Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nutrients ; 11(10)2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581549

RESUMEN

Diseases involving inflammation and oxidative stress can be exacerbated by high blood glucose levels. Due to tight metabolic regulation, safely reducing blood glucose can prove difficult. The ketogenic diet (KD) reduces absolute glucose and insulin, while increasing fatty acid oxidation, ketogenesis, and circulating levels of ß-hydroxybutyrate (ßHB), acetoacetate (AcAc), and acetone. Compliance to KD can be difficult, so alternative therapies that help reduce glucose levels are needed. Exogenous ketones provide an alternative method to elevate blood ketone levels without strict dietary requirements. In this study, we tested the changes in blood glucose and ketone (ßHB) levels in response to acute, sub-chronic, and chronic administration of various ketogenic compounds in either a post-exercise or rested state. WAG/Rij (WR) rats, a rodent model of human absence epilepsy, GLUT1 deficiency syndrome mice (GLUT1D), and wild type Sprague Dawley rats (SPD) were assessed. Non-pathological animals were also assessed across different age ranges. Experimental groups included KD, standard diet (SD) supplemented with water (Control, C) or with exogenous ketones: 1, 3-butanediol (BD), ßHB mineral salt (KS), KS with medium chain triglyceride/MCT (KSMCT), BD acetoacetate diester (KE), KE with MCT (KEMCT), and KE with KS (KEKS). In rested WR rats, the KE, KS, KSMCT groups had lower blood glucose level after 1 h of treatment, and in KE and KSMCT groups after 24 h. After exercise, the KE, KSMCT, KEKS, and KEMCT groups had lowered glucose levels after 1 h, and in the KEKS and KEMCT groups after 7 days, compared to control. In GLUT1D mice without exercise, only KE resulted in significantly lower glucose levels at week 2 and week 6 during a 10 weeks long chronic feeding study. In 4-month and 1-year-old SPD rats in the post-exercise trials, blood glucose was significantly lower in KD and KE, and in KEMCT groups, respectively. After seven days, the KSMCT group had the most significantly reduced blood glucose levels, compared to control. These results indicate that exogenous ketones were efficacious in reducing blood glucose levels within and outside the context of exercise in various rodent models of different ages, with and without pathology.


Asunto(s)
Ácido 3-Hidroxibutírico/farmacología , Acetoacetatos/farmacología , Glucemia/efectos de los fármacos , Butileno Glicoles/farmacología , Errores Innatos del Metabolismo de los Carbohidratos/terapia , Dieta Cetogénica , Suplementos Dietéticos , Epilepsia Tipo Ausencia/terapia , Proteínas de Transporte de Monosacáridos/deficiencia , Animales , Biomarcadores , Glucemia/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/sangre , Errores Innatos del Metabolismo de los Carbohidratos/genética , Errores Innatos del Metabolismo de los Carbohidratos/fisiopatología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Epilepsia Tipo Ausencia/sangre , Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/fisiopatología , Transportador de Glucosa de Tipo 1/deficiencia , Transportador de Glucosa de Tipo 1/genética , Masculino , Ratones Noqueados , Proteínas de Transporte de Monosacáridos/sangre , Proteínas de Transporte de Monosacáridos/genética , Esfuerzo Físico , Ratas Sprague-Dawley , Descanso , Factores de Tiempo
2.
Rev Med Chil ; 135(5): 631-5, 2007 May.
Artículo en Español | MEDLINE | ID: mdl-17657332

RESUMEN

The glucose transporter type 1 deficiency syndrome (GLUT-1 SD) (OMIM 606777) is an inborn error of metabolism of brain glucose transport. The characteristic clinical manifestations are seizures, hypotonia, developmental delay, microcephaly and hypoglycorrhachia. We report a girl with normal weight and height at birth. At 6 weeks of age she started with convulsions reaching up to 20 myoclonic seizures a day. She was treated with valproate, phenobarbital and carbamazepine without response. Blood analysis including aminoacids and acylcarnitines were all normal. The brain MRI showed frontal atrophy with an increased subarachnoidal space and Electroencephalography was abnormal. Blood glucose was 84 mg/dl and spinal fluid glucose 26 mg/dl with a ratio of 0.31 (Normal Ratio >0.65+/-00.1). These results suggested the diagnosis of GLUT-1 SD, and was confirmed with erythrocyte glucose uptake of 44% (Normal range 80-100%). A molecular study found the mutation 969del, C971T in exon 6 of the gene Glut-1. Treatment with a ketogenic diet was started immediately and after 7 days with this diet seizures ceased. Anticonvulsants were progressively suspended. At present, the patient is 6 years old, she continues on a ketogenic diet and supplements with L-carnitine, lipoic acid, vitamins and minerals. Growth and development are normal with an intelligence quotient of 103. It is concluded that it is necessary to include GLUT-1 SD in the differential diagnosis of children with early seizures that are non responsive to pharmacological treatment.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos/dietoterapia , Grasas de la Dieta/administración & dosificación , Transportador de Glucosa de Tipo 1/deficiencia , Cetonas/metabolismo , Anticonvulsivantes/uso terapéutico , Glucemia/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/sangre , Errores Innatos del Metabolismo de los Carbohidratos/genética , Carnitina/uso terapéutico , Grasas de la Dieta/metabolismo , Eritrocitos/metabolismo , Femenino , Humanos , Recién Nacido , Convulsiones/dietoterapia , Convulsiones/tratamiento farmacológico , Síndrome
3.
Rev. méd. Chile ; 135(5): 631-635, mayo 2007. ilus
Artículo en Español | LILACS | ID: lil-456680

RESUMEN

The glucose transporter type 1 deficiency syndrome (GLUT-1 SD) (OMIM 606777) is an inborn error of metabolism of brain glucose transport. The characteristic clinical manifestations are seizures, hypotonia, developmental delay, microcephaly and hypoglycorrhachia. We report a girl with normal weight and height at birth. At 6 weeks of age she started with convulsions reaching up to 20 myoclonic seizures a day. She was treated with valproate, phenobarbital and carbamazepine without response. Blood analysis including aminoacids and acylcarnitines were all normal. The brain MRI showed frontal atrophy with an increased subarachnoidal space and Electroencephalography was abnormal. Blood glucose was 84 mg/dl and spinal fluid glucose 26 mg/dl with a ratio of 0.31 (Normal Ratio >0.65+00.1). These results suggested the diagnosis of GLUT-1 SD, and was confirmed with erythrocyte glucose uptake of 44 percent (Normal range 80-100 percent). A molecular study found the mutation 969del, C971T in exon 6 of the gene Glut-1. Treatment with a ketogenic diet was started immediately and after 7 days with this diet seizures ceased. Anticonvulsants were progressively suspended. At present, the patient is 6 years old, she continues on a ketogenic diet and supplements with L-carnitine, lipoic acid, vitamins and minerals. Growth and development are normal with an intelligence quotient of 103. It is concluded that it is necessary to include GLUT-1 SD in the differential diagnosis of children with early seizures that are non responsive to pharmacological treatment.


Asunto(s)
Femenino , Humanos , Recién Nacido , Errores Innatos del Metabolismo de los Carbohidratos/dietoterapia , Grasas de la Dieta/administración & dosificación , Transportador de Glucosa de Tipo 1/deficiencia , Cetonas/metabolismo , Anticonvulsivantes/uso terapéutico , Glucemia/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/sangre , Errores Innatos del Metabolismo de los Carbohidratos/genética , Carnitina/uso terapéutico , Grasas de la Dieta/metabolismo , Eritrocitos/metabolismo , Convulsiones/dietoterapia , Convulsiones/tratamiento farmacológico , Síndrome
4.
Biochem Biophys Res Commun ; 255(2): 189-93, 1999 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-10049684

RESUMEN

Some genetic defects in protein glycosylation can be treated effectively with dietary supplements of monosaccharides. An easy screening test and non-toxic therapy for potentially lethal disorders should encourage physicians to search for more patients with glycosylation disorders. It should also stimulate research on the occurrence and availability of monosaccharides used for glycoconjugate synthesis and for vertebrate models to study their utilization.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos/dietoterapia , Errores Innatos del Metabolismo de los Carbohidratos/metabolismo , Carbohidratos de la Dieta/uso terapéutico , Monosacáridos/uso terapéutico , Errores Innatos del Metabolismo de los Carbohidratos/genética , Glicosilación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA