Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Aging (Albany NY) ; 16(3): 2385-2397, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38284892

RESUMEN

Evodia lepta Merr. (Evodia lepta) is a well-known traditional Chinese medicine, which has been widely used in herbal tea. We previously reported that the coumarin compounds from the root of Evodia lepta exhibited neuroprotective effects. However, whether Evodia lepta could inhibit NLRP3 inflammasome in dementia was still unknown. In this study, the components of the Evodia lepta extract were identified by HPLC-Q-TOF HRMS. We employed a scopolamine-treated mouse model. Evodia lepta extract (10 or 20 mg/kg) and donepezil were treated by gavage once a day for 14 consecutive days. Following the behavioral tests, oxidative stress levels were measured. Then, Western blot and immunofluorescence analysis were used to evaluate the expressions of NLRP3 inflammasome. 14 major components of the Evodia lepta extract were identified by HPLC-Q-TOF HRMS. The results of Morris water maze, object recognition task and open field test indicated that Evodia lepta extract could ameliorate cognitive impairment in scopolamine-treated mice. Evodia lepta extract improved cholinergic system. Moreover, Evodia lepta extract improved the expressions of PSD95 and BDNF. Evodia lepta extract suppressed neuronal oxidative stress and apoptosis. In addition, Evodia lepta extract inhibited NLRP3 inflammasome in the hippocampus of scopolamine-treated mice. Evodia lepta extract could protect against cognitive impairment by inhibiting NLRP3 inflammasome in scopolamine-treated mice.


Asunto(s)
Disfunción Cognitiva , Evodia , Ratones , Animales , Inflamasomas , Evodia/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Escopolamina/toxicidad , Etanol/toxicidad , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo
2.
Pharm Biol ; 61(1): 825-838, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37212299

RESUMEN

CONTEXT: Lantana camara Linn. (Verbenaceae) is used for improving memory in certain African societies. OBJECTIVE: This study investigated the effect of prophylactic treatment with hydroethanolic leaf extract of Lantana camara (LCE) on short-term memory deficit and neuroinflammation induced with scopolamine in zebrafish and mice. MATERIALS AND METHODS: Zebrafish (AB strain) and mice (ICR) were given donepezil (0.65 mg/kg, oral) and LCE (10, 30, 100 mg/kg, oral) for 7, and 10 days, respectively, before induction of cognitive impairment with scopolamine immersion (200 µM) and intraperitoneal injection (2 mg/kg), respectively. Spatial short-term memory was assessed in zebrafish using both Y- and T-mazes, whereas Y-maze was used in mice. Mice hippocampal and cortical tissues were analyzed for mRNA expression of proinflammatory genes (IL-1ß, IL-6, TNF-α, COX-2) using qRT-PCR. RESULTS: In the zebrafish Y-maze, LCE (10 and 100 mg/kg) increased time spent in the novel arm by 55.89 ± 5.70%, and 68.21 ± 2.75%, respectively, but not at 30 mg/kg. In the zebrafish T-maze, there was an increase in time spent in the food-containing arm at 30 (44.23 ± 2.13) and 100 mg/kg (52.30 ± 1.94). In the mouse Y-maze, spontaneous alternation increased by 52.89 ± 4.98% at only 10 mg/kg. LCE (10, 30, 100 mg/kg) inhibited proinflammatory gene (IL-1ß, IL-6, TNF-α, COX-2) mRNA expression, with the highest inhibitory effect on IL-6 in both the hippocampus (83.27 ± 2.49%; 100 mg/kg) and the cortex (98.74 ± 0.11%; 10 mg/kg). DISCUSSION AND CONCLUSION: LCE ameliorated scopolamine-induced AD in both zebrafish and mice.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Lantana , Ratones , Animales , Escopolamina/toxicidad , Pez Cebra , Lantana/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedades Neuroinflamatorias , Ciclooxigenasa 2/metabolismo , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Extractos Vegetales/efectos adversos , Ratones Endogámicos ICR , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/prevención & control , ARN Mensajero/metabolismo , Aprendizaje por Laberinto , Hipocampo
3.
J Alzheimers Dis ; 92(4): 1289-1302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36872784

RESUMEN

BACKGROUND: The neurodegenerative process in Alzheimer's disease, one of the most common types of dementia worldwide, mostly affects the cholinergic neurotransmitter system and, to a lesser extent, the monoaminergic one. The antioxidant acetylcholinesterase (AChE) and triple monoamine reuptake inhibitory activity of Sideritis scardica (S. scardica) and other Sideritis species has already been reported. OBJECTIVE: To investigate the effects of S. scardica water extracts on the learning and memory processes, anxiety-like behavior, and locomotor activities in scopolamine (Sco)-induced dementia in mice. METHODS: Male Albino IRC mice were used. The plant extract was administered for 11 consecutive days in the presence or absence of Sco (1 mg/kg, i.p). The behavioural performance of the animals was evaluated by passive avoidance, T-maze, and hole-board tests. The effects of extract on AChE activity, brain noradrenalin (NA), and serotonin (Sero) content, and antioxidant status were also monitored. RESULTS: Our experimental data revealed that the S. scardica water extract caused a reduction in degree of memory impairment and anxiety-like behaviour in mice with scopolamine-induced dementia. The extract did not affect changed by the Sco AChE activity but impact reduced brain NA and Sero levels and demonstrated moderate antioxidant activity. In healthy mice we did not confirm the presence of anxiolytic-like and AChE inhibitory effects of the S. scardica water extract. The extract did not change the control Sero brain levels and reduce those of NA. CONCLUSION: S. scardica water extract demonstrated memory preserving effect in mice with scopolamine-induced dementia and deserve further attention.


Asunto(s)
Demencia , Sideritis , Ratones , Animales , Escopolamina/toxicidad , Antioxidantes/efectos adversos , Acetilcolinesterasa , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Extractos Vegetales/efectos adversos , Agua/efectos adversos , Demencia/inducido químicamente , Demencia/tratamiento farmacológico , Aprendizaje por Laberinto
4.
Acta Neurobiol Exp (Wars) ; 82(3): 380-388, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36214720

RESUMEN

Memory and cognitive impairment induced by oxidative stress are among the main hallmarks of Alzheimer's disease's (AD) pathology. The present study aimed to investigate the potential neuroprotective effects of Thymus daenensis (T. daenensis) extract against scopolamine­induced memory impairment and oxidative stress in rats. T. daenensis, widely distributed in Iran and Europe, is known to be a rich source of natural antioxidants and has been traditionally used for various medical purposes. The present study investigated the post­treatment effects of T. daenensis on learning and memory functions, antioxidant cellular defense, and oxidative stress using the scopolamine rat model of AD. The experiments were performed by intraperitoneal injection of scopolamine for 10 consecutive days in Wistar male rats (180-220 g). Additionally, the animals received T. daenensis extract (50­200 mg/kg) by gavage for 14 consecutive days after induction of memory impairment. The animals were divided into 8 groups, namely: control, 200 mg/kg of T. daenensis extract (D200), donepezil (DON), scopolamine (ALZ), ALZ animals treated with different doses of the extract (ALZ+D50 or 100 or 200 mg/kg) and ALZ animals treated with (ALZ+DON). The animals were then subjected to the Morris water maze (MWM) paradigm as a standard criterion for memory function assessment, and after extracting the brain tissues, the related biochemical oxidative stress parameters were determined in the brain. Our results indicated that T. daenensis extract significantly improved animals' performance in the MWM while significantly reducing oxidative stress and antioxidant imbalance. Furthermore, the extract did not show hepatotoxic effects on treated animals. In addition, the extract treatment significantly decreased both cellular malondialdehyde (MDA) and protein carbonyl (PCO) content while conversely increasing the total reduced glutathione (GSH) content and also the levels of total and endogenous antioxidants in the ferric reducing antioxidant power (FRAP) assay. It seems that the administration of T. daenensis significantly improved both cellular biochemical aspects and memory performance in animal models. Conclusively, it could be beneficial for scopolamine­induced neurotoxicity.


Asunto(s)
Fármacos Neuroprotectores , Escopolamina , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Donepezilo/efectos adversos , Glutatión/metabolismo , Masculino , Malondialdehído/metabolismo , Aprendizaje por Laberinto , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/prevención & control , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Ratas Wistar , Escopolamina/toxicidad
5.
Drug Chem Toxicol ; 45(3): 1073-1080, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-32847424

RESUMEN

This study investigated the effect of shaddock peels extract on cognitive function in scopolamine-induced amnesic rats. Wistar rats were pretreated with shaddock peels extract (50 and 100 mg/kg) and donepezil (5 mg/kg) for fourteen days via oral administration. Memory impairment was induced at the end of the treatment period via a single intraperitoneal administration of scopolamine (3 mg/kg). Thereafter, the animals were subjected to behavioral studies (Morris water maze and Y-maze tests). Finally, the rats were sacrificed and the hippocampus of the rat's brain was isolated for biochemical analyses. The results showed a significant decrease in memory and cognitive function as revealed by Morris water maze and Y-maze tests in scopolamine-induced rats which were reversed by shaddock peels extract. Also, there was a significant decrease in the activity of adenosine monophosphohydrolase (AMPase) with a simultaneous increase in activities of adenosine deaminase (ADA), adenosine triphosphate diphosphohydrolase (ATPdase), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in scopolamine-induced rats when compared with the control. Besides, a significant increase in malondialdehyde (MDA) and reactive oxygen species (ROS) levels were observed in scopolamine-induced rats. However, donepezil or shaddock peels extract (50 and 100 mg/kg) caused a significant inhibitory effect on AChE, and ADA activities when compared to scopolamine-induced rats. Rats treated with shaddock peels extract also showed a significant reduction in MDA and ROS levels compared to scopolamine-induced rats. Therefore, our findings showed that the cognitive-enhancing effects of shaddock peels extract could be due to antioxidant activities and modulation of some enzymes linked with cognitive dysfunction.


Asunto(s)
Citrus , Escopolamina , Acetilcolinesterasa , Animales , Antioxidantes/toxicidad , Butirilcolinesterasa , Colinérgicos/toxicidad , Cognición , Donepezilo/toxicidad , Aprendizaje por Laberinto , Trastornos de la Memoria/inducido químicamente , Extractos Vegetales/toxicidad , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno , Escopolamina/toxicidad
6.
J Ethnopharmacol ; 282: 114637, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34534598

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Geophila repens (L.) I.M. Johnst (Rubiaceae) is a small perennial creeper native to India, China, and other countries in Southeast Asia. The hot decoction of leaves is used orally for memory enhancing by the local folk of Andhra Pradesh, India. The ethnomedicinal claim of G. repens as memory enhancer was initially studied by the authors. Results demonstrated the important antioxidant and anticholinesterase activities of isolated molecule Pentylcurcumene and bioactive hydroalcohol extract of leaves of G. repens (GRHA). AIM OF THE STUDY: Based on the previous findings, additional research is needed to examine the efficacy of GRHA for memory enhancing properties. We therefore investigated the modulatory role of prime identified compounds in GRHA in mitigating scopolamine-induced neurotoxicity in experimental rats of Alzheimer's disease (AD) via attenuation of cholinesterase, ß-secretase, MAPt levels and inhibition of oxidative stress imparts inflammation. METHODS: Scopolamine (3 mg/kg) induced experimental rats of AD were treated with GRHA (300, 400 mg/kg) for 14 days. During the experimental period, elevated T-maze and locomotion-activity were performed to assess learning and memory efficacy of GRHA. At the end of the experiment, biochemical, neurochemical, neuroinflammation and histopathological observation of brain cortex were examined. GC-MS/MS analysis reported 31 compounds, among them 8 bioactive compounds possess antioxidant, neuroinflammation, neuroprotective activities, and were considered for docking analysis towards cholinesterase, ß-secretase activities in AD. RESULTS: GRHA 400 significantly improved learning and memory impairment with the improvement of oxidative stress (MDA, SOD, GSH, CAT), DNA damage (8-OHdG), neurochemical (AChE, BuChE, BACE1, BACE2, MAPt), neuroinflammation (IL-6, TNF-α) markers in neurotoxic rats. Docking studies of 8 compounds demonstrated negative binding energies for cholinesterase and ß-secretase indicating high affinity for target enzymes in AD. Test results were corroborated by the improvement of cellular tissue architecture of brain cortex in AD rats. CONCLUSION: Synergistic action of genistin, quercetin-3-D-galactoside, 9,12,15-octadecatrienoic-acid methyl-ester, phytol, retinal, stigmasterol, n-hexadecanoic acid, ß-sitosterol in GRHA restores memory-deficits via attenuation of cholinesterase, ß-secretase, MAPt level and inhibition of oxidative-stress imparts inflammation in AD.


Asunto(s)
Agaricales/química , Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Inhibidores de la Colinesterasa/farmacología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Animales , Inhibidores de la Colinesterasa/química , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/prevención & control , Memoria/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Midriáticos/toxicidad , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Ratas , Escopolamina/toxicidad , Proteínas tau/genética
7.
Zhongguo Zhong Yao Za Zhi ; 46(22): 5922-5929, 2021 Nov.
Artículo en Chino | MEDLINE | ID: mdl-34951183

RESUMEN

This study intended to explore the effect and mechanism of total flavonoids of Drynariae Rhizoma in improving scopola-mine-induced learning and memory impairments in model mice. Ninety four-month-old Kunming(KM) mice were randomly divided into six groups. The ones in the model group and blank group were treated with intragastric administration of normal saline, while those in the medication groups separately received the total flavonoids of Drynariae Rhizoma, Kangnaoshuai Capsules, donepezil, as well as total flavonoids of Rhizoma Drynariae plus estrogen receptor(ER) blocker by gavage. The mouse model of learning and memory impairments was established via intraperitoneal injection of scopolamine. Following the measurement of mouse learning and memory abilities in Morris water maze test, the hippocampal ERß expression was detected by immunohistochemistry, and the expression levels of ERß and phosphorylated p38(p-p38) in the hippocampus and B-cell lymphoma 2(Bcl-2), Bcl-2-associated death promoter(Bad), and cysteinyl aspartate-specific protease-3(caspase-3) in the apoptotic system were assayed by Western blot. The contents of malondia-ldehyde(MDA), superoxide dismutase(SOD), and nitric oxide(NO) in the hippocampus were then determined using corresponding kits. Compared with the control group, the model group exhibited significantly prolonged incubation period, reduced frequency of cros-sing the platform, shortened residence time in the target quadrant, lowered ERß, Bcl-2 and SOD activity in the hippocampus, and increased p-p38/p38, Bad, caspase-3, MDA, and NO. Compared with the model group, the total flavonoids of Rhizoma Drynariae increased the expression of ERß and SOD in the hippocampus, down-regulated the expression of neuronal pro-apoptotic proteins, up-re-gulated the expression of anti-apoptotic proteins, and reduced p-p38/p38, MDA, and NO. The effects of total flavonoids of Drynariae Rhizoma on the above indexes were reversed by ER blocker. It has been proved that the total flavonoids of Drynariae Rhizoma obviously alleviate scopolamine-induced learning and memory impairments in mice, which may be achieved by regulating the neuronal apoptotic system and oxidative stress via the ER-p38 mitogen-activated protein kinase(ER-p38 MAPK) signaling pathway.


Asunto(s)
Polypodiaceae , Animales , Flavonoides , Hipocampo , Aprendizaje por Laberinto , Ratones , Receptores de Estrógenos , Escopolamina/toxicidad , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/genética
8.
J Food Biochem ; 45(12): e13994, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34778972

RESUMEN

ß-caryophyllene (BCP), a natural sesquiterpene present in plants, is a selective agonist of cannabinoid receptor type-2 (CB2) of the endocannabinoid system. In this study, we have prepared an extract from Piper nigrum (black pepper) seeds using supercritical fluid extraction, standardized to contain 30% BCP (ViphyllinTM ). The beneficial effects of prophylactic treatment with Viphyllin on cognitive functions were demonstrated in Scopolamine-induced dementia model mice. Male Swiss albino mice (25-30 g) were administered with Viphyllin (50 mg and 100 mg/kg body weight p.o.) or donepezil (1.60 mg/kg) for 14 days. Subsequently, cognitive deficits were induced by treating the animals intraperitoneally with Scopolamine (0.75 mg/kg). The cognitive behavior of mice was evaluated using a novel object recognition test (NORT) and Morris water maze (MWM) test. The brain homogenates were studied for biochemical parameters including cholinesterase activities and antioxidant status. Western blot analysis was performed to investigate the mechanism of action. Viphyllin dose dependently improved the recognition and spatial memory and cholinergic functions in Scop-treated mice. The extract was found protective against Scop-induced oxidative damage and histopathologic changes in the brain. At 100 mg/kg Viphyllin markedly reduced the proBDNF/mBDNF ratio (p < .05) and augmented the TrkB expression (p < .01). Viphyllin (100 mg/kg) was found to be neuroprotective by reducing the Scop-induced upregulation of p-JNK and p-p38 MAPK proteins, Bax/Bcl-2 ratio, and caspase activation in the brain. Viphyllin also exerted anti-inflammatory effects by downregulating Cox-2, TNF-α, and NOS-2 in Scop-induced mice (p < .05). To summarize, our data encourage Viphyllin as a functional ingredient/dietary supplement for brain health and cognition. PRACTICAL APPLICATIONS: Black pepper is a culinary spice having several medicinal attributes. Essential oils in the seeds of the plant give aroma and flavor to it. Here we have prepared an extract from the seeds of black pepper using supercritical fluid extraction, characterized for the presence of ß-caryophyllene (not <30%). This research work further validates the neuroprotective mechanism of the extract in Scopolamine-induced cognitive impairment model mice. The findings from this study strongly suggest the beneficial neuroactive properties of black pepper seed extract having the presence of BCP, a CB2 receptor agonist. It can thus be used potentially as a functional food ingredient for cognition and brain function.


Asunto(s)
Piper nigrum , Escopolamina , Amnesia/inducido químicamente , Amnesia/tratamiento farmacológico , Animales , Factor Neurotrófico Derivado del Encéfalo , Cognición , Masculino , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Sesquiterpenos Policíclicos , Escopolamina/toxicidad
9.
Sci Rep ; 11(1): 14872, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290261

RESUMEN

Date pits are nutritious by-products, containing high levels of indigestible carbohydrates and polyphenols. To maximize the biological effects of the active ingredients, the hard shell of the polysaccharide must be degraded. Therefore, the current study aimed to assess the protective potentials of date pits extract (DP) and fungal degraded date pits extract (FDDP) against scopolamine (SCO)-induced neurodegeneration in male rats. Date pits were subjected to fungal degradation and extraction, followed by the measurement of phytochemicals and free radical scavenging activities. Forty-two adult Sprague-Dawley male rats were divided into seven groups: three control groups administered with either saline, DP or FDDP; four groups with neurodegeneration receiving SCO (ip 2 mg/kg/day, SCO group) with no treatment, SCO with DP (oral 100 mg/kg/day, DP + SCO group), SCO with FDDP (oral, 100 mg/kg/day, FDDP + SCO group), and SCO with donepezil (DON, oral, 2.25 mg/kg/day, DON + SCO group). The treatment duration was 28 days, and in the last 14 days, SCO was administered daily. Morris water maze test, acetylcholine esterase activity, oxidative stress, markers of inflammation and amyloidogenesis, and brain histopathology were assessed.


Asunto(s)
Hypocreales/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Phoeniceae/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Escopolamina/antagonistas & inhibidores , Escopolamina/toxicidad , Semillas/química , Animales , Sinergismo Farmacológico , Depuradores de Radicales Libres , Masculino , Fitoquímicos/análisis , Extractos Vegetales/administración & dosificación , Extractos Vegetales/metabolismo , Ratas Sprague-Dawley
10.
J Nutr ; 151(8): 2206-2214, 2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-33978190

RESUMEN

BACKGROUND: DHA (22:6n-3), a long-chain n-3 PUFA, is essential for normal brain development and function. Our previous study demonstrated that DHA significantly improves scopolamine-induced dementia. However, there are no reports on the relation between n-3 PUFA deficiency and scopolamine-induced cognitive impairment. OBJECTIVES: The aim of this study was to evaluate whether n-3 PUFA deficiency increases vulnerability to scopolamine-induced cognitive impairment. METHODS: Male and female C57BL/6 mice were mated and fed an n-3 PUFA-adequate [containing 2.88% α-linolenic acid (ALA; 18:3n-3)] or -deficient (containing 0.09% ALA) diet for 2 consecutive generations. The corresponding second-generation male offspring were kept on the same diet as their mothers after weaning, and were randomly assigned to 2 subgroups at 7 wk of age, in which they were intraperitoneally injected with saline [fed n-3 PUFA-adequate (Con) or -deficient (Def) diet] or scopolamine [5 mg/kg body weight; fed n-3 PUFA-adequate (Sco) or -deficient (Def + Sco) diet] once per day for 7 d before killing. Behavioral performance was analyzed using the Morris Water Maze test. Fatty acid composition, protein expression, and indicators of cholinergic and oxidative stress in the brain were measured. RESULTS: The Def group showed lower brain DHA (-63.7%, P ≤ 0.01) and higher n-6 PUFA (+65.5%, P ≤ 0.05) concentrations than the Con group. The Def + Sco group and the Sco group showed poorer spatial learning and memory (escape latency on the sixth day: +60.3% and +36.8%; platform crossings: -43.9% and -28.2%, respectively) and more obvious cholinergic dysfunction (acetylcholine: -47.6% and -27.7%, respectively), oxidative stress (glutathione peroxidase: -64.2% and -32.5%, respectively), apoptosis [B-cell lymphoma 2 (BCL2)-associated X protein/BCL2: +230.8% and +153.8%; phosphorylated P38/P38: +232% and +130%, phosphorylated c-Jun N-terminal kinase (JNK)/JNK: +104.5% and +58.8%, respectively], neuroinflammation (IL-1ß: +317.6% and +95%, respectively), and neurodevelopmental delay (brain-derived neurotrophic factor: -54.4% and -7.25%, respectively) than their corresponding saline-treated controls. CONCLUSIONS: Dietary n-3 PUFA deficiency significantly decreases brain DHA concentrations and increases vulnerability to scopolamine-induced cognitive impairment in C57BL/6 male mice.


Asunto(s)
Disfunción Cognitiva , Ácidos Grasos Omega-3 , Animales , Disfunción Cognitiva/inducido químicamente , Femenino , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Escopolamina/toxicidad
11.
Metab Brain Dis ; 36(7): 1729-1745, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34021876

RESUMEN

Scopolamine- induced memory loss is used to study new drug discovery in Alzheimer's disease (AD) pathogenesis. This study was aimed at evaluating the role of an antioxidant supplement alpha-lipoic acid (AHA), in ameliorating the oxidative damaging effects of scopolamine on cognition, memory, and the neurohistology of the cerebello-hippocampal cortex. Twenty adult male Wistar rats used were categorized into four (4) groups (n = 5): Group A- Control, Group B- 200 mg/kg of AHA, Group C- Scopolamine (memory-impaired model), and Group D- Neurodegenerative repair model (Scopolamine + AHA). The treatment lasted for fourteen (14) days. Y-maze and hang-wire (limb use test) were used as behavioural index to assess memory and motor function while brain tissues were processed for histology (H and E stain), histochemistry using Cresyl Fast violet stain for Nissl bodies, and immunohistochemistry of astrocytes using glial fibrillary acidic protein (GFAP). Results showed that scopolamine led to a decline in brain weight, impaired memory and motor function, induced oxidative tissue damage cumulating in loss of neuronal cells, chromatolysis, the proliferation of reactive astrocytes (neuroinflammation biomarker) in the cerebello-hippocampal cortex; but upon administration of AHA these neuropathological characterizations were inhibited and reversed by AHA demonstrating its antioxidant and neuro- repair potential. In conclusion, AHA is a useful therapeutic agent against scopolamine-induced cognitive and memory deficit because it has the ability to ameliorate oxidative tissue damage by attenuating reactive astrocytes proliferation and neuron chromatolysis thereby improving memory and motor function.


Asunto(s)
Cerebelo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Escopolamina/toxicidad , Ácido Tióctico/uso terapéutico , Animales , Astrocitos/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Cerebelo/patología , Hipocampo/patología , Masculino , Trastornos de la Memoria/inducido químicamente , Enfermedades Neurodegenerativas/inducido químicamente , Ratas , Ratas Wistar , Ácido Tióctico/farmacología
12.
J Med Food ; 24(5): 505-516, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34009025

RESUMEN

We previously reported that mature Bombyx mori silkworm (SW) ameliorated scopolamine (Sco)-induced amnesia, and Angelica gigas (AG) prevented cognitive impairment. SW is known for its gastroprotective effects such as improving liver function and alleviating the effects of Parkinson's disease. AG is known for its neuroprotective effects and for lowering the effects of low-density lipoprotein cholesterol. However, the neuroprotective effect of combined SW and AG (SWA-1) treatment and the underlying molecular mechanism by which SWA-1 regulates neurodegenerative diseases remains unclear. We evaluated the neuroprotective effect of SWA-1 against Sco-induced mild cognitive impairment in mice and H2O2-induced cell death in HT22 mouse hippocampal neuronal cells and elucidated the underlying molecular mechanism. Morris water maze and Y-maze tests were performed to examine the learning and memory abilities of mice. The underlying molecular mechanism was investigated by using western blotting. We demonstrated that SWA-1 significantly protects against H2O2-induced cell death in HT22 mouse hippocampal neuronal cells. SWA-1 also significantly reversed Sco-induced spatial learning and memory impairment. Specifically, SWA-1 upregulates the protein levels of phosphorylated extracellular signal-related kinase (Erk1/2) and phosphorylated p38 MAP kinase (p38). SWA-1 remarkably decreased the apoptotic index Bax/Bcl2 expression in the hippocampus of Sco-treated mice. Our results suggest that SWA-1 may be administered as alternative therapy for cognitive impairment and neurodegenerative diseases and should be studied further in human trials.


Asunto(s)
Angelica , Bombyx , Disfunción Cognitiva , Fármacos Neuroprotectores , Animales , Muerte Celular , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Hipocampo , Peróxido de Hidrógeno/toxicidad , Aprendizaje por Laberinto , Ratones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Escopolamina/toxicidad
13.
Mol Neurobiol ; 58(8): 3665-3676, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33797061

RESUMEN

We examined the neuropharmacological effects of ethanol extract of Ficus erecta Thunb leaves (EEFE) on cognitive dysfunction in a scopolamine (SCO)-induced memory impairment animal model. Memory impairment was measured using the Y-maze test and passive avoidance task (PAT). For 19 days, EEFE (100 or 200 mg/kg) was treated through oral administration. Treatment with EEFE ameliorated memory impairment in behavioral tests, along with significant protection from neuronal oxidative stress and neuronal cell loss in the brain tissues of SCO-injected mice. Antioxidant and neuroprotective effects of EEFE were further confirmed using in vitro assays. Our findings indicate that the mechanisms of neuroprotection and antioxidation of EEFE are regulated by the cholinergic system, promotion of cAMP response element-binding protein (CREB) phosphorylation, and the nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 signaling activation. The current study proposes that EEFE could be an encouraging plant resource and serve as a potent neuropharmacological drug candidate against neurodegenerative diseases.


Asunto(s)
Neuronas Colinérgicas/efectos de los fármacos , Ficus , Trastornos de la Memoria/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Escopolamina/toxicidad , Animales , Línea Celular , Antagonistas Colinérgicos/toxicidad , Neuronas Colinérgicas/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo/fisiología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Hojas de la Planta
14.
Sci Rep ; 11(1): 9182, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911138

RESUMEN

Neurodegenerative disorders are characterized by the decline of cognitive function and the progressive loss of memory. The dysfunctions of the cognitive and memory system are closely related to the decreases in brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) signalings. Ribes fasciculatum, a medicinal plant grown in diverse countries, has been reported to pharmacological effects for autoimmune diseases and aging recently. Here we found that afzelin is a major compound in Ribes fasciculatum. To further examine its neuroprotective effect, the afzelin (100 ng/µl, three times a week) was administered into the third ventricle of the hypothalamus of C57BL/6 mice for one month and scopolamine was injected (i.p.) to these mice to impair cognition and memory before each behavior experiment. The electrophysiology to measure long-term potentiation and behavior tests for cognitive and memory functions were performed followed by investigating related molecular signaling pathways. Chronic administration of afzelin into the brain ameliorated synaptic plasticity and cognitive/memory behaviors in mice given scopolamine. Studies of mice's hippocampi revealed that the response of afzelin was accountable for the restoration of the cholinergic systems and molecular signal transduction via CREB-BDNF pathways. In conclusion, the central administration of afzelin leads to improved neurocognitive and neuroprotective effects on synaptic plasticity and behaviors partly through the increase in CREB-BDNF signaling.


Asunto(s)
Demencia/tratamiento farmacológico , Demencia/etiología , Manósidos/farmacología , Fármacos Neuroprotectores/farmacología , Proantocianidinas/farmacología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cognición/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Demencia/inducido químicamente , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Manósidos/química , Manósidos/aislamiento & purificación , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/química , Proantocianidinas/química , Proantocianidinas/aislamiento & purificación , Ribes/química , Escopolamina/toxicidad
15.
J Med Food ; 24(6): 645-652, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33035147

RESUMEN

Research on the beneficial effects of Maillard reaction products (MRPs) and phenolic compounds derived from roasted peanut flour on the nervous system remains insufficient. This study aimed to evaluate the effect of a 28-day oral administration of defatted peanut extract rich in MPRs and polyphenolic compounds on the cognitive impairments and oxidative injury induced by scopolamine in a mouse model. Light and dark extracts from peanut flour were prepared by heating peanuts at 187°C for two different times (8.6 and 12.7 min) and defatted using soxhlet apparatus. The mice were orally pretreated with either roasted defatted peanuts extracts (100 mg/kg) or donepezil (3 mg/kg) for 21 days. On day 19 and until day 28, mice were injected subcutaneously with water or scopolamine (1 mg/kg body weight) 15 min after roasted defatted peanuts extracts/water feeding. Mice were subsequently subjected to a battery of behavioral tests including open field locomotor activity assay, and Morris water maze test. Brain tissues were collected to measure acetylcholine, acetylcholinesterase, and oxidative parameters (glutathione and malondialdehyde). Roasted defatted peanuts (light and dark) (100 mg/kg) treatment significantly ameliorated cognitive performance and reversed the oxidative damage when compared with the scopolamine group. These data demonstrate the defatted peanuts extracts exert potent anti-amnesic effects via the modulation of cholinergic and antioxidant activities.


Asunto(s)
Antioxidantes , Escopolamina , Acetilcolinesterasa , Amnesia/inducido químicamente , Amnesia/tratamiento farmacológico , Animales , Arachis , Colinérgicos , Harina , Productos Finales de Glicación Avanzada , Aprendizaje por Laberinto , Ratones , Extractos Vegetales , Escopolamina/toxicidad
16.
J Food Biochem ; 45(3): e13280, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32441354

RESUMEN

Andrographis paniculata is a medicinal herb that is used to treat various disease conditions due to its pharmacological properties. Thus, this study sought to assess the effect of A. paniculata extract on neurobehavioral and some biochemical parameters in scopolamine-induced amnesic rats. Thirty-five male rats were divided into seven groups and treated with aqueous extract of A. paniculata (50 and 500 mg/kg) and donepezil (5 mg/kg) for 14 days before administration of scopolamine. Behavioral studies (Morris water maze and Y-maze) were carried out to evaluate cognitive dysfunction in scopolamine-induced rats. Biochemical assays such as cholinesterases (AChE and BChE), monoamine oxidase (MAO), and purinergic activities were determined. Results revealed the presence of orientin, quercetin, caffeic acid, apigenin, and gallic acid in A. paniculata. Also, findings from this study showed that aqueous extract of A. paniculata had a modulatory effect on scopolamine-induced cognitive impairment and could be used in the management of memory loss. PRACTICAL APPLICATIONS: Aqueous extract of A. paniculata characterized revealed the presence of polyphenols which are antioxidants. The inhibitory activity possessed by A. paniculata on some enzymes linked to neurodegeneration could be due to the antioxidant activity. Given this, we recommend that results gotten from this study could be used to develop treatment therapy for neurodegeneration. However, in-depth studies should be carried out on the toxic effect of A. paniculata to ascertain a safe dose for treatment.


Asunto(s)
Andrographis , Animales , Antioxidantes/farmacología , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta , Ratas , Escopolamina/toxicidad
17.
Brain Behav ; 10(5): e01602, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32174034

RESUMEN

BACKGROUND: Cholinergic dysfunction and oxidative stress are the crucial mechanisms of Alzheimer's disease (AD). GAPT, also called GEPT (a combination of several active components extracted from the Chinese herbs ginseng, epimedium, polygala and tuber curcumae) or Jinsiwei, is a patented Chinese herbal compound, has been clinically widely used to improve learning and memory impairment, but whether it can play a neuroprotective role by protecting cholinergic neurons and reducing oxidative stress injury remains unclear. METHODS: Male ICR mice were intraperitoneally injected with scopolamine (3 mg/kg) to establish a learning and memory disordered model. An LC-MS method was established to study the chemical compounds and in vivo metabolites of GAPT. After scopolamine injection, a step-down passive-avoidance test (SDPA) and a Y maze test were used to estimate learning ability and cognitive function. In addition, ELISA detected the enzymatic activities of acetylcholinesterase (AChE), acetylcholine (ACh), choline acetyltransferase (ChAT), malondialdehyde (MDA), glutathione peroxidase (GPX), and total superoxide dismutase (T-SOD). The protein expressions of AChE, ChAT, SOD1, and GPX1 were observed by western blot, and the distribution of ChAT, SOD1, and GPX1 was observed by immunohistochemical staining. RESULTS: After one-half or 1 month of intragastric administration, GAPT can ameliorate scopolamine-induced behavioral changes in learning and memory impaired mice. It can also decrease the activity of MDA and protein expression level of AChE, increase the activity of Ach, and increase activity and protein expression level of ChAT, SOD, and GPX in scopolamine-treated mice. After one and a half month of intragastric administration of GAPT, echinacoside, salvianolic acid A, ginsenoside Rb1, ginsenoside Rg2, pachymic acid, and beta asarone could be absorbed into mice blood and pass through BBB. CONCLUSIONS: GAPT can improve the learning and memory ability of scopolamine-induced mice, and its mechanism may be related to protecting cholinergic neurons and reducing oxidative stress injury.


Asunto(s)
Hipocampo , Escopolamina , Animales , Colinérgicos , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo , Escopolamina/toxicidad
18.
Neurochem Int ; 131: 104537, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31425745

RESUMEN

Alzheimer's disease (AD) is an important chronic neurodegenerative disorder and is mainly associated with cognitive dysfunction. At present, bioactive compounds from traditional medicinal plants have received much attention for the enhancement of cognitive function. Danshensu, a phenolic acid isolated from herbal medicines, has various pharmacological activities in the central nervous system, including anxiolytic-like and neuroprotective properties. The present study aimed to investigate the ameliorating effects of danshensu on scopolamine- and amyloid-ß (Aß) protein-induced cognitive impairments in mice. Danshensu (3 and 10 mg/kg, p.o.) effectively ameliorated scopolamine-induced cognitive dysfunction in mice, as measured in passive avoidance and Y-maze tasks. In a mechanistic study, danshensu inhibited monoamine oxidase A (MAO-A) activity but not MAO-B. Additionally, danshensu treatment increased the dopamine level and the phosphorylation levels of protein kinase A (PKA) and cAMP response element binding protein (CREB), in the cortex of the brain. Furthermore, the ameliorating effect of danshensu against scopolamine-induced cognitive impairment was fully blocked by H89, a PKA inhibitor. Finally, danshensu also ameliorated Aß-induced cognitive impairments in an animal model of AD. The results revealed that danshensu treatment significantly improved scopolamine and Aß-induced cognitive impairments in mice by facilitation of dopamine signaling cascade such as PKA and CREB due to MAO-A inhibition. Thus, danshensu could be used as a promising therapeutic agent for preventing and treating AD.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/toxicidad , Disfunción Cognitiva/inducido químicamente , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico , Medicamentos Herbarios Chinos/farmacología , Lactatos/farmacología , Antagonistas Muscarínicos/toxicidad , Escopolamina/antagonistas & inhibidores , Escopolamina/toxicidad , Transducción de Señal/efectos de los fármacos , Animales , Reacción de Prevención/efectos de los fármacos , Disfunción Cognitiva/patología , Dopamina/fisiología , Isoquinolinas/farmacología , Lactatos/antagonistas & inhibidores , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Inhibidores de la Monoaminooxidasa/farmacología , Fosforilación/efectos de los fármacos , Sulfonamidas/farmacología , Transmisión Sináptica/efectos de los fármacos
19.
Phytomedicine ; 63: 153007, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31301537

RESUMEN

BACKGROUND: Aerial parts of Peganum harmala Linn is used as a traditional medical herb for treatment of amnesia in Uighur medicine in China. Deoxyvasicine (DVAS) is one of the chief active ingredients in P. harmala, it possesses strong acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities in vitro, but the therapeutic effect and mechanisms on amnesia in vivo are unclear. PURPOSE: The objective of this study was to investigate the improvement effect of DVAS from P. harmala in learning and memory deficits of scopolamine-induced mice and elucidate the underlying mechanisms involved. METHODS: Mice were pretreated with DVAS (5, 15 and 45 mg/kg) and huperzine-A (0.2 mg/kg) by gavage for 7 days, and subsequently were daily intraperitoneally injected with scopolamine (1 mg/kg) to induce learning and memory deficits and behavioral performance was assessed by Morris water maze. To further evaluate the potential mechanisms of DVAS in improving learning and memory capabilities, pathological change, levels of various biochemical markers and protein expressions related to cholinergic system, oxidative stress, and neuroinflammation were examined. RESULTS: The results showed that DVAS could alleviate learning and memory deficits in scopolamine-treated mice. DVAS could regulate cholinergic function by inhibiting AChE and activating choline acetyltransferase (ChAT) activities and protein expressions. DVAS could induce brain-derived neurotrophic factor and protect hippocampal pyramidal cells against neuronal damage. DVAS also enhanced antioxidant defense via increasing the antioxidant enzyme level and activity of glutathione peroxidase, and anti-inflammatory function through suppressing tumor necrosis factor-α. Additionally, DVAS could regulate the neurotransmitters by elevating acetylcholine, 5-hydroxytryptamine, γ-aminobutyric acid and reducing 5-hydroxyindole-3-acetic acid and glutamic acid. CONCLUSION: Results illustrated that DVAS may be a promising candidate compound against amnesia via restoration of cholinergic function, regulating neurotransmitters, attenuating neuroinflammation and oxidative stress.


Asunto(s)
Alcaloides/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Quinazolinas/farmacología , Acetilcolina/metabolismo , Amnesia/tratamiento farmacológico , Animales , Antioxidantes/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Inhibidores de la Colinesterasa/farmacología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Masculino , Memoria/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Ratones Endogámicos C57BL , Neurotransmisores/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peganum/química , Escopolamina/toxicidad , Sesquiterpenos/farmacología
20.
Molecules ; 24(11)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174251

RESUMEN

Ginseng has been used to alleviate age-related dementia and memory deterioration for thousands of years. This study investigated the protective effect of red ginseng saponins against scopolamine-induced cerebral injury. Meanwhile, pharmacokinetics of ginsenosides in normal and scopolamine-treated rats were compared. After scopolamine injection, glutathione, catalase and superoxide dismutase levels were significantly decreased when compared with control group. Compared with SA group, pretreatment of rats with red ginseng saponins could increase glutathione, catalase and superoxide dismutase level. Treatment with red ginseng saponins significantly decreased malondialdehyde level. In the pharmacokinetic analysis, a pattern recognition analysis method was used to investigate the pharmacokinetics of the absorbed compounds in blood. The pharmacokinetic parameters of Rg1, Rg2, Rh3, Rg5 and Rk1 in model group had higher area under the curve (AUC), mean residence time (MRT) and peak plasma concentration (Cmax) values; area under the curve (AUC) values and peak plasma concentration (Cmax) of model group was significantly different from that of normal group (p < 0.05). The Cmax value of Rk3, Rh1, Rh2 and Rh4 in model group was higher than normal group, but their AUC values were not significantly different. There was no significantly difference in time at Cmax (Tmax), AUC and Cmax values of Rb1, Rb2 Re, Rc, Rd and Rf between the model and normal group. 16 ginsenosides were grouped into three separate clusters according to principal component analysis (PCA) score plot based on pharmacokinetic data. The results suggested red ginseng saponins have significant protective effect against scopolamine-induced memory deficit and scopolamine-induced rats could lead to the changes of pharmacokinetic behaviors of ginsenosides.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Panax/química , Saponinas/farmacología , Animales , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/patología , Humanos , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/patología , Fármacos Neuroprotectores/farmacocinética , Ratas , Ratas Sprague-Dawley , Saponinas/química , Saponinas/farmacocinética , Escopolamina/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA