Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 30(15): 3716-3729, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34087027

RESUMEN

Speciation proceeds through mechanisms that promote reproductive isolation and shape the extent of genetic variation in natural populations, and thus its study is essential to understand the evolutionary processes leading to increased biodiversity. Chromosomal rearrangements are known to facilitate reproductive isolation by hybrid sterility and favour speciation events. The genus Ipheion (Amaryllidaceae, Allioideae) is unique as its species exhibit a remarkable karyological variability but lack population-level genetic data. To unveil the diversification processes acting upon the formation of new lineages within Ipheion in the Pampas of South America, we combined morphology and karyology approaches with genotyping-by-sequencing. Our phylogenomic and population genomics results supported the taxonomic division of Ipheion into three morphological and genetically well-differentiated groups. The origin of Ipheion uniflorum was traced back to its current southern distribution area in the southern Pampean region (in Argentina), from where it had expanded to the north reaching Uruguay. Our results further suggested that chromosome rearrangements and ploidy shifts had triggered speciation events, first during the origin of I. uniflorum and later during its subsequent diversification into I. recurvifolium and I. tweedieanum, in both cases reinforced by extrinsic factors and biogeographical settings. The current study illustrates the analytical power of multidisciplinary approaches integrating phylo- and population genomics with classic analyses to reveal evolutionary processes in plants.


Asunto(s)
Ajo , Evolución Biológica , Especiación Genética , Genómica , Filogenia , Aislamiento Reproductivo
2.
Genes Genomics ; 43(3): 209-215, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33609223

RESUMEN

BACKGROUND: Panax ginseng is one of the most valuable medicinal plants in Korea. However, deciphering its full genome sequence information for crop improvement has been hampered due to its complex genomic, genetic, and growth characteristics. Many efforts have been made in the past decade to overcome these limitations and understand the genome structure and the evolutionary history of P. ginseng. METHODS: This review aims to discuss the current status of genomic studies on P. ginseng and related species, and the experimental clues suggesting phylogenetic classification and evolutionary history of the genus Panax. CONCLUSION: The development of sequencing technologies made genome sequencing of the large P. ginseng genome possible, providing fundamental information to deciphering the evolutionary history of P. ginseng and related species. P. ginseng went through two rounds of whole genome duplication events after diverging from the closest family Apiaceae, which was unveiled from complete whole genome sequences. Further in-depth comparative genome analysis with other related species and genera will uncover the evolutionary history as well as important morphological and ecological characteristics of Panax species.


Asunto(s)
Evolución Molecular , Genoma de Planta , Panax/genética , Análisis Citogenético , Especiación Genética , Tamaño del Genoma , Genómica , Panax/clasificación , Filogenia
3.
Proc Natl Acad Sci U S A ; 117(25): 14543-14551, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32461376

RESUMEN

The genetic architecture of quantitative traits is determined by both Mendelian and polygenic factors, yet classic examples of plant domestication focused on selective sweep of newly mutated Mendelian genes. Here we report the chromosome-level genome assembly and the genomic investigation of a nonclassic domestication example, bitter gourd (Momordica charantia), an important Asian vegetable and medicinal plant of the family Cucurbitaceae. Population resequencing revealed the divergence between wild and South Asian cultivars about 6,000 y ago, followed by the separation of the Southeast Asian cultivars about 800 y ago, with the latter exhibiting more extreme trait divergence from wild progenitors and stronger signs of selection on fruit traits. Unlike some crops where the largest phenotypic changes and traces of selection happened between wild and cultivar groups, in bitter gourd large differences exist between two regional cultivar groups, likely reflecting the distinct consumer preferences in different countries. Despite breeding efforts toward increasing female flower proportion, a gynoecy locus exhibits complex patterns of balanced polymorphism among haplogroups, with potential signs of selective sweep within haplogroups likely reflecting artificial selection and introgression from cultivars back to wild accessions. Our study highlights the importance to investigate such nonclassic example of domestication showing signs of balancing selection and polygenic trait architecture in addition to classic selective sweep in Mendelian factors.


Asunto(s)
Domesticación , Genoma de Planta , Momordica charantia/genética , Selección Genética , Especiación Genética , Herencia Multifactorial , Filogenia , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
4.
Sci Adv ; 6(10): eaay1259, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32181343

RESUMEN

Mesozoic long-proboscid scorpionflies (Mesopsychoidea) provide important clues to ancient plant-pollinator interactions. Among them, the family Aneuretopsychidae is especially important because its mouthparts are vital to deciphering the early evolution of Mesopsychoidea and putatively the origin of fleas (Siphonaptera). However, the identification of mouthpart homologs among Aneuretopsychidae remains controversial because of the lack of three-dimensional anatomical data. Here, we report the first Aneuretopsychidae from Late Cretaceous Burmese amber, which have short maxillary palpi and elongate mouthpart elements consisting of one pair of galeae and one hypopharynx. Their mouthparts are identical to those of Pseudopolycentropodidae (= Dualulidae, new synonym) but are not homologous to those of Siphonaptera. Our phylogenetic analysis provides robust evidence for the debated monophyly of Mesopsychoidea. Our results suggest that the long-proboscid condition has most likely evolved once in Mesopsychoidea, independently from fleas, and further reveal the variety and complexity of mid-Cretaceous pollinating insects.


Asunto(s)
Dípteros/clasificación , Especiación Genética , Boca/anatomía & histología , Filogenia , Escorpiones/clasificación , Siphonaptera/clasificación , Ámbar , Animales , China , Dípteros/anatomía & histología , Dípteros/fisiología , Extinción Biológica , Fósiles/historia , Historia Antigua , Boca/fisiología , Mianmar , Plantas , Polinización/fisiología , Escorpiones/anatomía & histología , Escorpiones/fisiología , Siphonaptera/anatomía & histología , Siphonaptera/fisiología
5.
Sci Rep ; 10(1): 5502, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32218506

RESUMEN

Because it is indicative of reproductive isolation, the amount of genetic introgression across secondary contact zones is increasingly considered in species delimitation. However, patterns of admixture at range margins can be skewed by the regional dynamics of hybrid zones. In this context, we posit an important role for phylogeographic history: hybrid zones located within glacial refugia (putatively formed during the Late-Pleistocene) should be better defined than those located in post-glacial or introduced ranges (putatively formed during the Holocene and the Anthropocene). We test this hypothesis in a speciation continuum of tree frogs from the Western Palearctic (Hyla), featuring ten identified contacts between species spanning Plio-Pleistocene to Miocene divergences. We review the rich phylogeographic literature of this group and examine the overlooked transition between H. arborea and H. molleri in Western France using a multilocus dataset. Our comparative analysis supports a trend that contacts zones resulting from post-glacial expansions and human translocations feature more extensive introgression than those established within refugial areas. Integrating the biogeographic history of incipient species, i.e. their age since first contact together with their genetic divergence, thus appears timely to draw sound evolutionary and taxonomic inferences from patterns of introgression across hybrid zones.


Asunto(s)
Anuros/clasificación , Anuros/genética , Animales , Evolución Molecular , Femenino , Francia , Introgresión Genética , Especiación Genética , Genética de Población , Historia del Siglo XXI , Historia Antigua , Humanos , Masculino , Repeticiones de Microsatélite , Modelos Genéticos , Filogeografía , Refugio de Fauna , Aislamiento Reproductivo
6.
Genome Biol Evol ; 11(10): 2963-2975, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31518398

RESUMEN

Butterfly eyes are complex organs that are composed of a diversity of proteins and they play a central role in visual signaling and ultimately, speciation, and adaptation. Here, we utilized the whole eye transcriptome to obtain a more holistic view of the evolution of the butterfly eye while accounting for speciation events that co-occur with ancient hybridization. We sequenced and assembled transcriptomes from adult female eyes of eight species representing all major clades of the Heliconius genus and an additional outgroup species, Dryas iulia. We identified 4,042 orthologous genes shared across all transcriptome data sets and constructed a transcriptome-wide phylogeny, which revealed topological discordance with the mitochondrial phylogenetic tree in the Heliconius pupal mating clade. We then estimated introgression among lineages using additional genome data and found evidence for ancient hybridization leading to the common ancestor of Heliconius hortense and Heliconius clysonymus. We estimated the Ka/Ks ratio for each orthologous cluster and performed further tests to demonstrate genes showing evidence of adaptive protein evolution. Furthermore, we characterized patterns of expression for a subset of these positively selected orthologs using qRT-PCR. Taken together, we identified candidate eye genes that show signatures of adaptive molecular evolution and provide evidence of their expression divergence between species, tissues, and sexes. Our results demonstrate: 1) greater evolutionary changes in younger Heliconius lineages, that is, more positively selected genes in the cydno-melpomene-hecale group as opposed to the sara-hortense-erato group, and 2) suggest an ancient hybridization leading to speciation among Heliconius pupal-mating species.


Asunto(s)
Mariposas Diurnas/genética , Evolución Molecular , Transcriptoma , Animales , Ojo/metabolismo , Femenino , Perfilación de la Expresión Génica , Genes de Insecto , Especiación Genética , Masculino , Filogenia , Selección Genética
7.
Int J Mol Sci ; 20(5)2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823362

RESUMEN

Aristolochiaceae, comprising about 600 species, is a unique plant family containing aristolochic acids (AAs). In this study, we sequenced seven species of Aristolochia, and retrieved eleven chloroplast (cp) genomes published for comparative genomics analysis and phylogenetic constructions. The results show that the cp genomes had a typical quadripartite structure with conserved genome arrangement and moderate divergence. The cp genomes range from 159,308 bp to 160,520 bp in length and have a similar GC content of 38.5%⁻38.9%. A total number of 113 genes were identified, including 79 protein-coding genes, 30 tRNAs and four rRNAs. Although genomic structure and size were highly conserved, the IR-SC boundary regions were variable between these seven cp genomes. The trnH-GUG genes, are one of major differences between the plastomes of the two subgenera Siphisia and Aristolochia. We analyzed the features of nucleotide substitutions, distribution of repeat sequences and simple sequences repeats (SSRs), positive selections in the cp genomes, and identified 16 hotspot regions for genomes divergence that could be utilized as potential markers for phylogeny reconstruction. Phylogenetic relationships of the family Aristolochiaceae inferred from the 18 cp genome sequences were consistent and robust, using maximum parsimony (MP), maximum likelihood (ML), and Bayesian analysis (BI) methods.


Asunto(s)
Aristolochia/genética , Evolución Molecular , Genoma del Cloroplasto , Filogenia , Aristolochia/clasificación , Composición de Base , Especiación Genética , Repeticiones de Microsatélite , Sistemas de Lectura Abierta , Plantas Medicinales , ARN Ribosómico/genética , ARN de Transferencia/genética
8.
Heredity (Edinb) ; 123(3): 371-383, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30809077

RESUMEN

The evolution of a species depends on multiple forces, such as demography and natural selection. To understand the trajectory and driving forces of evolution of a target species, it is first necessary to uncover that species' population history, such as past and present population sizes, subdivision and gene flow, by using appropriate genetic markers. Cryptomeria japonica is a long-lived monoecious conifer species that is distributed in Japan. There are two main lines (omote-sugi and ura-sugi), which are distinguished by apparent differences in morphological traits that may have contributed to their local adaptation. The evolution of these morphological traits seems to be related to past climatic changes in East Asia, but no precise estimate is available for the divergence time of these two lines and the subsequent population dynamics in this species. Here, we analyzed the nucleotide variations at 120 nuclear genes in 94 individuals by using amplicon sequencing in combination with high-throughput sequencing technologies. Our analysis indicated that the population on Yakushima Island, the southern distribution limit of C. japonica in Japan, diverged from the other populations 0.85 million years ago (MYA). The divergence time of the other populations on mainland Japan was estimated to be 0.32 MYA suggesting that the divergence of omote-sugi and ura-sugi might have occurred before the last glacial maximum. Although we found modest levels of gene flow between the present populations, the long-term isolation and environmental heterogeneity caused by climatic changes might have contributed to the differentiation of the lines and their local adaptation.


Asunto(s)
Cryptomeria/genética , Flujo Génico , Especiación Genética , Selección Genética , Adaptación Fisiológica/genética , Cryptomeria/clasificación , Variación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Historia del Siglo XXI , Historia Antigua , Japón , Fenotipo , Dinámica Poblacional/historia , Carácter Cuantitativo Heredable
9.
PLoS One ; 13(3): e0194613, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29543905

RESUMEN

Fritillaria spp. constitute important traditional Chinese medicinal plants. Xinjiang is one of two diversity hotspots in China in which eight Fritillaria species occur, two of which are endemic to the region. Furthermore, the phylogenetic relationships of Xinjiang Fritillaria species (including F. yuminensis) within the genus are unclear. In the present study, we sequenced the chloroplast (cp) genomes of seven Fritillaria species in Xinjiang using the Illumina HiSeq platform, with the aim of assessing the global structural patterns of the seven cp genomes and identifying highly variable cp DNA sequences. These were compared to previously sequenced Fritillaria cp genomes. Phylogenetic analysis was then used to evaluate the relationships of the Xinjiang species and assess the evolution of an undivided stigma. The seven cp genomes ranged from 151,764 to 152,112 bp, presenting a traditional quadripartite structure. The gene order and gene content of the seven cp genomes were identical. A comparison of the 13 cp genomes indicated that the structure is highly conserved. Ten highly divergent regions were identified that could be valuable in phylogenetic and population genetic studies. The phylogenetic relationships of the 13 Fritillaria species inferred from the protein-coding genes, large single-copy, small single-copy, and inverted repeat regions were identical and highly resolved. The phylogenetic relationships of the species corresponded with their geographic distribution patterns, in that the north group (consisting of eight species from Xinjiang and Heilongjiang in North China) and the south group (including six species from South China) were basically divided at 40°N. Species with an undivided stigma were not monophyletic, suggesting that this trait might have evolved several times in the genus.


Asunto(s)
Fritillaria/clasificación , Fritillaria/genética , Marcadores Genéticos , Genoma del Cloroplasto , ADN de Cloroplastos/análisis , ADN de Cloroplastos/genética , Marcadores Genéticos/genética , Especiación Genética , Filogenia , Plantas Medicinales/clasificación , Plantas Medicinales/genética , Análisis de Secuencia de ADN
10.
New Phytol ; 216(4): 1268-1280, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28833204

RESUMEN

Early stages of ecological speciation can create populations with an ecology and reproduction timing distinct from those of related populations. Landscape genetic models incorporating environmental heterogeneity and population-specific reproductive traits enable the processes of population genetic differentiation to be inferred. We investigated genome-wide genetic variation in ecotypic populations of Solidago virgaurea sensu lato, a herbaceous plant inhabiting a wide range of habitats (woodlands, serpentine barrens and alpine grasslands) and displaying remarkable variation in flowering time. Simultaneous evaluation of environmental factors revealed an overwhelming effect of soil type differences on neutral genetic differentiation, compared with elevational differences. This result probably reflects the abrupt environmental changes generated by geological boundaries, whereas mountain slopes exhibit clinal changes, facilitating gene exchange between neighbouring populations. Temporal isolation was positively associated with genetic differentiation, with some early-flowering serpentine populations having allele frequencies distinct from adjacent nonserpentine populations. Overall, this study highlights the importance of ecological processes and of evolution of flowering time to promote genetic differentiation of S. virgaurea populations in a complex landscape.


Asunto(s)
Asbestos Serpentinas , Ecosistema , Flores/fisiología , Especiación Genética , Solidago/genética , Altitud , Japón , Suelo
11.
BMC Evol Biol ; 17(1): 146, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28641575

RESUMEN

BACKGROUND: Hedera (ivies) is one of the few temperate genera of the primarily tropical Asian Palmate group of the Araliaceae, which extends its range out of Asia to Europe and the Mediterranean basin. Phylogenetic and phylogeographic results suggested Asia as the center of origin and the western Mediterranean region as one of the secondary centers of diversification. The bird-dispersed fleshy fruits of ivies suggest frequent dispersal over long distances (e.g. Macaronesian archipelagos), although reducing the impact of geographic barriers to gene flow in mainland species. Genetic isolation associated with geographic barriers and independent polyploidization events have been postulated as the main driving forces of diversification. In this study we aim to evaluate past and present diversification patterns in Hedera within a geographic and temporal framework to clarify the biogeographic history of the genus. RESULTS: Phylogenetic (biogeographic, time divergence and diversification) and phylogeographic (coalescence) analyses using four DNA regions (nrITS, trnH-psbA, trnT-trnL, rpl32) revealed a complex spatial pattern of lineage divergence. Scarce geographic limitation to gene flow and limited diversification are observed during the early-mid Miocene, followed by a diversification rate increase related to geographic divergence from the Tortonian/Messinian. Genetic and palaeobotanical evidence points the origin of the Hedera clade in Asia, followed by a gradual E-W Asian extinction and the progressive E-W Mediterranean colonization. The temporal framework for the E Asia - W Mediterranean westward colonization herein reported is congruent with the fossil record. Subsequent range expansion in Europe and back colonization to Asia is also inferred. Uneven diversification among geographic areas occurred from the Tortonian/Messinian onwards with limited diversification in the newly colonized European and Asian regions. Eastern and western Mediterranean regions acted as refugia for Miocene and post-Miocene lineages, with a similar role as consecutive centers of centrifugal dispersal (including islands) and speciation. CONCLUSIONS: The Miocene Asian extinction and European survival of Hedera question the general pattern of Tertiary regional extinction of temperate angiosperms in Europe while they survived in Asia. The Tortonian/Messinian diversification increase of ivies in the Mediterranean challenges the idea that this aridity period was responsible for the extinction of the Mediterranean subtropical Tertiary flora. Differential responses of Hedera to geographic barriers throughout its evolutionary history, linked to spatial isolation related to historical geologic and climatic constraints may have shaped diversification of ivies in concert with recurrent polyploidy.


Asunto(s)
Hedera/clasificación , Hedera/genética , Asia , Evolución Biológica , Ecosistema , Europa (Continente) , Fósiles , Especiación Genética , Filogenia , Filogeografía , Poliploidía
12.
New Phytol ; 211(4): 1393-401, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27112551

RESUMEN

Volatile organic compounds (VOCs) play important roles in the environmental adaptation and fitness of plants. Comparison of the qualitative and quantitative differences in VOCs among closely related taxa and assessing the effects of environment on their emissions are important steps to deducing VOC function and evolutionary importance. Headspace VOCs from five taxa of sagebrush (Artemisia, subgenus Tridentatae) growing in two common gardens were collected and analyzed using GC-MS. Of the 74 total VOCs emitted, only 15 were needed to segregate sagebrush taxa using Random Forest analysis with a low error of 4%. All but one of these 15 VOCs showed qualitative differences among taxa. Ordination of results showed strong clustering that reflects taxonomic classification. Random Forest identified five VOCs that classify based on environment (2% error), which do not overlap with the 15 VOCs that segregated taxa. We show that VOCs can discriminate closely related species and subspecies of Artemisia, which are difficult to define using molecular markers or morphology. Thus, it appears that changes in VOCs either lead the way or follow closely behind speciation in this group. Future research should explore the functions of VOCs, which could provide further insights into the evolution of sagebrushes.


Asunto(s)
Artemisia/metabolismo , Evolución Biológica , Especiación Genética , Compuestos Orgánicos Volátiles/análisis , Ambiente , Geografía
13.
Genome ; 59(2): 127-36, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26794024

RESUMEN

Turnera sidoides is an autopolyploid complex of obligate outcrossing perennial herbs. It includes five subspecies and five morphotypes in which diploid to octoploid cytotypes were found. Based on phenetic analyses of the complex and karyotype data of polyploid cytotypes, it has been hypothesized that morphological and chromosome differentiation of T. sidoides occurred at the diploid level. To test this hypothesis, we present the first detailed chromosome analysis of diploid populations of three subspecies and four morphotypes. CMA(+)/DAPI(-) bands were restricted to secondary constrictions (except in the andino morphotype) and varied in number and position among taxa. By contrast, DAPI staining was uniform in all the materials investigated. The number and position of 45S rDNA loci were coincident with the CMA(+)/DAPI(-) bands associated with secondary constrictions. Only one pair of 5S rDNA loci was detected in all the taxa (except in subsp. holosericea), but its position was variable. The identified chromosome markers varied among the three subspecies analyzed, but they were more conserved among the morphotypes of subsp. pinnatifida. Cluster analysis of these chromosome markers supports the current taxonomic arrangement of diploids and demonstrates that structural chromosome changes would have led or accompanied the initial differentiation of T. sidoides at the diploid level.


Asunto(s)
Turnera/genética , Cromosomas de las Plantas , ADN de Plantas/genética , ADN Ribosómico/genética , Diploidia , Especiación Genética , Hibridación Fluorescente in Situ , Cariotipo , Filogenia
14.
Mol Phylogenet Evol ; 95: 196-216, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26493228

RESUMEN

Orchids of the genus Dendrobium are of great economic importance in global horticultural trade and in Asian traditional medicine. For both areas, research yielding solid information on taxonomy, phylogeny, and breeding of this genus are essential. Traditional morphological and cytological characterization are used in combination with molecular results in classification and identification. Markers may be useful when used alone but are not always reliable in identification. The number of species studied and identified by molecular markers is small at present. Conventional breeding methods are time-consuming and laborious. In the past two decades, promising advances have been made in taxonomy, phylogeny and breeding of Dendrobium species due to the intensive use of molecular markers. In this review, we focus on the main molecular techniques used in 121 published studies and discuss their importance and possibilities in speeding up the breeding of new cultivars and hybrids.


Asunto(s)
Dendrobium/clasificación , Dendrobium/genética , Variación Genética , Fitomejoramiento/métodos , Marcadores Genéticos , Especiación Genética , Genotipo , Filogenia , Investigación/tendencias , Selección Genética
15.
G3 (Bethesda) ; 5(11): 2341-55, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26355020

RESUMEN

Our ability to assemble complex genomes and construct ultradense genetic maps now allows the determination of recombination rates, translocations, and the extent of genomic collinearity between populations, species, and genera. We developed two ultradense genetic linkage maps for pepper from single-position polymorphisms (SPPs) identified de novo with a 30,173 unigene pepper genotyping array. The Capsicum frutescens × C. annuum interspecific and the C. annuum intraspecific genetic maps were constructed comprising 16,167 and 3,878 unigene markers in 2108 and 783 genetic bins, respectively. Accuracies of marker groupings and orders are validated by the high degree of collinearity between the two maps. Marker density was sufficient to locate the chromosomal breakpoint resulting in the P1/P8 translocation between C. frutescens and C. annuum to a single bin. The two maps aligned to the pepper genome showed varying marker density along the chromosomes. There were extensive chromosomal regions with suppressed recombination and reduced intraspecific marker density. These regions corresponded to the pronounced nonrecombining pericentromeric regions in tomato, a related Solanaceous species. Similar to tomato, the extent of reduced recombination appears to be more pronounced in pepper than in other plant species. Alignment of maps with the tomato and potato genomes shows the presence of previously known translocations and a translocation event that was not observed in previous genetic maps of pepper.


Asunto(s)
Capsicum/genética , Ligamiento Genético , Genoma de Planta , Recombinación Genética , Sintenía , Transcriptoma , Capsicum/clasificación , Puntos de Rotura del Cromosoma , Especiación Genética , Polimorfismo de Nucleótido Simple , Solanum/clasificación , Solanum/genética
16.
Mol Ecol ; 24(11): 2856-70, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25865063

RESUMEN

Secondary contact between closely related taxa routinely occurs during postglacial migrations. After initial contact, the location of hybrid zones may shift geographically or remain spatially stable over time in response to various selective pressures or neutral processes. Studying the extent and direction of introgression using markers having contrasted levels of gene flow can help unravel the historical dynamics of hybrid zones. Thanks to their contrasted maternal and paternal inheritance, resulting in different levels of gene flow for mitochondrial and chloroplast DNA (mtDNA and cpDNA), the Pinaceae stand out as a relevant biological model for this purpose. The objective of the study was to assess whether the hybrid zone between Abies balsamea and Abies lasiocarpa (two largely distributed Pinaceae) has moved or remained stable over time by analysing the distribution of cytoplasmic DNA variation as well as published palaeobotanical data. Interspecific gene flow was higher for cpDNA than mtDNA markers; hence, the geographic distribution of mitotypes was more congruent with species distributions than chlorotypes. This genetic signature was contrary to expectations under a moving hybrid zone scenario, as well as empirical observations in other conifers. Genetic evidence for this rare instance of stable hybrid zone was corroborated by the colonization chronology derived from published fossil data, indicating that the two fir species initially came into contact in the area corresponding to the current sympatric zone 11 kyr ago. While an explanatory analysis suggested the putative influence of various environmental factors on the relative abundance of cytoplasmic genome combinations, further research appears necessary to assess the role of both demographic history and selective factors in driving the dynamics of hybrid zones.


Asunto(s)
Abies/clasificación , Flujo Génico , Especiación Genética , Genética de Población , Hibridación Genética , Abies/genética , ADN de Cloroplastos/genética , ADN Mitocondrial/genética , ADN de Plantas/genética , Fósiles , Datos de Secuencia Molecular , América del Norte , Filogeografía , Polen/genética , Análisis de Secuencia de ADN
17.
Tsitologiia ; 57(1): 70-5, 2015.
Artículo en Ruso | MEDLINE | ID: mdl-25872378

RESUMEN

The medusa, Aurelia aurita (Scyphozoa, Cnidaria), is considered to be a cosmopolitan species with a worldwide distribution in most seas from the poles to the tropics. Cnidarian is thought to possess two tissue layers: endoderm (gastroderm) and ectoderm, which are separated by huge mesoglea in medusa. The basic morphology of medusa is similar in different populations. Previously we have determined a new protein "mesoglein" as one of the main components of mesoglea. Deduced amino acid sequence of mesoglein contains Zona Pellucida (ZP) domain. In this paper, we have comparied of mesoglein and its gene in medusa from three habitats (White Sea (WsA), Black Sea (BsA), Japonic Sea (JsA)). The set of the mesoglea protein bands after SDS-PAGE is similar in all samples. Nevertheless, JsA mesogleins' M(r) is 53-55 kDa, while WsA and BsA mesogleins have M(r) of 47 kDa. Antibodies raised against WsA mesoglein recognize only mesogleins with M(r) of 47 kDa, but not 53-55 kDa, both on immunoblot and immunocytochemistry. Mesogleal cells and elastic fibrils are stained intensively in the mesoglea both from WsA and BsA but not from JsA. The possibility of gene divergency was checked by PCR with primers specific for WsA mesoglein gene. PCR products of expected length obtained on polyA-cDNA template from mesogleal cells of WsA and BsA medusa but not on cDNA of JsA medusa. Our results evidence that there are two different species in genus Aurelia: Aurelia aurita inhabits White and Black Seas while Aurelia sp. inhabits Japonic Sea. This is consistent with findings of other recept molecular biological studies.


Asunto(s)
Especiación Genética , Proteínas/genética , Escifozoos/clasificación , Animales , Anticuerpos/química , Anticuerpos/aislamiento & purificación , Western Blotting , Ectodermo/ultraestructura , Endodermo/ultraestructura , Expresión Génica , Genética de Población , Cobayas , Inmunohistoquímica , Océanos y Mares , Reacción en Cadena de la Polimerasa , Proteínas/química , Escifozoos/genética , Escifozoos/ultraestructura
18.
Mol Phylogenet Evol ; 86: 24-34, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25772799

RESUMEN

Accurate species determination of plant pathogens is a prerequisite for their control and quarantine, and further for assessing their potential threat to crops. The family Peronosporaceae (Straminipila; Oomycota) consists of obligate biotrophic pathogens that cause downy mildew disease on angiosperms, including a large number of cultivated plants. In the largest downy mildew genus Peronospora, a phylogenetically complex clade includes the economically important downy mildew pathogens of spinach and beet, as well as the type species of the genus Peronospora. To resolve this complex clade at the species level and to infer evolutionary relationships among them, we used multi-locus phylogenetic analysis and species tree estimation. Both approaches discriminated all nine currently accepted species and revealed four previously unrecognized lineages, which are specific to a host genus or species. This is in line with a narrow species concept, i.e. that a downy mildew species is associated with only a particular host plant genus or species. Instead of applying the dubious name Peronospora farinosa, which has been proposed for formal rejection, our results provide strong evidence that Peronospora schachtii is an independent species from lineages on Atriplex and apparently occurs exclusively on Beta vulgaris. The members of the clade investigated, the Peronospora rumicis clade, associate with three different host plant families, Amaranthaceae, Caryophyllaceae, and Polygonaceae, suggesting that they may have speciated following at least two recent inter-family host shifts, rather than contemporary cospeciation with the host plants.


Asunto(s)
Especiación Genética , Peronospora/clasificación , Filogenia , Teorema de Bayes , Beta vulgaris/microbiología , ADN de Hongos/genética , Funciones de Verosimilitud , Modelos Genéticos , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Spinacia oleracea/microbiología
19.
J Evol Biol ; 27(12): 2706-18, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25403722

RESUMEN

There is ample evidence that host shifts in plant-feeding insects have been instrumental in generating the enormous diversity of insects. Changes in host use can cause host-associated differentiation (HAD) among populations that may lead to reproductive isolation and eventual speciation. The importance of geography in facilitating this process remains controversial. We examined the geographic context of HAD in the wide-ranging generalist yucca moth Prodoxus decipiens. Previous work demonstrated HAD among sympatric moth populations feeding on two different Yucca species occurring on the barrier islands of North Carolina, USA. We assessed the genetic structure of P. decipiens across its entire geographic and host range to determine whether HAD is widespread in this generalist herbivore. Population genetic analyses of microsatellite and mtDNA sequence data across the entire range showed genetic structuring with respect to host use and geography. In particular, genetic differentiation was relatively strong between mainland populations and those on the barrier islands of North Carolina. Finer scale analyses, however, among sympatric populations using different host plant species only showed significant clustering based on host use for populations on the barrier islands. Mainland populations did not form population clusters based on host plant use. Reduced genetic diversity in the barrier island populations, especially on the derived host, suggests that founder effects may have been instrumental in facilitating HAD. In general, results suggest that the interplay of local adaptation, geography and demography can determine the tempo of HAD. We argue that future studies should include comprehensive surveys across a wide range of environmental and geographic conditions to elucidate the contribution of various processes to HAD.


Asunto(s)
Adaptación Biológica/fisiología , Efecto Fundador , Especiación Genética , Mariposas Nocturnas/genética , Simbiosis/fisiología , Yucca/parasitología , Animales , Secuencia de Bases , Teorema de Bayes , Cartilla de ADN/genética , ADN Mitocondrial/genética , Variación Genética , Genética de Población , Geografía , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , North Carolina , Aislamiento Reproductivo , Análisis de Secuencia de ADN
20.
Am J Bot ; 101(8): 1375-87, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25156985

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: Amelanchier polyploid apomicts differ from sexual diploids in their more complex diversification, greater species problems, and geographic distribution. To understand these differences, we investigated the occurrence of polyploidy and frequency of apomixis. This research helps clarify species delimitation in an evolutionarily complex genus.• METHODS: We used flow cytometry to estimate genome size of 1355 plants. We estimated the frequency of apomixis from flow-cytometrically determined ploidy levels of embryo and endosperm and from a progeny study using RAPD markers. We explored relationships of triploids to other ploidy levels and of ploidy levels to latitude plus elevation.• KEY RESULTS: Diploids (32% of sample) and tetraploids (62%) were widespread. Triploids (6%) mostly occurred in small numbers with diploids from two or more species or with diploids and tetraploids. Seeds from diploids were 2% apomictic, the first report of apomixis in Amelanchier diploids. Seeds from triploids were 75% apomictic. We documented potential triploid bridge and triploid block from unbalanced endosperm and low pollen viability. Seeds from tetraploids were 97% apomictic, and tetraploids often formed microspecies. We did not find strong evidence for geographical parthenogenesis in North American Amelanchier. Most currently recognized species contained multiple ploidy levels that were morphologically semicryptic.• CONCLUSIONS: Documentation of numerous transitions from diploidy to polyploidy helps clarify diversification, geographic distribution, and the species problem in Amelanchier. Despite the infrequent occurrence of triploids, their retention of 25% sexuality and capacity for triploid bridge may be important steps between sexual diploids and predominantly apomictic tetraploids.


Asunto(s)
Apomixis , Biodiversidad , Especiación Genética , Dispersión de las Plantas , Ploidias , Rosaceae/fisiología , Cromosomas de las Plantas , Ecosistema , Endospermo , Genoma de Planta , América del Norte , Polen , Poliploidía , Reproducción/genética , Rosaceae/genética , Semillas , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA