Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 625(7994): 321-328, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200296

RESUMEN

Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that is most prevalent in Northern Europe. Although it is known that inherited risk for MS is located within or in close proximity to immune-related genes, it is unknown when, where and how this genetic risk originated1. Here, by using a large ancient genome dataset from the Mesolithic period to the Bronze Age2, along with new Medieval and post-Medieval genomes, we show that the genetic risk for MS rose among pastoralists from the Pontic steppe and was brought into Europe by the Yamnaya-related migration approximately 5,000 years ago. We further show that these MS-associated immunogenetic variants underwent positive selection both within the steppe population and later in Europe, probably driven by pathogenic challenges coinciding with changes in diet, lifestyle and population density. This study highlights the critical importance of the Neolithic period and Bronze Age as determinants of modern immune responses and their subsequent effect on the risk of developing MS in a changing environment.


Asunto(s)
Predisposición Genética a la Enfermedad , Genoma Humano , Pradera , Esclerosis Múltiple , Humanos , Conjuntos de Datos como Asunto , Dieta/etnología , Dieta/historia , Europa (Continente)/etnología , Predisposición Genética a la Enfermedad/historia , Genética Médica , Historia del Siglo XV , Historia Antigua , Historia Medieval , Migración Humana/historia , Estilo de Vida/etnología , Estilo de Vida/historia , Esclerosis Múltiple/genética , Esclerosis Múltiple/historia , Esclerosis Múltiple/inmunología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/historia , Enfermedades Neurodegenerativas/inmunología , Densidad de Población
2.
Exp Mol Med ; 55(1): 215-227, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36635431

RESUMEN

Conflicting results on melatonin synthesis in multiple sclerosis (MS) have been reported due to variabilities in patient lifestyles, which are not considered when supplementing melatonin. Since melatonin acts through its receptors, we identified melatonin receptors in oligodendrocytes (OLs) in the corpus callosum, where demyelination occurs; the subventricular zone, where neural stem/progenitor cells (NSPCs) are located; and the choroid plexus, which functions as a blood-cerebrospinal fluid barrier. Moreover, using chimeric mice, resident macrophages were found to express melatonin receptors, whereas bone marrow-derived macrophages lost this expression in the demyelinated brain. Next, we showed that cuprizone-fed mice, which is an MS model, tended to have increased melatonin levels. While we used different approaches to alter the circadian rhythm of melatonin and cortisol, only the constant light approach increased NSPC proliferation and differentiation to oligodendrocyte precursor cells (OPCs), OPCs maturation to OLs and recruitment to the site of demyelination, the number of patrolling monocytes, and phagocytosis. In contrast, constant darkness and exogenous melatonin exacerbated these events and amplified monocyte infiltration. Therefore, melatonin should not be considered a universal remedy, as is currently claimed. Our data emphasize the importance of monitoring melatonin/cortisol oscillations in each MS patient by considering diet and lifestyle to avoid melatonin overdose.


Asunto(s)
Enfermedades Desmielinizantes , Melatonina , Monocitos , Esclerosis Múltiple , Vaina de Mielina , Fagocitosis , Animales , Ratones , Diferenciación Celular , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Hidrocortisona , Melatonina/farmacología , Ratones Endogámicos C57BL , Monocitos/inmunología , Monocitos/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Fagocitosis/inmunología , Receptores de Melatonina , Vaina de Mielina/metabolismo
3.
Fitoterapia ; 156: 105099, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34896483

RESUMEN

The aim of this study is to investigate the potential preventive and therapeutic effects of nobiletin by evaluating the expression of cytokines associated with inflammatory reactions in an autoimmune encephalomyelitis mouse model. A total of 60 male C57BL/6 mice aged between 8 and 10 weeks were used. Mice were divided into six groups (n = 10 mice per group): control, EAE, low-prophylaxis, high-prophylaxis, low-treatment and high-treatment. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG) and pertussis toxin. Nobiletin was administered in low (25 mg/kg) and high (50 mg/kg) doses, intraperitoneally. The prophylactic and therapeutic effects of nobiletin on brain tissue and spinal cord were evaluated by expression of interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), interferon gamma (IFNγ), IL-6, IL-10 and transforming growth factor-beta (TGF-ß) using immunohistochemistry and real-time polymerase chain reaction (RT-PCR). Prophylactic and therapeutic use of nobiletin inhibited EAE-induced increase of TNF-α, IL-1ß and IL-6 activities to alleviate inflammatory response in brain and spinal cord. Moreover, nobiletin supplement dramatically increased the IL-10, TGF-ß and IFNγ expressions in prophylaxis and treatment groups compared with the EAE group in the brain and spinal cord. The results obtained from this study show that prophylactic and therapeutic nobiletin modulates expressions of proinflammatory and antiinflammatory cytokines in brain and spinal cord dose-dependent manner in EAE model. These data demonstrates that nobiletin has a potential to attenuate inflammation in EAE mouse model. These experimental findings need to be supported by clinical studies.


Asunto(s)
Antioxidantes/uso terapéutico , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Flavonas/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Animales , Antioxidantes/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/patología , Citocinas/efectos de los fármacos , ADN Complementario/biosíntesis , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/prevención & control , Flavonas/farmacología , Inmunohistoquímica , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Esclerosis Múltiple/prevención & control , ARN/genética , ARN/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Médula Espinal/efectos de los fármacos , Médula Espinal/inmunología , Médula Espinal/patología
4.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34907015

RESUMEN

The positive impact of meditation on human well-being is well documented, yet its molecular mechanisms are incompletely understood. We applied a comprehensive systems biology approach starting with whole-blood gene expression profiling combined with multilevel bioinformatic analyses to characterize the coexpression, transcriptional, and protein-protein interaction networks to identify a meditation-specific core network after an advanced 8-d Inner Engineering retreat program. We found the response to oxidative stress, detoxification, and cell cycle regulation pathways were down-regulated after meditation. Strikingly, 220 genes directly associated with immune response, including 68 genes related to interferon signaling, were up-regulated, with no significant expression changes in the inflammatory genes. This robust meditation-specific immune response network is significantly dysregulated in multiple sclerosis and severe COVID-19 patients. The work provides a foundation for understanding the effect of meditation and suggests that meditation as a behavioral intervention can voluntarily and nonpharmacologically improve the immune response for treating various conditions associated with excessive or persistent inflammation with a dampened immune system profile.


Asunto(s)
Sistema Inmunológico/metabolismo , Meditación , Transcriptoma , Adulto , COVID-19/inmunología , COVID-19/metabolismo , Dieta Vegana , Femenino , Genoma Humano , Humanos , Masculino , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Mapas de Interacción de Proteínas
5.
Inflammopharmacology ; 29(5): 1399-1412, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34510276

RESUMEN

BACKGROUND: Mesenchymal stem cells-derived adipose tissue (AT-MSCs) are recognized for the treatment of inflammatory diseases including multiple sclerosis (MS). Hypericum perforatum (HP) is an anti-inflammatory pharmaceutical plant with bioactive compounds. Plant tissue culture is a technique to improve desired pharmacological potential. The aim of this study was to compare the anti-inflammatory and proliferative effects of callus with field-growing plant extracts of HP on AT-MSCs derived from MS patients. MATERIALS AND METHODS: AT-MSCs were isolated and characterized. HP callus was prepared and exposure to light spectrum (blue, red, blue-red, and control). Total phenols, flavonoids, and hypericin of HP callus and plant extracts were measured. The effects of HP extracts concentrations on proliferation were evaluated by MTT assay. Co-culture of AT-MSCs: PBMCs were challenged by HP plant and callus extracts, and Tregs percentage was assessed by flow cytometry. RESULTS: Identification of MSCs was performed. Data showed that blue light could stimulate total phenols, flavonoids, and hypericin. MTT test demonstrated that plant extract in concentrations (0.03, 1.2, 2.5 and 10 µg/ml) and HP callus extract in 10 µg/ml significantly increased. Both HP extracts lead to an increase in Tregs percentage in all concentrations. In particular, a comparison between HP plant and callus extracts revealed that Tregs enhanced 3-fold more than control groups in the concentration of 10 µg/ml callus. CONCLUSIONS: High concentrations of HP extracts showed effectiveness on AT-MSCs proliferation and immunomodulatory properties with a certain consequence in callus extract. HP extracts may be considered as supplementary treatments for the patients who receiving MSCs transplantation.


Asunto(s)
Hypericum/química , Células Madre Mesenquimatosas/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Extractos Vegetales/farmacología , Tejido Adiposo/citología , Adulto , Antiinflamatorios/administración & dosificación , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Agentes Inmunomoduladores/administración & dosificación , Agentes Inmunomoduladores/aislamiento & purificación , Agentes Inmunomoduladores/farmacología , Células Madre Mesenquimatosas/citología , Esclerosis Múltiple/inmunología , Extractos Vegetales/administración & dosificación
6.
Front Immunol ; 12: 676016, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394076

RESUMEN

Over the last 15 years there has been an accumulation of data supporting the concept of a gut-brain axis whereby dysbiosis of the gut microbiota can impact neurological function. Such dysbiosis has been suggested as a possible environmental exposure triggering multiple sclerosis (MS). Dysbiosis has been consistently shown to result in a reduction in short-chain fatty acid (SCFA) producing bacteria and a reduction in stool and plasma levels of propionate has been shown for MS patients independent of disease stage and in different geographies. A wealth of evidence supports the action of propionate on T-cell activity, resulting in decreased T-helper cell 1 (Th1) and T-helper cell 17 (Th17) numbers/activity and increased regulatory T cell (Treg cell) numbers/activity and an overall anti-inflammatory profile. These different T-cell populations play various roles in the pathophysiology of MS. A recent clinical study in MS patients demonstrated that supplementation of propionate reduces the annual relapse rate and slows disease progression. This review discusses this data and the relevant mechanistic background and discusses whether taming of the overactive immune system in MS is likely to allow easier bacterial and viral infection.


Asunto(s)
Esclerosis Múltiple/terapia , Propionatos/administración & dosificación , Animales , Suplementos Dietéticos , Modelos Animales de Enfermedad , Disbiosis , Microbioma Gastrointestinal/fisiología , Humanos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/microbiología , Propionatos/metabolismo , Linfocitos T/inmunología
7.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34281224

RESUMEN

Multiple sclerosis (MS) is a neurodegenerative inflammatory condition mediated by autoreactive immune processes. Due to its potential to influence host immunity and gut-brain communication, the gut microbiota has been suggested to be involved in the onset and progression of MS. To date, there is no definitive cure for MS, and rehabilitation programs are of the utmost importance, especially in the later stages. However, only a few people generally participate due to poor support, knowledge, and motivation, and no information is available on gut microbiota changes. Herein we evaluated the potential of a brief high-impact multidimensional rehabilitation program (B-HIPE) in a leisure environment to affect the gut microbiota, mitigate MS symptoms and improve quality of life. B-HIPE resulted in modulation of the MS-typical dysbiosis, with reduced levels of pathobionts and the replenishment of beneficial short-chain fatty acid producers. This partial recovery of a eubiotic profile could help counteract the inflammatory tone typically observed in MS, as supported by reduced circulating lipopolysaccharide levels and decreased populations of pro-inflammatory lymphocytes. Improved physical performance and fatigue relief were also found. Our findings pave the way for integrating clinical practice with holistic approaches to mitigate MS symptoms and improve patients' quality of life.


Asunto(s)
Microbioma Gastrointestinal , Esclerosis Múltiple/rehabilitación , Adulto , Anciano , Traslocación Bacteriana , Estudios de Casos y Controles , Estudios de Cohortes , Dieta Mediterránea , Ejercicio Físico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Atención Plena , Esclerosis Múltiple/dietoterapia , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/microbiología , Modalidades de Fisioterapia , Proyectos Piloto , Subgrupos de Linfocitos T
8.
Int J Mol Sci ; 22(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070011

RESUMEN

Dopamine is a neurotransmitter that mediates neuropsychological functions of the central nervous system (CNS). Recent studies have shown the modulatory effect of dopamine on the cells of innate and adaptive immune systems, including Th17 cells, which play a critical role in inflammatory diseases of the CNS. This article reviews the literature data on the role of dopamine in the regulation of neuroinflammation in multiple sclerosis (MS). The influence of dopaminergic receptor targeting on experimental autoimmune encephalomyelitis (EAE) and MS pathogenesis, as well as the therapeutic potential of dopaminergic drugs as add-on pathogenetic therapy of MS, is discussed.


Asunto(s)
Dopamina/inmunología , Esclerosis Múltiple/tratamiento farmacológico , Receptores Dopaminérgicos/efectos de los fármacos , Animales , Dopamina/fisiología , Dopaminérgicos/farmacología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/fisiopatología , Humanos , Ratones , Modelos Inmunológicos , Modelos Neurológicos , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/fisiopatología , Neuroinmunomodulación/efectos de los fármacos , Neuroinmunomodulación/inmunología , Neuroinmunomodulación/fisiología , Receptores Dopaminérgicos/inmunología , Receptores Dopaminérgicos/fisiología , Células Th17/efectos de los fármacos , Células Th17/inmunología
9.
Int Immunopharmacol ; 97: 107811, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34091117

RESUMEN

Multiple sclerosis (MS) is a neurodegenerative and demyelinating autoimmune disease mediated by autoreactive T cells that affects the central nervous system (CNS). Electroacupuncture (EA) has emerged as an alternative or supplemental treatment for MS, but the mechanism by which EA may alleviate MS symptoms is unresolved. Here, we examined the effects of EA at the Zusanli (ST36) acupoint on mice with experimental autoimmune encephalomyelitis (EAE), the predominant animal model of MS. The effects of EA on EAE emergence, inflammatory cell levels, proinflammatory cytokines, and spinal cord pathology were examined. EA treatment attenuated the EAE clinical score and associated spinal cord demyelination, while reducing the presence of proinflammatory cytokines in mononuclear cells (MNCs), downregulating microRNA (miR)-155, and upregulating the opioid peptide precursor proopiomelanocortin (POMC) in the CNS. Experiments in which cultured neurons were transfected with a miR-155 mimic or a miR-155 inhibitor further showed that the direct modulation of miR-155 levels could regulate POMC levels in neurons. In conclusion, the alleviation of EAE by EA is characterized by reduced proportions of Th1/Th17 cells and increased proportions of Th2 cells, POMC upregulation, and miR-155 downregulation, while miR-155 itself can suppress POMC expression. These results, support the hypothesis that the effects of EA on EAE may involve the downregulation of miR-155.


Asunto(s)
Electroacupuntura , Encefalomielitis Autoinmune Experimental/terapia , MicroARNs/metabolismo , Esclerosis Múltiple/terapia , Animales , Regulación hacia Abajo/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Humanos , Ratones , MicroARNs/agonistas , MicroARNs/antagonistas & inhibidores , Esclerosis Múltiple/inmunología , Proopiomelanocortina/genética , Células TH1/inmunología , Células Th17/inmunología , Células Th2/inmunología , Regulación hacia Arriba/inmunología
10.
Front Immunol ; 12: 640778, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912166

RESUMEN

The etiology of multiple sclerosis (MS) is not clear, and the treatment of MS presents a great challenge. This study aimed to investigate the pathogenesis and potential therapeutic targets of MS and to define target genes of matrine, a quinolizidine alkaloid component derived from the root of Sophorae flavescens that effectively suppressed experimental autoimmune encephalomyelitis (EAE), an animal model of MS. To this end, the GSE108000 gene data set in the Gene Expression Omnibus Database, which included 7 chronic active MS lesions and 10 control samples of white matter, was analyzed for differentially expressed genes (DEGs). X cell was used to analyze the microenvironmental differences in brain tissue samples of MS patients, including 64 types of immune cells and stromal cells. The biological functions and enriched signaling pathways of DEGs were analyzed by multiple approaches, including GO, KEGG, GSEA, and GSVA. The results by X cell showed significantly increased numbers of immune cell populations in the MS lesions, with decreased erythrocytes, megakaryocytes, adipocytes, keratinocytes, endothelial cells, Th1 cells and Tregs. In GSE108000, there were 637 DEGs, including 428 up-regulated and 209 down-regulated genes. Potential target genes of matrine were then predicted by the network pharmacology method of Traditional Chinese medicine, and 12 key genes were obtained by cross analysis of the target genes of matrine and DEGs in MS lesions. Finally, we confirmed by RT-PCR the predicted expression of these genes in brain tissues of matrine-treated EAE mice. Among these genes, 2 were significantly downregulated and 6 upregulated by matrine treatment, and the significance of this gene regulation was further investigated. In conclusion, our study defined several possible matrine target genes, which can be further elucidated as mechanism(s) of matrine action, and novel targets in the treatment of MS.


Asunto(s)
Alcaloides/farmacología , Encéfalo/patología , Encefalomielitis Autoinmune Experimental/patología , Esclerosis Múltiple/patología , Quinolizinas/farmacología , Transcriptoma/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Biología Computacional/métodos , Encefalomielitis Autoinmune Experimental/inmunología , Perfilación de la Expresión Génica/métodos , Humanos , Ratones , Esclerosis Múltiple/inmunología , Matrinas
11.
Clin Rev Allergy Immunol ; 60(2): 147-163, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32495237

RESUMEN

Multiple sclerosis (MS) is a neuroinflammatory disease in which unresolved and uncontrolled inflammation disrupts normal cellular homeostasis and leads to a pathological disease state. It has long been recognized that endogenously derived metabolic by-products of omega fatty acids, known as specialized pro-resolving lipid mediators (SPMs), are instrumental in resolving the pathologic inflammation. However, there is minimal data available on the functional status of SPMs in MS, despite the fact that MS presents a classical model of chronic inflammation. Studies to date indicate that dysfunction of the SPM biosynthetic pathway is responsible for their altered levels in patient-derived biofluids, which contributes to heightened inflammation and disease severity. Collectively, current findings suggest the contentious role of SPMs in MS due to variable outcomes in biological matrices across studies conducted so far, which could, in part, also be attributed to differences in population characteristics. It seems that SPMs have neuroprotective action on MS by exerting proresolving effects on brain microglia in its preclinical model; however, there are no reports demonstrating the direct effect of SPMs on oligodendrocytes or neurons. This reveals that "one size does not fit all" notion holds significance for MS in terms of the status of SPMs in other inflammatory conditions. The lack of clarity served as the impetus for this review, which is the first of its kind to summarize the relevant data regarding the role of SPMs in MS and the potential to target them for biomarker development and future alternative therapies for this disease. Understanding the mechanisms behind biological actions of SPMs as resolution mediators may prevent or even cure MS and other neurodegenerative pathologies.


Asunto(s)
Terapia Biológica/tendencias , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Microglía/fisiología , Esclerosis Múltiple/metabolismo , Animales , Autoinmunidad , Humanos , Inflamación/inmunología , Inflamación/terapia , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/terapia
12.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33376202

RESUMEN

Multiple sclerosis (MS) disease risk is associated with reduced sun-exposure. This study assessed the relationship between measures of sun exposure (vitamin D [vitD], latitude) and MS severity in the setting of two multicenter cohort studies (nNationMS = 946, nBIONAT = 990). Additionally, effect-modification by medication and photosensitivity-associated MC1R variants was assessed. High serum vitD was associated with a reduced MS severity score (MSSS), reduced risk for relapses, and lower disability accumulation over time. Low latitude was associated with higher vitD, lower MSSS, fewer gadolinium-enhancing lesions, and lower disability accumulation. The association of latitude with disability was lacking in IFN-ß-treated patients. In carriers of MC1R:rs1805008(T), who reported increased sensitivity toward sunlight, lower latitude was associated with higher MRI activity, whereas for noncarriers there was less MRI activity at lower latitudes. In a further exploratory approach, the effect of ultraviolet (UV)-phototherapy on the transcriptome of immune cells of MS patients was assessed using samples from an earlier study. Phototherapy induced a vitD and type I IFN signature that was most apparent in monocytes but that could also be detected in B and T cells. In summary, our study suggests beneficial effects of sun exposure on established MS, as demonstrated by a correlative network between the three factors: Latitude, vitD, and disease severity. However, sun exposure might be detrimental for photosensitive patients. Furthermore, a direct induction of type I IFNs through sun exposure could be another mechanism of UV-mediated immune-modulation in MS.


Asunto(s)
Monocitos/efectos de la radiación , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inmunología , Receptor de Melanocortina Tipo 1/genética , Transcriptoma/efectos de la radiación , Vitamina D/sangre , Linfocitos B/efectos de la radiación , Estudios de Cohortes , Femenino , Variación Genética , Genotipo , Humanos , Interferón beta/farmacología , Interferón beta/uso terapéutico , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Esclerosis Múltiple/patología , Esclerosis Múltiple/radioterapia , Fenotipo , Fototerapia , Recurrencia , Índice de Severidad de la Enfermedad , Luz Solar , Linfocitos T/metabolismo , Linfocitos T/efectos de la radiación , Transcriptoma/genética
13.
Front Immunol ; 11: 571844, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193354

RESUMEN

Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS). The persistent inflammation is being mainly attributed to local oxidative stress and inflammasome activation implicated in the ensuing demyelination and axonal damage. Since new control measures remain necessary, we evaluated the preventive and therapeutic potential of a beta-selenium-lactic acid derivative (LAD-ßSe), which is a source of organic selenium under development, to control experimental autoimmune encephalomyelitis (EAE) that is an animal model for MS. Two EAE murine models: C57BL/6 and SJL/J immunized with myelin oligodendrocyte glycoprotein and proteolipid protein, respectively, and a model of neurodegeneration induced by LPS in male C57BL/6 mice were used. The preventive potential of LAD-ßSe was initially tested in C57BL/6 mice, the chronic MS model, by three different protocols that were started 14 days before or 1 or 7 days after EAE induction and were extended until the acute disease phase. These three procedures were denominated preventive therapy -14 days, 1 day, and 7 days, respectively. LAD-ßSe administration significantly controlled clinical EAE development without triggering overt hepatic and renal dysfunction. In addition of a tolerogenic profile in dendritic cells from the mesenteric lymph nodes, LAD-ßSe also downregulated cell amount, activation status of macrophages and microglia, NLRP3 (NOD-like receptors) inflammasome activation and other pro-inflammatory parameters in the CNS. The high Se levels found in the CNS suggested that the product crossed the blood-brain barrier having a possible local effect. The hypothesis that LAD-ßSe was acting locally was then confirmed by using the LPS-induced neurodegeneration model that also displayed Se accumulation and downmodulation of pro-inflammatory parameters in the CNS. Remarkably, therapy with LAD-ßSe soon after the first remitting episode in SJL/J mice, also significantly downmodulated local inflammation and clinical disease severity. This study indicates that LAD-ßSe, and possibly other derivatives containing Se, are able to reach the CNS and have the potential to be used as preventive and therapeutic measures in distinct clinical forms of MS.


Asunto(s)
Antiinflamatorios/uso terapéutico , Sistema Nervioso Central/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Inflamasomas/metabolismo , Microglía/patología , Esclerosis Múltiple/tratamiento farmacológico , Inflamación Neurogénica/tratamiento farmacológico , Selenio/uso terapéutico , Animales , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Humanos , Ácido Láctico/química , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inmunología , Glicoproteína Mielina-Oligodendrócito/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamación Neurogénica/inmunología , Selenio/química
14.
J Neuroimmunol ; 347: 577358, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32795734

RESUMEN

Bone Morphogenetic Proteins (BMP) and Transforming Growth Factor-beta (TGF-ß) are cytokines with similar receptors and messengers. They are important for immune cell function, with BMPs exerting mainly proinflammatory but also anti-inflammatory effects, and TGF-ß suppressing inflammation. Patients with Multiple Sclerosis exhibit BMP overactivity and suppressed TGF-ß signaling. This dysregulated signaling participates in the crosstalk between infiltrating immune cells and glia, where BMP inhibits remyelination. Reciprocal antagonism between the two pathways takes place via a variety of mechanisms. Although this antagonism has not been studied in the setting of Multiple Sclerosis, it could inform further research and treatment discovery.


Asunto(s)
Proteínas Morfogenéticas Óseas/inmunología , Esclerosis Múltiple/inmunología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/inmunología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Humanos , Esclerosis Múltiple/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
15.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354174

RESUMEN

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system and is caused by an aberrant immune response to myelin sheath. Disease-modifying medications, which mainly aim to suppress such aberrant immune response, have significantly improved MS treatment. However, the disease severity continues to worsen. In contrast, progressively more data suggest that 1,25-dihydroxyvitamin D or 1,25(OH)2D, i.e., the active vitamin D, suppresses the differentiation of potentially pathogenic T cells associated with MS, enhances the differentiation of regulatory T cells that suppress the pathogenic T cells, and promotes remyelination. These novel 1,25(OH)2D functions have encouraged investigators to develop vitamin D as a potential therapy for MS. However, because of the hypercalcemia that is associated with high 1,25(OH)2D concentrations, supplementation of native vitamin D has been a major focus in clinical trials for the treatment of MS, but such trials have produced mixed data. In this article, we will review current progress in the supplementation of different vitamin D forms for the treatment of experimental autoimmune encephalomyelitis (i.e., an MS animal model) as well as MS. Furthermore, we will review alternative strategies that our laboratory and others are pursuing in an attempt to circumvent the hurdles that are hampering the effective use of vitamin D as a potential therapy for MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Vitamina D/uso terapéutico , Animales , Ensayos Clínicos como Asunto , Encefalomielitis Autoinmune Experimental/inmunología , Humanos , Esclerosis Múltiple/inmunología , Índice de Severidad de la Enfermedad , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Resultado del Tratamiento , Vitamina D/farmacología
16.
Aging (Albany NY) ; 12(7): 6225-6239, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32265343

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease characterized by T cell infiltration and demyelination of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is a classical preclinical animal model of MS. In this study, we found that rotating magnetic field (RMF) treatment exerts potential preventive effects on the discovery of EAE, including reducing the severity of the disease and delaying the onset of the disease. The results indicated that RMF (0.2 T, 4 Hz) treatment increases the accumulation of CD4+ cells in the spleen and lymph nodes by downregulating the expression of CCL-2, CCL-3 and CCL-5, but has no significant effect on myelin oligodendrocyte glycoprotein (MOG) specific T cell responses. Simultaneously, RMF treatment adjusted the imbalance between regulatory T (Treg) cell and T helper 1 (Th1) cells or T helper 17 (Th17) cells by increasing the proportion of Treg cells and inhibiting the ratio of Th1 and Th17 cell subsets. These findings suggest that exposure to RMF may improve EAE disease by promoting CD4+ cell accumulation into peripheral lymphoid tissue, improving the imbalance between Treg and Th1/Th17 cells. Therefore, as a mild physical therapy approach, RMF, is likely to be a potential way to alter the development of EAE.


Asunto(s)
Linfocitos T CD4-Positivos , Encefalomielitis Autoinmune Experimental , Ganglios Linfáticos/patología , Magnetoterapia/métodos , Esclerosis Múltiple , Bazo/patología , Linfocitos T Reguladores , Células TH1 , Células Th17 , Animales , Recuento de Células/métodos , Citocinas/análisis , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/terapia , Ratones , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/terapia , Glicoproteína Mielina-Oligodendrócito/inmunología , Resultado del Tratamiento
17.
J Diet Suppl ; 17(2): 184-199, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30285512

RESUMEN

Multiple sclerosis (MS) is a progressive neurodegenerative disease associated with increased infection rates, chronic inflammation, and premature death. Optimization of nutritional status via dietary supplementation may improve immune function in people suffering from MS and lead to decreased rates of infection. Fifteen individuals with a diagnosis of relapsing-remitting MS for an average of 12.4 years (SD =7.4; R = 2, 25) were enrolled in a one-year open-label clinical trial. Participants consumed a broad-spectrum dietary supplement regimen containing polysaccharides, phytochemicals, antioxidants, vitamins, and minerals three times per day. The occurrence of infections and a panel of cytokines, growth factors, and T- and B-cell subsets were assessed at baseline and 12 months. Seven female and 8 male participants with an average age of 51.3 years (SD =7.2; R = 38, 65) completed the study. At the end of the intervention, participants had fewer total infections (M = 7.9, SD =8.1 at baseline and M = 2.5, SD =4.3 at 12-month follow-up). At 12 months, IL-2, TNF-α, EGF, and CD95 + CD34+ significantly increased, while IL-1ß significantly decreased. No major adverse effects were reported; only mild gastrointestinal intolerance was reported in four cases. A decreased occurrence of infection was observed in MS patients treated with 12 months of a polysaccharide-based multinutrient dietary supplement. Significant changes were also noted in several key biomarkers that would be physiologically favorable to the MS population. Thus, the results of this study suggest an immunomodulatory effect of the dietary supplement regimen studied.


Asunto(s)
Suplementos Dietéticos , Infecciones/dietoterapia , Micronutrientes/administración & dosificación , Esclerosis Múltiple/dietoterapia , Polisacáridos/administración & dosificación , Adulto , Anciano , Antígenos CD34/metabolismo , Biomarcadores/metabolismo , Terapias Complementarias , Citocinas/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Humanos , Infecciones/inmunología , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , Subgrupos de Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Receptor fas/metabolismo
18.
Sci Rep ; 9(1): 16396, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31705027

RESUMEN

Although the intestinal microbiome has been increasingly implicated in autoimmune diseases, much is unknown about its roles in Multiple Sclerosis (MS). Our aim was to compare the microbiome between treatment-naïve MS subjects early in their disease course and controls, and between Caucasian (CA), Hispanic (HA), and African American (AA) MS subjects. From fecal samples, we performed 16S rRNA V4 sequencing and analysis from 45 MS subjects (15 CA, 16 HA, 14 AA) and 44 matched healthy controls, and whole metagenomic shotgun sequencing from 24 MS subjects (all newly diagnosed, treatment-naïve, and steroid-free) and 24 controls. In all three ethnic groups, there was an increased relative abundance of the same single genus, Clostridium, compared to ethnicity-matched controls. Analysis of microbiota networks showed significant changes in the network characteristics between combined MS cohorts and controls, suggesting global differences not restricted to individual taxa. Metagenomic analysis revealed significant enrichment of individual species within Clostridia as well as particular functional pathways in the MS subjects. The increased relative abundance of Clostridia in all three early MS cohorts compared to controls provides candidate taxa for further study as biomarkers or as etiologic agents in MS.


Asunto(s)
Etnicidad , Microbioma Gastrointestinal , Esclerosis Múltiple/microbiología , Adulto , Negro o Afroamericano , Estudios de Casos y Controles , Clostridium/clasificación , Clostridium/genética , Clostridium/aislamiento & purificación , Femenino , Microbioma Gastrointestinal/genética , Hispánicos o Latinos , Interacciones Microbiota-Huesped/inmunología , Humanos , Masculino , Metagenoma , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , ARN Ribosómico 16S/genética , Población Blanca , Adulto Joven
19.
Front Immunol ; 10: 1921, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31497013

RESUMEN

Multiple sclerosis (MS) is a chronic and disabling disorder of the central nervous system (CNS) characterized by neuroinflammation leading to demyelination. Recently a combination of Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) extracted from Cannabis has been approved in many parts of the world to treat MS-related spasticity. THC+CBD combination was also shown to suppresses neuroinflammation, although the mechanisms remain to be further elucidated. In the current study, we demonstrate that THC+CBD combination therapy (10 mg/kg each) but not THC or CBD alone, attenuates murine experimental autoimmune encephalomyelitis (EAE) by reducing neuroinflammation and suppression of Th17 and Th1 cells. These effects were mediated through CB1 and CB2 receptors inasmuch as, THC+CBD failed to ameliorate EAE in mice deficient in CB1 and CB2. THC+CBD treatment also caused a decrease in the levels of brain infiltrating CD4+ T cells and pro-inflammatory molecules (IL-17, INF-γ, TNF-α, IL-1ß, IL-6, and TBX21), while increasing anti-inflammatory phenotype such as FoxP3, STAT5b, IL-4, IL-10, and TGF-ß. Also, the brain-derived cells showed increased apoptosis along with decreased percentage in G0/G1 phase with increased percentage in G2/M phase of cell cycle. miRNA microarray analysis of brain-derived CD4+ T cells revealed that THC+CBD treatment significantly down-regulated miR-21a-5p, miR-31-5p, miR-122-5p, miR-146a-5p, miR-150-5p, miR-155-5p, and miR-27b-5p while upregulating miR-706-5p and miR-7116. Pathway analysis showed that majority of the down-regulated miRs targeted molecules involved in cycle arrest and apoptosis such as CDKN2A, BCL2L11, and CCNG1, as well as anti-inflammatory molecules such as SOCS1 and FoxP3. Additionally, transfection studies involving miR-21 and use of Mir21-/- mice suggested that while this miR plays a critical role in EAE, additional miRs may also be involved in THC+CBD-mediated attenuation of EAE. Collectively, this study suggests that combination of THC+CBD suppresses neuroinflammation and attenuates clinical EAE development and that this effect is associated with changes in miRNA profile in brain-infiltrating cells.


Asunto(s)
Antiinflamatorios/uso terapéutico , Cannabidiol/uso terapéutico , Dronabinol/uso terapéutico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Animales , Encéfalo/citología , Células Cultivadas , Citocinas/genética , Citocinas/inmunología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Transducción de Señal , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Bazo/citología
20.
Mult Scler Relat Disord ; 35: 209-214, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31401425

RESUMEN

BACKGROUND: The environmental risks of multiple sclerosis (MS), including adolescent obesity and vitamin D deficiency, are increasing in Korea. We aimed to determine whether the patterns and/or severity of MS in Korea can change according to the year of birth or disease onset. METHODS: Two hundred and sixty-six patients with adult-onset MS, including 164 with an available baseline magnetic resonance imaging (MRI), were retrospectively included from 17 nationwide referral hospitals in Korea. The demographics, MRI T2 lesion burden at disease onset, cerebrospinal fluid markers, and prognosis were assessed. RESULTS: The birth year, time from disease onset to first MRI, and female sex were associated with a higher number of baseline MRI T2 lesions. The birth year was also associated with the presence of oligoclonal band in the cerebrospinal fluid and high immunoglobin G index. An increased female/male ratio was observed among those with a more recent year of birth and/or disease onset. CONCLUSIONS: In Korea, the disease pattern of adult-onset MS may be changing toward a more baseline T2 MRI lesions, intrathecal humoral immune responses, and also higher female ratio.


Asunto(s)
Encéfalo/diagnóstico por imagen , Inmunidad Humoral/fisiología , Esclerosis Múltiple/diagnóstico por imagen , Bandas Oligoclonales/líquido cefalorraquídeo , Adulto , Biomarcadores/líquido cefalorraquídeo , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/inmunología , Extractos Vegetales , Pronóstico , República de Corea , Estudios Retrospectivos , Factores Sexuales , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA