Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Microbiol Methods ; 184: 106201, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33713725

RESUMEN

Enteropathogenic E. coli (EPEC) causes intestinal infections leading to severe diarrhea. EPEC attaches to the host cell causing lesions to the intestinal epithelium coupled with the effacement of microvilli. In the process, actin accumulates into a pedestal-like structure under bacterial microcolonies. We designed an automated fluorescence microscopy-based screening method for discovering compounds capable of inhibiting EPEC adhesion and virulence using aurodox, a type three secretion system (T3SS) inhibitor, as a positive control. The screening assay employs an EPEC strain (2348/69) expressing a fluorescent protein and actin staining for monitoring the bacteria and their pedestals respectively, analyzing these with a custom image analysis pipeline. The assay allows for the discovery of compounds capable of preventing the formation of pathogenic actin rearrangements. These compounds may be interfering with virulence-related molecular pathways relevant for developing antivirulence leads.


Asunto(s)
Antibacterianos/farmacología , Automatización/métodos , Adhesión Bacteriana/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Escherichia coli Enteropatógena/efectos de los fármacos , Escherichia coli Enteropatógena/fisiología , Microscopía Fluorescente/métodos , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Humanos , Sistemas de Secreción Tipo III/antagonistas & inhibidores , Sistemas de Secreción Tipo III/metabolismo , Virulencia/efectos de los fármacos
2.
Vet Microbiol ; 241: 108555, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31928702

RESUMEN

Avian pathogenic Escherichia coli (APEC) causes avian colibacillosis in poultry, which is characterized by systemic infections such as septicemia, air sacculitis, and pericarditis. APEC uses two-component regulatory systems (TCSs) to handle the stressful environments present in infected hosts. While many TCSs in E. coli have been well characterized, the RstA/RstB system in APEC has not been thoroughly investigated. The involvement of the RstA regulator in APEC pathogenesis was demonstrated during previous studies investigating its role in APEC persistence in chicken macrophages and respiratory infections. However, the mechanism underlying this phenomenon has not been clarified. Transcriptional analysis of the effect of rstAB deletion was therefore performed to improve the understanding of the RstA/RstB regulatory mechanism, and particularly its role in virulence. The transcriptomes of the rstAB mutant and the wild-type strain E058 were compared during their growth in the bloodstreams of challenged chickens. Overall, 198 differentially expressed (DE) genes were identified, and these indicated that RstA/RstB mainly regulates systems involved in nitrogen metabolism, iron acquisition, and acid resistance. Phenotypic assays indicated that the rstAB mutant responded more to an acidic pH than the wild-type strain did, possibly because of the repression of the acid-resistance operons hdeABD and gadABE by the deletion of rstAB. Based on the reported RstA box motif TACATNTNGTTACA, we identified four possible RstA target genes (hdeD, fadE, narG, and metE) among the DE genes. An electrophoretic mobility shift assay confirmed that RstA binds directly to the promoter of hdeD, and ß-galactosidase assays showed that hdeD expression was reduced by rstAB deletion, indicating that RstA directly regulates hdeD expression. The hdeD mutation resulted in virulence attenuation in both cultured chicken macrophages and experimentally infected chickens. In conclusion, our data suggest that RstA affects APEC E058 virulence partly by directly regulating the acidic resistance gene hdeD.


Asunto(s)
Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/análisis , Macrófagos/microbiología , Proteínas de la Membrana/fisiología , Animales , Pollos , Biología Computacional , Medios de Cultivo/química , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/crecimiento & desarrollo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/fisiología , Eliminación de Gen , Expresión Génica , Concentración de Iones de Hidrógeno , Análisis por Micromatrices/veterinaria , Mutación , Nitrógeno/deficiencia , Enfermedades de las Aves de Corral/microbiología , ARN Bacteriano/química , ARN Bacteriano/aislamiento & purificación , ARN Complementario/química , ARN Complementario/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Organismos Libres de Patógenos Específicos , Virulencia , beta-Galactosidasa/metabolismo
3.
Wei Sheng Wu Xue Bao ; 47(3): 407-12, 2007 Jun.
Artículo en Chino | MEDLINE | ID: mdl-17672296

RESUMEN

Direct screening of bacterial genes expressed during infection in the host is limited, because isolation of bacterial transcripts from host tissues necessitates separation from the abundance of host RNA. Selective capture of transcribed sequences (SCOTS) allows the selective capture of bacterial cDNA derived from infected tissues using hybridization to biotinylated bacterial genomic DNA. Avian pathogenic E. coli strain E037 (serogroup O78) was used in a chicken infection model to identify bacterial genes that are expressed in infected tissues. Three-week-old white leghorn specific-pathogen-free chickens were inoculated into the right thoracic air sac with a 0.1 mL suspension containing 10(7) CFU of APEC strain E037. Total RNA was isolated from infected tissues (pericardium and air sacs) 6 or 24h postinfection and converted to cDNAs. By using the cDNA selection method of selective capture of transcribed sequences and enrichment for the isolation of pathogen-specific (non-pathogenic E. coli K-12 strain ) transcripts, pathogen-specific cDNAs were identified. Randomly chosen cDNA clones derived from transcripts in the air sacs or pericardium were selected and sequenced. The clones, termed aec, contained numerous APEC-specific sequences. Among the distinct 31 aec clones, pathogen-specific clones contained sequences homologous to known and novel putative bacterial virulence gene products involved in adherence, iron transport, lipopolysaccharide (LPS) synthesis, plasmid replication and conjugation, putative phage encoded products, and gene products of unknown function. Overall, the current study provided a means to identify novel pathogen-specific genes expressed in vivo and insight regarding the global gene expression of a pathogenic E. coli strain in a natural animal host during the infectious process.


Asunto(s)
Escherichia coli Enteropatógena/genética , Infecciones por Escherichia coli/veterinaria , Enfermedades de las Aves de Corral/microbiología , Transcripción Genética , Factores de Virulencia/genética , Animales , Pollos , ADN Complementario/genética , Escherichia coli Enteropatógena/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/microbiología , Regulación Bacteriana de la Expresión Génica , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA