australia. This study represents the first report of alkaloids from a geographically diverse collection of annual ryegrass germplasm infected with Epichloë spp. when grown under identical controlled conditions.


Asunto(s)
Alcaloides/análisis , Epichloe/fisiología , Lolium/química , Lolium/microbiología , Enfermedades de las Plantas/microbiología , Alcaloides/metabolismo , Australia , Lolium/genética , Lolium/metabolismo , Enfermedades de las Plantas/genética
6.
Am Nat ; 181(4): 562-70, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23535620

RESUMEN

Symbioses have shaped the evolution of life, most notably through the fixation of heritable symbionts into organelles. The inheritance of symbionts promotes mutualism and fixation by coupling partner fitness. However, conflicts arise if symbionts are transmitted through only one sex and can shift host resources toward the sex through which they propagate. Such reproductive manipulators have been documented in animals with separate sexes but not in other phyla or sexual systems. Here we investigated whether the investment in male relative to female reproduction differed between hermaphroditic host plants with versus without a maternally inherited fungal symbiont. Plants with the fungus produced more seeds and less pollen than plants lacking the fungus, resulting in an ~40% shift in functional gender and a switch from male-biased to female-biased sex allocation. Given the ubiquity of endophytes in plants, reproductive manipulators of hermaphrodites may be widespread in nature.


Asunto(s)
Elymus/microbiología , Elymus/fisiología , Epichloe/fisiología , Simbiosis , Polen , Reproducción/fisiología , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA