Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cells ; 12(11)2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37296632

RESUMEN

Background: Transient receptor potential ankyrin 1 (TRPA1) activation is implicated in neuropathic pain-like symptoms. However, whether TRPA1 is solely implicated in pain-signaling or contributes to neuroinflammation in multiple sclerosis (MS) is unknown. Here, we evaluated the TRPA1 role in neuroinflammation underlying pain-like symptoms using two different models of MS. Methods: Using a myelin antigen, Trpa1+/+ or Trpa1-/- female mice developed relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) (Quil A as adjuvant) or progressive experimental autoimmune encephalomyelitis (PMS)-EAE (complete Freund's adjuvant). The locomotor performance, clinical scores, mechanical/cold allodynia, and neuroinflammatory MS markers were evaluated. Results: Mechanical and cold allodynia detected in RR-EAE, or PMS-EAE Trpa1+/+ mice, were not observed in Trpa1-/- mice. The increased number of cells labeled for ionized calcium-binding adapter molecule 1 (Iba1) or glial fibrillary acidic protein (GFAP), two neuroinflammatory markers in the spinal cord observed in both RR-EAE or PMS-EAE Trpa1+/+ mice, was reduced in Trpa1-/- mice. By Olig2 marker and luxol fast blue staining, prevention of the demyelinating process in Trpa1-/- induced mice was also detected. Conclusions: Present results indicate that the proalgesic role of TRPA1 in EAE mouse models is primarily mediated by its ability to promote spinal neuroinflammation and further strengthen the channel inhibition to treat neuropathic pain in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Neuralgia , Canales de Potencial de Receptor Transitorio , Femenino , Animales , Ratones , Esclerosis Múltiple/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Canal Catiónico TRPA1/metabolismo , Hiperalgesia/tratamiento farmacológico , Nocicepción , Canales de Potencial de Receptor Transitorio/metabolismo , Enfermedades Neuroinflamatorias , Médula Espinal/metabolismo , Neuralgia/tratamiento farmacológico
2.
Exp Mol Med ; 55(1): 215-227, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36635431

RESUMEN

Conflicting results on melatonin synthesis in multiple sclerosis (MS) have been reported due to variabilities in patient lifestyles, which are not considered when supplementing melatonin. Since melatonin acts through its receptors, we identified melatonin receptors in oligodendrocytes (OLs) in the corpus callosum, where demyelination occurs; the subventricular zone, where neural stem/progenitor cells (NSPCs) are located; and the choroid plexus, which functions as a blood-cerebrospinal fluid barrier. Moreover, using chimeric mice, resident macrophages were found to express melatonin receptors, whereas bone marrow-derived macrophages lost this expression in the demyelinated brain. Next, we showed that cuprizone-fed mice, which is an MS model, tended to have increased melatonin levels. While we used different approaches to alter the circadian rhythm of melatonin and cortisol, only the constant light approach increased NSPC proliferation and differentiation to oligodendrocyte precursor cells (OPCs), OPCs maturation to OLs and recruitment to the site of demyelination, the number of patrolling monocytes, and phagocytosis. In contrast, constant darkness and exogenous melatonin exacerbated these events and amplified monocyte infiltration. Therefore, melatonin should not be considered a universal remedy, as is currently claimed. Our data emphasize the importance of monitoring melatonin/cortisol oscillations in each MS patient by considering diet and lifestyle to avoid melatonin overdose.


Asunto(s)
Enfermedades Desmielinizantes , Melatonina , Monocitos , Esclerosis Múltiple , Vaina de Mielina , Fagocitosis , Animales , Ratones , Diferenciación Celular , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Hidrocortisona , Melatonina/farmacología , Ratones Endogámicos C57BL , Monocitos/inmunología , Monocitos/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Fagocitosis/inmunología , Receptores de Melatonina , Vaina de Mielina/metabolismo
3.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36555377

RESUMEN

Accumulating evidences suggest a strong correlation between metabolic changes and neurodegeneration in CNS demyelinating diseases such as multiple sclerosis (MS). Biotin, an essential cofactor for five carboxylases, is expressed by oligodendrocytes and involved in fatty acid synthesis and energy production. The metabolic effect of biotin or high-dose-biotin (MD1003) has been reported on rodent oligodendrocytes in vitro, and in neurodegenerative or demyelinating animal models. However, clinical studies, showed mild or no beneficial effect of MD1003 in amyotrophic lateral sclerosis (ALS) or MS. Here, we took advantage of a mouse model of myelin deficiency to study the effects of MD1003 on the behavior of murine and grafted human oligodendrocytes in vivo. We show that MD1003 increases the number and the differentiation potential of endogenous murine oligodendroglia over time. Moreover, the levels of MD1003 are increased in the plasma and brain of pups born to treated mothers, indicating that MD1003 can pass through the mother's milk. The histological analysis of the grafted animals shows that MD1003 increased proliferation and accelerates differentiation of human oligodendroglia, but without enhancing their myelination potential. These findings provide important insights into the role of MD1003 on murine and human oligodendrocyte maturation/myelination that may explain the mitigated outcome of ALS/MS clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biotina , Esclerosis Múltiple , Células Precursoras de Oligodendrocitos , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Biotina/farmacología , Diferenciación Celular , Esclerosis Múltiple/metabolismo , Vaina de Mielina , Oligodendroglía/metabolismo
4.
Cell Mol Biol Lett ; 27(1): 74, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064322

RESUMEN

Exosomes, known as a type of extracellular vesicles (EVs), are lipid particles comprising heterogeneous contents such as nucleic acids, proteins, and DNA. These bi-layered particles are naturally released into the extracellular periphery by a variety of cells such as neoplastic cells. Given that exosomes have unique properties, they can be used as vectors and carriers of biological and medicinal particles like drugs for delivering to the desired areas. The proteins and RNAs being encompassed by the circulating exosomes in B-cell malignancies are deemed as the promising sources for diagnostic and prognostic biomarkers, as well as therapeutic agents. Exosomes can also provide a "snapshot" view of the tumor and metastatic landscape at any particular time. Further, clinical research has shown that exosomes are produced by immune cells such as dendritic cells can stimulate the immune system, so these exosomes can be used in antitumor vaccines. Despite the great potential of exosomes in the fields of diagnostic and treatment, further studies are in need for these purposes to reach a convergence notion. This review highlights the applications of exosomes in multiple immune-related diseases, including chronic lymphocytic leukemia, multiple sclerosis, and arthritis rheumatoid, as well as explaining sundry aspects of exosome therapy and the function of exosomes in diagnosing diseases.


Asunto(s)
Artritis , Exosomas , Vesículas Extracelulares , Leucemia , Esclerosis Múltiple , Neoplasias , Artritis/metabolismo , Exosomas/metabolismo , Humanos , Leucemia/metabolismo , Esclerosis Múltiple/metabolismo , Neoplasias/metabolismo , Proteínas/metabolismo
5.
Oxid Med Cell Longev ; 2022: 3800004, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092158

RESUMEN

Background/Aims. Multiple sclerosis (MS) is an autoimmune disorder that affects the central nervous system (CNS) primarily hallmarked by neuroinflammation and demyelination. The activation of astrocytes exerts double-edged sword effects, which perform an integral function in demyelination and remyelination. In this research, we examined the therapeutic effects of the Bu Shen Yi Sui capsule (BSYS), a traditional Chinese medicine prescription, in a cuprizone- (CPZ-) triggered demyelination model of MS (CPZ mice). This research intended to evaluate if BSYS might promote remyelination by shifting A1 astrocytes to A2 astrocytes. Methods. The effects of BSYS on astrocyte polarization and the potential mechanisms were explored in vitro and in vivo utilizing real-time quantitative reverse transcription PCR, immunofluorescence, and Western blotting. Histopathology, expression of inflammatory cytokines (IL-10, IL-1ß, and IL-6), growth factors (TGF-ß, BDNF), and motor coordination were assessed to verify the effects of BSYS (3.02 g/kg/d) on CPZ mice. In vitro, A1 astrocytes were induced by TNF-α (30 ng/mL), IL-1α (3 ng/mL), and C1q (400 ng/mL), following which the effect of BSYS-containing serum (concentration of 15%) on the transformation of A1/A2 reactive astrocytes was also evaluated. Results and Conclusions. BSYS treatment improved motor function in CPZ mice as assessed by rotarod tests. Intragastric administration of BSYS considerably lowered the proportion of A1 astrocytes, but the number of A2 astrocytes, MOG+, PLP+, CNPase+, and MBP+ cells was upregulated. Meanwhile, dysregulation of glutathione peroxidase, malondialdehyde, and superoxide dismutase was reversed in CPZ mice after treatment with BSYS. In addition, the lesion area and expression of proinflammatory cytokines were decreased and neuronal protection factors and anti-inflammatory cytokines were increased. In vitro, BSYS-containing serum suppressed the A1 astrocytic markers' expression and elevated the expression levels of A2 markers in primary astrocytes triggered by C1q, TNF-α, and IL-1α. Importantly, the miR-155/SOCS1 signaling pathway was involved in the modulation of the A1/A2 phenotype shift. Overall, this study demonstrated that BSYS has neuroprotective effects in myelin repair by modulating astrocyte polarization via the miR-155/SOCS1 pathway.


Asunto(s)
MicroARNs , Esclerosis Múltiple , Animales , Astrocitos/metabolismo , Sistema Nervioso Central , Complemento C1q/metabolismo , Complemento C1q/farmacología , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Vaina de Mielina , Factor de Necrosis Tumoral alfa/metabolismo
6.
Proteomics ; 22(19-20): e2100247, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35866514

RESUMEN

Fingolimod (FTY720) is an oral drug approved by the Food and Drug Administration (FDA) for management of multiple sclerosis (MS) symptoms, which has also shown beneficial effects against Alzheimer's (AD) and Parkinson's (PD) diseases pathologies. Although an extensive effort has been made to identify mechanisms underpinning its therapeutic effects, much remains unknown. Here, we investigated Fingolimod induced proteome changes in the cerebellum (CB) and frontal cortex (FC) regions of the brain which are known to be severely affected in MS, using a tandem mass tag (TMT) isobaric labeling-based quantitative mass-spectrometric approach to investigate the mechanism of action of Fingolimod. This study identified 6749 and 6319 proteins in CB and FC, respectively, and returned 2609 and 3086 differentially expressed proteins in mouse CB and FC, respectively, between Fingolimod treated and control groups. Subsequent bioinformatics analyses indicated a metabolic reprogramming in both brain regions of the Fingolimod treated group, where oxidative phosphorylation was upregulated while glycolysis and pentose phosphate pathway were downregulated. In addition, modulation of neuroinflammation in the Fingolimod treated group was indicated by upregulation of retrograde endocannabinoid signaling and autophagy pathways, and downregulation of neuroinflammation related pathways including neutrophil degranulation and the IL-12 mediated signaling pathway. Our findings suggest that Fingolimod may exert its protective effects on the brain by inducing metabolic reprogramming and neuroinflammation pathway modulation.


Asunto(s)
Clorhidrato de Fingolimod , Esclerosis Múltiple , Animales , Ratones , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/metabolismo , Clorhidrato de Fingolimod/uso terapéutico , Proteoma/metabolismo , Endocannabinoides/metabolismo , Encéfalo/metabolismo , Esclerosis Múltiple/metabolismo , Metabolismo Energético , Autofagia , Interleucina-12/metabolismo
7.
J Chem Neuroanat ; 123: 102120, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35718292

RESUMEN

Demyelinating diseases, such as multiple sclerosis, decrease the quality of life of patients and can affect reproduction. Assisted reproductive therapies are available, which although effective, aggravate motor symptoms. For this reason, it is important to determine how the control of the hypothalamus-pituitary-gonadal axis is affected in order to develop better strategies for these patients. One way to determine this is using animal models such as the taiep rat, which shows progressive demyelination of the central nervous system, and was used in the present study to characterize the expression of gonadotrophin-releasing hormone (GnRH), Kisspeptin, and kisspeptin receptor (Kiss1R) and luteinizing hormone (LH) secretion. The expression of kisspeptin, GnRH, and Kiss1R was determined at the hypothalamic level by immunofluorescence and serum LH levels were determined by ELISA. The expression of kisspeptin at the hypothalamic level showed sexual dimorphism, where there was an increase in males and a decrease in females during oestrus. There was no change in the expression of GnRH or kisspeptin receptor, regardless of sex. However, a decrease in serum LH concentration was observed in both sexes. The taiep rat showed changes in the expression of kisspeptin at the hypothalamic level. These changes are different from those reported in the literature with the use of animals with experimental allergic encephalomyelitis, this is because both animal models represent different degrees of progression of multiple sclerosis. Our results suggest that the effects on the hypothalamus-pituitary-gonadal axis depend on the differences between the demyelinating processes, their progression, and even individual factors, and it is thus important that fertility treatments are individualized to maximize therapeutic effects.


Asunto(s)
Enfermedades Desmielinizantes , Hormona Liberadora de Gonadotropina , Kisspeptinas , Esclerosis Múltiple , Receptores de Kisspeptina-1 , Animales , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Femenino , Hormona Liberadora de Gonadotropina/biosíntesis , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/biosíntesis , Hormona Luteinizante/sangre , Masculino , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Calidad de Vida , Ratas , Receptores de Kisspeptina-1/biosíntesis
8.
Mult Scler Relat Disord ; 58: 103520, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35038645

RESUMEN

BACKGROUND: Melatonin has been related to the pathophysiology of multiple sclerosis (MS), and its anti-inflammatory and immunomodulatory properties have been proved in numerous neurodegenerative diseases. This study aimed to find out whether a melatonin supplement in MS is able to act as a benefit to its clinical status, i.e. oxidative stress, inflammation and indirect biomarkers of bacterial dysbiosis, lipopolysaccharide (LPS) and LPS-binding protein (LBP), verifying its therapeutic potential and its possible clinical use in patients with MS. METHODS: The animal MS model, experimental autoimmune encephalomyelitis (EAE), was employed whereby 25 male Dark Agouti rats (5 animals per group) were divided into: a control group (not manipulated); a control+vehicle group; a control+melatonin group; an EAE group; an EAE+melatonin group. Melatonin was administered daily for 51 days, at a dose of 1 mg/kg body weight/i.p., once a day, five days a week. RESULTS: The results from the administration of melatonin demonstrated an improvement in clinical status, a diminution in oxidative stress and inflammation, as well as in bacterial dysbiosis. CONCLUSION: Melatonin could play an effective role against MS, either alone or as a therapy combined with traditional agents.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Melatonina , Esclerosis Múltiple , Animales , Biomarcadores/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Humanos , Masculino , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Estrés Oxidativo , Ratas
9.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34907015

RESUMEN

The positive impact of meditation on human well-being is well documented, yet its molecular mechanisms are incompletely understood. We applied a comprehensive systems biology approach starting with whole-blood gene expression profiling combined with multilevel bioinformatic analyses to characterize the coexpression, transcriptional, and protein-protein interaction networks to identify a meditation-specific core network after an advanced 8-d Inner Engineering retreat program. We found the response to oxidative stress, detoxification, and cell cycle regulation pathways were down-regulated after meditation. Strikingly, 220 genes directly associated with immune response, including 68 genes related to interferon signaling, were up-regulated, with no significant expression changes in the inflammatory genes. This robust meditation-specific immune response network is significantly dysregulated in multiple sclerosis and severe COVID-19 patients. The work provides a foundation for understanding the effect of meditation and suggests that meditation as a behavioral intervention can voluntarily and nonpharmacologically improve the immune response for treating various conditions associated with excessive or persistent inflammation with a dampened immune system profile.


Asunto(s)
Sistema Inmunológico/metabolismo , Meditación , Transcriptoma , Adulto , COVID-19/inmunología , COVID-19/metabolismo , Dieta Vegana , Femenino , Genoma Humano , Humanos , Masculino , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Mapas de Interacción de Proteínas
10.
Nutrients ; 13(9)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34579104

RESUMEN

(1) Background. Multiple sclerosis (MS) is characterised by the loss of muscle throughout the course of the disease, which in many cases is accompanied by obesity and related to inflammation. Nonetheless, consuming epigallocatechin gallate (EGCG) and ketone bodies (especially ß-hydroxybutyrate (ßHB)) produced after metabolising coconut oil, have exhibited anti-inflammatory effects and a decrease in body fat. In addition, butyrylcholinesterase (BuChE), seems to be related to the pathogenesis of the disease associated with inflammation, and serum concentrations have been related to lipid metabolism. Objective. The aim of the study was to determine the role of BuChE in the changes caused after treatment with EGCG and ketone bodies on the levels of body fat and inflammation state in MS patients. (2) Methods. A pilot study was conducted for 4 months with 51 MS patients who were randomly divided into an intervention group and a control group. The intervention group received 800 mg of EGCG and 60 mL of coconut oil, and the control group was prescribed a placebo. Fat percentage and concentrations of the butyrylcholinesterase enzyme (BuChE), paraoxonase 1 (PON1) activity, triglycerides, interleukin 6 (IL-6), albumin and ßHB in serum were measured. (3) Results. The intervention group exhibited significant decreases in IL-6 and fat percentage and significant increases in BuChE, ßHB, PON1, albumin and functional capacity (determined by the Expanded Disability Status Scale (EDSS)). On the other hand, the control group only exhibited a decrease in IL-6. After the intervention, BuChE was positively correlated with the activity of PON1, fat percentage and triglycerides in the intervention group, whereas these correlations were not observed in the control group (4). Conclusions. BuChE seems to have an important role in lipolytic activity and the inflammation state in MS patients, evidenced after administering EGCG and coconut oil as a ßHB source.


Asunto(s)
Tejido Adiposo/metabolismo , Butirilcolinesterasa/metabolismo , Catequina/análogos & derivados , Aceite de Coco/farmacología , Esclerosis Múltiple/metabolismo , Pérdida de Peso/efectos de los fármacos , Adulto , Antioxidantes/farmacología , Catequina/administración & dosificación , Catequina/farmacología , Aceite de Coco/administración & dosificación , Suplementos Dietéticos , Femenino , Humanos , Inflamación/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Persona de Mediana Edad , Obesidad/tratamiento farmacológico , Proyectos Piloto
11.
Life Sci ; 282: 119812, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34265362

RESUMEN

AIMS: Among all the treatments for Multiple Sclerosis, stem cell transplantation, such as ADSCs, has attracted a great deal of scientific attention. On the other hand, Edaravone, as an antioxidant component, in combination with stem cells, could increase the survival and differentiation potential of stem cells. MAIN METHODS: 42 rats were divided into: Control, Cuprizone (CPZ), Sham, Edaravone (Ed), hADSCs, and Ed/hADSCs groups. Following induction of cuprizone, induced MS model, behavioral tests were designed to evaluate motor function during. Luxal fast blue staining was done to measure the level of demyelination and remyelination. Immunofluorescent staining was used to evaluate the amount of MBP, OLIG2, and MOG proteins. The mRNA levels of human MBP, MOG, and OLIG2 and rat Mbp, Mog, and Olig2 were determined via RT-PCR. KEY FINDINGS: Flow cytometry analysis exhibited that the extracted cells were positive for CD73 (93.8 ± 3%) and CD105 (91.6 ± 3%), yet negative for CD45 (2.06 ± 0.5%). Behavioral tests, unveiled a significant improvement in the Ed (P < 0.001), hADSCs (P < 0.001), and Ed/hADSCs (P < 0.001) groups compared to the others. In the Ed/hADSCs group, the myelin density was significantly higher than that in the Ed treated and hADSCs treated groups (P < 0.01). Edaravone and hADSCs increased the expression of Mbp, Mog, and Olig2 genes in the cuprizone rat models. Moreover, significant differences were seen between the Ed treated and hADSCs treated groups and the Ed/hADSCs group (P < 0.05 for Mbp and Olig2 and P < 0.01 for Mog). SIGNIFICANCE: Edaravone in combination with hADSCs reduced demyelination and increased oligodendrogenesis in the cuprizone rat models.


Asunto(s)
Tejido Adiposo/metabolismo , Diferenciación Celular/efectos de los fármacos , Edaravona/farmacología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Esclerosis Múltiple , Oligodendroglía/metabolismo , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Xenoinjertos , Humanos , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/terapia , Ratas
12.
Sci Rep ; 11(1): 9520, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947942

RESUMEN

Inflammatory demyelination and axonal injury of the optic nerve are hallmarks of optic neuritis (ON), which often occurs in multiple sclerosis and is a major cause of visual disturbance in young adults. Although a high dose of corticosteroids can promote visual recovery, it cannot prevent permanent neuronal damage. Novel and effective therapies are thus required. Given the recently defined capacity of matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae flavescens, in immunomodulation and neuroprotection, we tested in this study the effect of matrine on rats with experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. MAT administration, started at disease onset, significantly suppressed optic nerve infiltration and demyelination, with reduced numbers of Iba1+ macrophages/microglia and CD4+ T cells, compared to those from vehicle-treated rats. Increased expression of neurofilaments, an axon marker, reduced numbers of apoptosis in retinal ganglion cells (RGCs). Moreover, MAT treatment promoted Akt phosphorylation and shifted the Bcl-2/Bax ratio back towards an antiapoptotic one, which could be a mechanism for its therapeutic effect in the ON model. Taken as a whole, our results demonstrate that MAT attenuated inflammation, demyelination and axonal loss in the optic nerve, and protected RGCs from inflammation-induced cell death. MAT may therefore have potential as a novel treatment for this disease that may result in blindness.


Asunto(s)
Alcaloides/farmacología , Apoptosis/efectos de los fármacos , Neuritis Óptica/tratamiento farmacológico , Quinolizinas/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Nervio Óptico/efectos de los fármacos , Nervio Óptico/metabolismo , Neuritis Óptica/metabolismo , Plantas Medicinales/química , Ratas , Ratas Wistar , Células Ganglionares de la Retina/metabolismo , Transducción de Señal/efectos de los fármacos , Matrinas
13.
Neurotox Res ; 39(4): 1181-1188, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33871814

RESUMEN

Multiple sclerosis is a chronic demyelinating disease with a functional disturbance in the immune system and axonal damages. It was shown that Apamin as a blood-brain barrier shuttle acts as a Ca2+ activated K+ channels (SK channels) blocker. In this study, the effects of Apamin on oligodendrocyte differentiation markers were evaluated on an induced model of MS. Briefly, C57BL/6 male mice (22 ± 5 g) except the control group were fed with 0.2% (w/w) cuprizone pellets for 6 weeks. After cuprizone withdrawal, mice were divided randomly into six groups. Apamin (100 µg/kg/BW) was administered intraperitoneally as a co-treatment during phase I (demyelination) or post-treatment phase II (remyelination) twice a week. Mice were anesthetized, perfused with phosphate-buffered saline, then fixed brains were coronally sectioned and the changes in oligodendrocytes markers such as Olig2, PDGFR-α, and BrdU incorporation were assessed by immunohistochemistry assay. Apamin administration increased Olig2+ cells in phase I as compared to the control group (p < 0.0001). Also, a decreasing trend in PDGFRa+ cells observed after cuprizone withdrawal (p < 0.001). 5-Bromo-2'-deoxyuridine (BrdU) incorporation test was confirmed stimulation of oligodendrocyte progenitor cell proliferation in phase I in the Apamin exposed group (p < 0.0001), especially at the subventricular zone. This study highlights the potential therapeutic effects of Apamin as a bee venom-derived peptide on oligodendrocyte precursor proliferation and elevation in myelin content in an oxidative induced multiple sclerosis model due to cuprizone exposure.


Asunto(s)
Venenos de Abeja/uso terapéutico , Barrera Hematoencefálica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cuprizona/toxicidad , Esclerosis Múltiple/tratamiento farmacológico , Oligodendroglía/efectos de los fármacos , Animales , Venenos de Abeja/farmacología , Barrera Hematoencefálica/química , Barrera Hematoencefálica/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proliferación Celular/fisiología , Quelantes/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/análisis , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/química , Oligodendroglía/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/análisis , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo
14.
J Cell Biochem ; 122(1): 29-42, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32951264

RESUMEN

Saffron (Crocus sativus L) is a well-known spice with active pharmacologic components including crocin, crocetin, safranal, and picrocrocin. Similar to crocin/crocetin, mesenchymal stem cells (MSCs) have been shown to display immunomodulatory and antioxidant properties, which could be beneficial in treatment of various diseases. In the current study, we have evaluated the effects of crocin and crocetin on the functions of MSCs. We used the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay to evaluate MSCs proliferation, and flow cytometry assay to measure the percentage of apoptotic MSCs and Tregs populations. Furthermore, we used the real-time polymerase chain reaction method to quantify messenger RNA (mRNA) expression of inflammatory and anti-inflammatory cytokines. Antioxidant assay was employed to quantify antioxidant parameters including nitric oxide and malondialdehyde levels besides superoxide dismutase activity. Our findings indicated that both crocin and crocetin at low concentrations (2.5 and 5 µM) exhibited significant effects on increasing MSCs viability and on protecting them against apoptosis-induced death. Furthermore, crocin and crocetin at low concentrations (2.5 and 5 µM) displayed a better antioxidant function. Moreover, increased Treg population was observed at lower doses. In addition, crocin/crocetin at low concentrations caused an elevation in mRNA expression of anti-inflammatory cytokines (transforming growth factor-ß, interleukin-10 [IL-10], and IL-4), while at higher doses (25 and 50 µM) they led to lowering inflammatory cytokines (IL-1ß, IL-6, IL-17, and interferon gamma). Altogether, both crocin and crocetin at lower concentrations exhibited more efficacies on MSCs with a better effect toward crocin. It seems that crocin and crocetin may be considered as complementary treatments for the patients who undergo MSCs transplantation.


Asunto(s)
Antioxidantes/farmacología , Carotenoides/farmacología , Células Madre Mesenquimatosas/patología , Esclerosis Múltiple/patología , Óxido Nítrico/metabolismo , Extractos Vegetales/farmacología , Vitamina A/análogos & derivados , Apoptosis , Proliferación Celular , Células Cultivadas , Crocus/química , Humanos , Inmunomodulación , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Vitamina A/farmacología
15.
Clin Rev Allergy Immunol ; 60(2): 147-163, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32495237

RESUMEN

Multiple sclerosis (MS) is a neuroinflammatory disease in which unresolved and uncontrolled inflammation disrupts normal cellular homeostasis and leads to a pathological disease state. It has long been recognized that endogenously derived metabolic by-products of omega fatty acids, known as specialized pro-resolving lipid mediators (SPMs), are instrumental in resolving the pathologic inflammation. However, there is minimal data available on the functional status of SPMs in MS, despite the fact that MS presents a classical model of chronic inflammation. Studies to date indicate that dysfunction of the SPM biosynthetic pathway is responsible for their altered levels in patient-derived biofluids, which contributes to heightened inflammation and disease severity. Collectively, current findings suggest the contentious role of SPMs in MS due to variable outcomes in biological matrices across studies conducted so far, which could, in part, also be attributed to differences in population characteristics. It seems that SPMs have neuroprotective action on MS by exerting proresolving effects on brain microglia in its preclinical model; however, there are no reports demonstrating the direct effect of SPMs on oligodendrocytes or neurons. This reveals that "one size does not fit all" notion holds significance for MS in terms of the status of SPMs in other inflammatory conditions. The lack of clarity served as the impetus for this review, which is the first of its kind to summarize the relevant data regarding the role of SPMs in MS and the potential to target them for biomarker development and future alternative therapies for this disease. Understanding the mechanisms behind biological actions of SPMs as resolution mediators may prevent or even cure MS and other neurodegenerative pathologies.


Asunto(s)
Terapia Biológica/tendencias , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Microglía/fisiología , Esclerosis Múltiple/metabolismo , Animales , Autoinmunidad , Humanos , Inflamación/inmunología , Inflamación/terapia , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/terapia
16.
Hum Brain Mapp ; 42(5): 1463-1474, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33378095

RESUMEN

Increased brain iron concentration is often reported concurrently with disease development in multiple sclerosis (MS) and other neurodegenerative diseases. However, it is unclear whether the higher iron concentration in patients stems from an influx of iron into the tissue or a relative reduction in tissue compartments without much iron. By taking into account structural volume, we investigated tissue iron content in the deep gray matter (DGM) over 2 years, and compared findings to previously reported changes in iron concentration. 120 MS patients and 40 age- and sex-matched healthy controls were included. Clinical testing and MRI were performed both at baseline and after 2 years. Overall, iron content was calculated from structural MRI and quantitative susceptibility mapping in the thalamus, caudate, putamen, and globus pallidus. MS patients had significantly lower iron content than controls in the thalamus, with progressive MS patients demonstrating lower iron content than relapsing-remitting patients. Over 2 years, iron content decreased in the DGM of patients with MS, while it tended to increase or remain stable among controls. In the thalamus, decreasing iron content over 2 years was associated with disability progression. Our study showed that temporally increasing magnetic susceptibility in MS should not be considered as evidence for iron influx because it may be explained, at least partially, by disease-related atrophy. Declining DGM iron content suggests that, contrary to the current understanding, iron is being removed from the DGM in patients with MS.


Asunto(s)
Cuerpo Estriado/metabolismo , Sustancia Gris/metabolismo , Imagen por Resonancia Magnética , Esclerosis Múltiple/metabolismo , Tálamo/metabolismo , Adulto , Atrofia/patología , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/patología , Femenino , Estudios de Seguimiento , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Tálamo/diagnóstico por imagen , Tálamo/patología
17.
Front Immunol ; 11: 598727, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329593

RESUMEN

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), in which T-cell migration into the CNS is key for pathogenesis. Patients with MS exhibit impaired regulatory T cell populations, and both Foxp3+ Tregs and type I regulatory T cells (Tr1) are dysfunctional. MS is a multifactorial disease and vitamin D deficiency is associated with disease. Herein, we examined the impact of 1,25(OH)2D3 on CD4+ T cells coactivated by either CD28 to induce polyclonal activation or by the complement regulator CD46 to promote Tr1 differentiation. Addition of 1,25(OH)2D3 led to a differential expression of adhesion molecules on CD28- and CD46-costimulated T cells isolated from both healthy donors or from patients with MS. 1,25(OH)2D3 favored Tr1 motility though a Vitamin D-CD46 crosstalk highlighted by increased VDR expression as well as increased CYP24A1 and miR-9 in CD46-costimulated T cells. Furthermore, analysis of CD46 expression on T cells from a cohort of patients with MS supplemented by vitamin D showed a negative correlation with the levels of circulating vitamin D. Moreover, t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis allowed the visualization and identification of clusters increased by vitamin D supplementation, but not by placebo, that exhibited similar adhesion phenotype to what was observed in vitro. Overall, our data show a crosstalk between vitamin D and CD46 that allows a preferential effect of Vitamin D on Tr1 cells, providing novel key insights into the role of an important modifiable environmental factor in MS.


Asunto(s)
Proteína Cofactora de Membrana/metabolismo , Esclerosis Múltiple/etiología , Esclerosis Múltiple/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vitamina D/metabolismo , Adulto , Biomarcadores , Quimiotaxis/efectos de los fármacos , Quimiotaxis/inmunología , Suplementos Dietéticos , Femenino , Humanos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Modelos Biológicos , Esclerosis Múltiple/patología , Transducción de Señal/efectos de los fármacos , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vitamina D/farmacología
18.
Nutr Res ; 84: 63-69, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33189432

RESUMEN

This pilot trial reports the effects of L-carnosine administration on autonomic nervous system performance, brain metabolism, and various patient- and clinician-reported outcomes in a case series of patients with multiple sclerosis (MS). We hypothesized that medium-term L-carnosine supplementation would improve selected patient- and clinician-reported outcomes in MS patients, with no negative effects on self-reported side effects. L-carnosine (2 g/day) was administered orally for 8 weeks in 2 women and one man suffering from MS. The intensity of symptoms and signs of MS after L-carnosine administration diminished in 5 out of 7 domains in CASE 1, in 3 out of 7 domains in CASE 2, and one domain in CASE 3; general fatigue was reduced in all 3 cases at the follow-up. This was accompanied by an improved walking distance to exhaustion in all patients, with values improved for 51.1% in CASE 1, 19.5% in CASE 2, and 2.1% in CASE 3 at 8-week follow-up. Tests of autonomic cardiovascular reflexes demonstrate normalized parasympathetic modulation and balanced sympathetic function after L-carnosine intervention in all MS cases. An increase in serum total antioxidant capacity (TAC) was found at 8-week follow-up in all patients (from 4.6 to 49.6%); this was accompanied by lower blood lactate at post-administration in all cases (23.5% on average). Single-voxel 1.5 T MR spectroscopy revealed increased brain choline-contained compounds (18.9% on average), total creatine (21.2%), and myo-inositol levels (12.3%) in girus cinguli at 8-week follow-up in all MS cases. This case study demonstrates that an 8-week intervention with L-carnosine appears to be a safe and beneficial therapeutic strategy with regard to the reduction of presence and severity of symptoms of MS.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Encéfalo/metabolismo , Carnosina/administración & dosificación , Suplementos Dietéticos , Esclerosis Múltiple/dietoterapia , Esclerosis Múltiple/fisiopatología , Adulto , Fatiga , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/metabolismo , Medición de Resultados Informados por el Paciente
19.
J Neuroimmunol ; 347: 577358, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32795734

RESUMEN

Bone Morphogenetic Proteins (BMP) and Transforming Growth Factor-beta (TGF-ß) are cytokines with similar receptors and messengers. They are important for immune cell function, with BMPs exerting mainly proinflammatory but also anti-inflammatory effects, and TGF-ß suppressing inflammation. Patients with Multiple Sclerosis exhibit BMP overactivity and suppressed TGF-ß signaling. This dysregulated signaling participates in the crosstalk between infiltrating immune cells and glia, where BMP inhibits remyelination. Reciprocal antagonism between the two pathways takes place via a variety of mechanisms. Although this antagonism has not been studied in the setting of Multiple Sclerosis, it could inform further research and treatment discovery.


Asunto(s)
Proteínas Morfogenéticas Óseas/inmunología , Esclerosis Múltiple/inmunología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/inmunología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Humanos , Esclerosis Múltiple/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
20.
Aging (Albany NY) ; 12(14): 15134-15156, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32640422

RESUMEN

Multiple sclerosis (MS) is a central nervous system inflammatory demyelinating disease and the most common cause of non-traumatic disability in young adults. Despite progress in the treatment of the active relapsing disease, therapeutic options targeting irreversible progressive decline remain limited. Studies using skin fibroblasts derived from patients with neurodegenerative disorders demonstrate that cell stress pathways and bioenergetics are altered when compared to healthy individuals. However, findings in MS skin fibroblasts are limited. Here, we collected skin fibroblasts from 24 healthy control individuals, 30 patients with MS, and ten with amyotrophic lateral sclerosis (ALS) to investigate altered cell stress profiles. We observed endoplasmic reticulum swelling in MS skin fibroblasts, and increased gene expression of cell stress markers including BIP, ATF4, CHOP, GRP94, P53, and P21. When challenged against hydrogen peroxide, MS skin fibroblasts had reduced resiliency compared to ALS and controls. Mitochondrial and glycolytic functions were perturbed in MS skin fibroblasts while exhibiting a significant increase in lactate production over ALS and controls. Our results suggest that MS skin fibroblasts have an underlying stress phenotype, which may be disease specific. Interrogating MS skin fibroblasts may provide patient specific molecular insights and aid in prognosis, diagnosis, and therapeutic testing enhancing individualized medicine.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Esclerosis Amiotrófica Lateral , Retículo Endoplásmico , Fibroblastos/metabolismo , Glicoproteínas de Membrana/metabolismo , Esclerosis Múltiple , Factor de Transcripción CHOP/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Variación Biológica Poblacional , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Metabolismo Energético/fisiología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/metabolismo , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Medicina de Precisión , Piel/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA