Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 277(19): 17188-99, 2002 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-11856752

RESUMEN

Lysosomal prosaposin (65 kDa) is a nonenzymic protein that is transported to the lysosomes in a mannose 6-phosphate-independent manner. Selective deletion of the functional domains of prosaposin indicates that the D domain and the carboxyl-terminal region are necessary for its transport to the lysosomes. Inhibitors of sphingolipid biosynthesis, such as fumonisin B(1) (FB(1)) and tricyclodecan-9-yl xanthate potassium salt (D609), also interfere with the trafficking of prosaposin to lysosomes. In this study, we examine sphingomyelin as a direct candidate for the trafficking of prosaposin. Chinese hamster ovary and COS-7 cells overexpressing prosaposin or an albumin/prosaposin construct were incubated with these inhibitors, treated with sphingolipids, and then immunostained. Sphingomyelin restored the immunostaining in lysosomes in both FB(1)- and D609-treated cells and ceramide reestablished the immunostaining in FB(1)-treated cells only. D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), which inhibits glycosphingolipids, had no effect on the immunostaining pattern. To determine whether sphingomyelin has the same effect on the transport of endogenous prosaposin, testicular explants were treated with FB(1) and D609. Sphingomyelin restored prosaposin immunogold labeling in the lysosomes of FB(1)- and D609-treated Sertoli cells, whereas ceramide restored the label in FB(1) treatment only. Albumin linked to the D and COOH-terminal domains of prosaposin was used as a dominant negative competitor. The construct blocked the targeting of prosaposin and induced accumulation of membrane in the lysosomes, demonstrating that the construct uses the same transport pathway as endogenous prosaposin. In conclusion, our results showed that sphingomyelin, the D domain, and its adjacent COOH-terminal region play a crucial role in the transport of prosaposin to lysosomes. Although the precise nature of this lipid-protein interaction is not well established, it is proposed that sphingomyelin microdomains (lipid rafts) are part of a mechanism ensuring correct intercellular trafficking of prosaposin.


Asunto(s)
Fumonisinas , Glicoproteínas/metabolismo , Esfingomielinas/química , Esfingomielinas/fisiología , Albúminas/metabolismo , Animales , Unión Competitiva , Células CHO , Células COS , Ácidos Carboxílicos/farmacología , Catepsina B/farmacología , Cricetinae , ADN Complementario/metabolismo , Glicoesfingolípidos/metabolismo , Aparato de Golgi/metabolismo , Inmunohistoquímica , Lisosomas/metabolismo , Masculino , Ratones , Microscopía Confocal , Microscopía Electrónica , Microscopía Fluorescente , Modelos Biológicos , Morfolinas/farmacología , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Saposinas , Túbulos Seminíferos/efectos de los fármacos , Transfección
2.
J Lipid Res ; 41(6): 916-24, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10828083

RESUMEN

Inclusion of phosphatidylcholine within bile salt micelles protects against bile salt-induced cytotoxicity. In addition to phosphatidylcholine, bile may contain significant amounts of sphingomyelin, particularly under cholestatic conditions. We compared protective effects of egg yolk phosphatidylcholine (similar to phosphatidylcholine in bile), egg yolk sphingomyelin (mainly 16:0 acyl chains) and dipalmitoyl phosphatidylcholine against taurocholate in complementary in vitro studies. Upon addition of taurocholate-containing micelles to sonicated egg yolk phosphatidylcholine vesicles, subsequent micellization of the vesicular bilayer proved to be retarded when phospholipids had also been included in these micelles in the rank order: egg yolk phosphatidylcholine < dipalmitoyl phosphatidylcholine < sphingomyelin. Hemolysis of erythrocytes and LDH release by CaCo-2 cells after addition of taurocholate micelles were strongly reduced by including small amounts of sphingomyelin or dipalmitoyl phosphatidylcholine in these micelles (PL/(PL + BS) >/= 0.1), whereas egg yolk phosphatidylcholine provided less protection. Amounts of non-phospholipid-associated bile salts (thought to be responsible for cytotoxicity) in egg yolk phosphatidylcholine-containing micelles were significantly higher than in corresponding sphingomyelin- or dipalmitoyl phosphatidylcholine-containing micelles (tested at PL/(PL + BS) ratios 0.1, 0.15, and 0.2). LDH release upon incubation of CaCo-2 cells with taurocholate simple micelles at these so-called "intermixed micellar-vesicular" concentrations was identical to LDH release upon incubation with corresponding taurocholate-phospholipid mixed micelles. In conclusion, we found greatly enhanced protective effects of sphingomyelin and dipalmitoyl phosphatidylcholine compared to egg yolk phosphatidylcholine against bile salt-induced cytotoxicity, related to different amounts of non-phospholipid-associated bile salts. These findings may be relevant for protection against bile salt-induced cytotoxicity in vivo.


Asunto(s)
Ácidos y Sales Biliares/antagonistas & inhibidores , Yema de Huevo/química , Fosfatidilcolinas/fisiología , Esfingomielinas/fisiología , Ácidos y Sales Biliares/farmacología , Células CACO-2 , Detergentes , Hemólisis/efectos de los fármacos , Humanos , Fosfatidilcolinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA