Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 570
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Comput Math Methods Med ; 2022: 7174399, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242210

RESUMEN

The testicles and sperm are extremely susceptible to inflammation and oxidative stress. Although Zhibai Dihuang Pill (ZDP) has been reported to treat various infertilities including male infertility induced by Ureaplasma urealyticum (UU) infection, its mechanism is still poorly understood. This study is aimed at clarifying the underlying mechanism of ZDP to protect against UU-infected male infertility. We found that UU-infected infertile rats exhibited weight loss, reduced food intake, and decreased sperm count and vitality. The administration of ZDP improved the general state and sperm motility of rats. In addition, UU infection led to spermatogenesis disorders, impaired secretory function and blood-testis barrier (BTB) of Sertoli cells, and elevated inflammation and oxidative stress. As expected, ZDP suppressed inflammation and oxidative stress to alleviate spermatogenesis disorders. Our research showed that ZDP could improve spermatogenesis disorders and testicular function primarily through the mitogen-activated protein kinase (MAPK) signaling pathway. ZDP exerts its anti-inflammatory and antioxidant effects via the MAPK signaling pathway, thus playing an important role in ameliorating spermatogenesis failure and testicular dysfunction.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Infertilidad Masculina/tratamiento farmacológico , Enfermedades Testiculares/tratamiento farmacológico , Infecciones por Ureaplasma/tratamiento farmacológico , Ureaplasma urealyticum , Animales , Biología Computacional , Modelos Animales de Enfermedad , Humanos , Infertilidad Masculina/etiología , Infertilidad Masculina/metabolismo , Mediadores de Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Ratas , Ratas Sprague-Dawley , Espermatogénesis/efectos de los fármacos , Enfermedades Testiculares/etiología , Enfermedades Testiculares/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Infecciones por Ureaplasma/complicaciones , Infecciones por Ureaplasma/metabolismo
2.
J Ethnopharmacol ; 289: 115025, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35074455

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Roots of Argyreia nervosa (Burm.f.) Bojer is used traditionally as an aphrodisiac and mentioned in the indigenous system of medicine as spermatogenic. The roots of the plant are also used as bitter, tonic, and alternative. AIM OF THE STUDY: To study the effect of n-butanol fraction (BTF) and ethyl acetate fraction (ETF) of methanol extract prepared from the roots of Argyreia nervosa and scopoletin isolated from ETF on testosterone biosynthesis in testis and spermatogenesis using rats. MATERIALS AND METHODS: The effect of BTF, ETF, and scopoletin on the testosterone biosynthesis was evaluated by determining the alteration in expression of mRNA corresponding to steroidogenic enzymes and concentration of testosterone using TM-3 cell line. The ability of BTF and ETF in altering the level of testicular cholesterol and testosterone along with mRNA expression corresponding to 3ß-Hydroxy-Δ5-steroid dehydrogenase (3ß-HSD) and Acute Steroid Regulatory Protein (StAR) was evaluated using rats as experimental animals. The sperm concentration in the seminal fluid was determined, and histological studies of testicular tissues were also carried out. RESULTS: Test solutions containing BTF, ETF, and scopoletin showed a dose-dependent and statistically significant increase in the testosterone content when incubated with TM-3 cells. The test solutions also increased the fold expression of mRNA corresponding to StAR and 3ß-HSD enzymes from TM-3 cells. BTF and ETF elevated testicular testosterone levels by 3.57 and 3.84-fold as compared to control animals, while the fractions showed 9.04 and 10.41-fold alteration in expression of mRNA corresponding to StAR, respectively. BTF and ETF altered the expression of mRNA corresponding to 3ß-HSD by 13.43 and 15.04-fold in testicular tissues; moreover, they elevated the activity of 3ß-HSD by 7.11 and 7.73 fold, respectively. The animals treated with BTF and ETF showed increased sperm concentration. Histological observations showed that the lumen of seminiferous tubules was densely populated with spermatozoa and Leydig cells were intensely stained. Extract prepared from fruits of Tribulus terrestris Linn and testosterone served as positive controls. CONCLUSION: BTF, ETF, and scopoletin could promote testosterone biosynthesis by elevating mRNA expression corresponding to StAR, 3ß-HSD, and by increasing 3ß-HSD activity in the testicular tissues. Elevated testosterone concentration in testis promoted spermatogenesis. The studies provided the probable mechanism through which the roots of A. nervosa act as spermatogenic.


Asunto(s)
Convolvulaceae/química , Extractos Vegetales/farmacología , Espermatogénesis/efectos de los fármacos , Testosterona/biosíntesis , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Extractos Vegetales/administración & dosificación , Raíces de Plantas , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Testículo/efectos de los fármacos , Testículo/metabolismo
3.
Life Sci ; 290: 120025, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637798

RESUMEN

BACKGROUND: Trazadone is an antidepressant and may affect reproductive hormones and spermatogenesis. l-carnitine is an amino acid that exhibits antioxidant actions. This study was designed to investigate the potential protective effects of l-carnitine against trazadone-induced testicular toxicity in male rats and the possible underlying mechanisms such as oxidative stress, inflammation and autophagy. METHODS: thirty-two male Wistar rats were divided randomly into four equal groups (n = 8). Testicular damage was induced by oral administration of Trazadone (TRZ, 20 mg/kg/day, p.o.) for four weeks (TRZ group). l-carnitine (LC, 200 mg/kg/day, p.o.) was applied for four weeks (LC group). LC + TRZ group administered the same doses of LC and TRZ concomitantly. The control group received distilled water (as vehicle). RESULTS: the protective treatment with LC attenuated the decline of sperm count and motility resulted from trazadone administration. Moreover, LC ameliorated trazadone increased lipid peroxidation (MDA) and reduction of total thiol and catalase activity. LC modulated the elevation in tumor necrosis factor- α (TNF-α), and increased the expression of autophagy related genes Becline-1, ATG 5 and ATG-12 in rat testes. Serum level of FSH, LH and total testosterone were increased significantly (p < 0.001) in LC + TRZ group. Histopathological findings further supported the protective effects of LC against trazadone -induced testicular injury by increasing free sperms within the lumen of spermatogenic cells and improving testicular degeneration. CONCLUSION: These findings supported the protective effects of l-carnitine on rat testes due to suppression of oxidative stress, inflammation and enhancing autophagy. l-carnitine may be recommended as adjuvant therapy to trazadone treatment.


Asunto(s)
Carnitina/farmacología , Testículo/efectos de los fármacos , Trazodona/efectos adversos , Animales , Antioxidantes/farmacología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Carnitina/metabolismo , Inflamación/fisiopatología , Peroxidación de Lípido , Masculino , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Recuento de Espermatozoides/métodos , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testículo/metabolismo , Trazodona/farmacología , Trazodona/toxicidad
4.
J Anim Physiol Anim Nutr (Berl) ; 106(2): 266-275, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34212433

RESUMEN

The present work aimed to explore the influence and underlying mechanisms involving arginine in testicular development in boars. To this end, thirty 30-day-old male Duroc piglets (7.00 ± 0.30 kg) were randomly sorted into two groups, maintained on either a basal diet (CON, n = 15) or a diet supplemented with 0.8% arginine (ARG, n = 15). Blood and testicular samples were collected during the experimental period to analyse amino acid composition and arginine metabolite levels. The results showed that dietary supplementation with arginine increased number of spermatogonia and height of the seminiferous epithelium (p < 0.05). Sperm density, total number and effective number of sperm of the boars in the ARG group increased significantly compared with those in the CON group (p < 0.05). Although arginine supplementation did not affect plasma amino acid levels, testicular arginine levels in 150-day-old boars exhibited a significant increase (p < 0.05). The level of serum nitric oxide (NO) and activity of nitric oxide synthase (NOS) also increased in 150-day-old boars in the ARG group (p < 0.05). Interestingly, dietary supplementation with arginine increased testicular levels of putrescine in 150-day-old boars (p < 0.05). These results indicated that arginine supplementation increased serum NO levels and testicular arginine and putrescine abundance, thereby improving testicular development and semen quality in boars.


Asunto(s)
Arginina , Análisis de Semen , Testículo , Alimentación Animal/análisis , Animales , Arginina/análisis , Arginina/sangre , Arginina/farmacología , Suplementos Dietéticos , Masculino , Óxido Nítrico/análisis , Óxido Nítrico/sangre , Putrescina/análisis , Putrescina/sangre , Análisis de Semen/veterinaria , Espermatogénesis/efectos de los fármacos , Porcinos , Testículo/química , Testículo/efectos de los fármacos , Testículo/crecimiento & desarrollo , Testículo/metabolismo
5.
J Biochem Mol Toxicol ; 36(3): e22970, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34820939

RESUMEN

Cisplatin is widely used as one of the most effective anticancer agents in the treatment of some neoplasms. Reproductive toxicity is the most common outcome associated with cisplatin testicular damage. Alternative natural medicines for treating male testicular disorders and infertility have received extensive attention in research. Natural products, medicinal herbs, and their secondary metabolites have been shown as promising agents in the management of testicular damage induced by chemotherapy drugs. This study aimed to review the research related to natural substances that are promising in mitigation of the cisplatin-induced toxicity in the reproductive system. PubMed and Scopus were searched for studies on various natural products for their potential protective property against reproductive toxicity induced by cisplatin from 2000 to 2020. Eligibility was checked based on selection criteria. Fifty-nine articles were included in this review. Mainly in animal studies, several natural agents have positively affected cisplatin-reproductive-toxicity factors, including reactive oxygen species, inflammatory mediators, DNA damage, and activation of the mitochondrial apoptotic pathway. Most of the natural agents were investigated in short-term duration and high doses of cisplatin exposure, considering their antioxidant activity against oxidative stress. Considering antioxidant properties, various natural products might be effective for the management of cisplatin reproductive toxicity. However, long-term recovery of spermatogenesis and management of low-dose-cisplatin toxicity should be considered as well as the bioavailability of these agents before and after treatment with cisplatin without affecting its anticancer activity.


Asunto(s)
Antineoplásicos/efectos adversos , Productos Biológicos/uso terapéutico , Cisplatino/efectos adversos , Espermatogénesis/efectos de los fármacos , Testículo/metabolismo , Animales , Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Daño del ADN , Humanos , Masculino , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Testículo/lesiones
6.
Braz. j. biol ; 82: 1-11, 2022. ilus, tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468575

RESUMEN

Cadmium (Cd) is one of the major toxicants, which affects human health through occupational and environmental exposure. In the current study, we evaluated the protective effects of morel mushrooms against Cd-induced reproductive damages in rats. For this purpose, 30 male rats were divided into 6 groups (n=5/group), the first group served as the control group, second group was treated with an intraperitoneal (i.p) injection of 1 mg/kg/day of Cd. Third and fourth groups were co-treated with 1 mg/kg/day of Cd (i.p) and 10 and 20 mg/kg/day of morel mushroom extract (orally) respectively. The final 2 groups received oral gavage of 10 and 20 mg/kg/day of morel mushroom extract alone. After treatment for 17 days, the animals were euthanized, and testes and epididymis were dissected out. One testis and epididymis of each animal were processed for histology, while the other testis and epididymis were used for daily sperm production (DSP) and comet assay. Our results showed that Cd and morel mushrooms have no effect on animal weight, but Cd significantly decreases the DSP count and damages the heritable DNA which is reversed in co-treatment groups. Similarly, the histopathological results of testes and epididymis show that morel mushrooms control the damage to these tissues. Whereas the morel mushroom extract alone could enhance the production of testosterone. These results conclude that morel mushrooms not only control the damage done by Cd, but it could also be used as a protection mechanism for heritable DNA damage.


O cádmio (Cd) é um dos principais tóxicos, que afeta a saúde humana por meio da exposição ocupacional e ambiental. No presente estudo, avaliamos os efeitos protetores dos cogumelos morel contra os danos reprodutivos induzidos pelo Cd em ratos. Para tanto, 30 ratos machos foram divididos em 6 grupos (n = 5 / grupo); o primeiro grupo serviu de controle, o segundo grupo foi tratado com injeção intraperitoneal (i.p) de 1 mg / kg / dia de Cd. O terceiro e o quarto grupos foram cotratados com 1 mg / kg / dia de Cd (i.p) e 10 e 20 mg / kg / dia de extrato de cogumelo morel (por via oral), respectivamente. Os dois grupos finais receberam gavagem oral de 10 e 20 mg / kg / dia de extrato de cogumelo morel sozinho. Após o tratamento por 17 dias, os animais foram sacrificados e os testículos e o epidídimo foram dissecados. Um testículo e epidídimo de cada animal foram processados para histologia, enquanto o outro testículo e epidídimo foram usados para produção diária de esperma (DSP) e ensaio cometa. Nossos resultados mostraram que os cogumelos Cd e morel não têm efeito sobre o peso do animal, mas o Cd diminui significativamente a contagem de DSP e danifica o DNA hereditário, que é revertido em grupos de cotratamento. Da mesma forma, os resultados histopatológicos dos testículos e do epidídimo mostram que os cogumelos morel controlam os danos a esses tecidos. Considerando que o extrato de cogumelo morel sozinho pode aumentar a produção de testosterona. Esses resultados concluem que os cogumelos morel não apenas controlam os danos causados pelo Cd, mas também podem ser usados como um mecanismo de proteção para danos hereditários ao DNA.


Asunto(s)
Masculino , Animales , Ratas , ADN , Cadmio/toxicidad , Espermatogénesis/efectos de los fármacos , Reproducción/efectos de los fármacos , Reproducción/genética , Fitoterapia
7.
Int J Biol Macromol ; 193(Pt A): 778-788, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34743938

RESUMEN

A component from ginseng in which sugars and proteins are covalently bound is named Panax ginseng glycoproteins (PGG). The contents of neutral carbohydrate, acid carbohydrate, and protein were 45.4%, 4.3% and 51.1%. The average molecular weight was 12,690 Da. The structure analysis showed that PGG had more than 1100 glycoproteins with molecular weight between 308.13 Da and 9991.52 Da, it was divided into two parts: long chain structure and short chain structure. These two parts were compared in molecular mass, number of amino acids, theoretical pI, instability index, aliphatic index and GRAVY. The in vivo distribution test of mice showed that PGG was enriched in mice testis, testicular tissue sections showed strong fluorescence signal expression on the surface of seminiferous tubules. We used cyclophosphamide (CP) to establish a mice model of oligoasthenozoospermia to investigate the anti-oligoasthenozoospermic effect of PGG. The results showed that PGG increased the levels of sex hormones T, FSH, PRL and sperm quality. Histopathology demonstrated that PGG promoted the differentiation process. The organ coefficient indicated that PGG had no obvious toxic and side effects. And the mechanism may be to affect the expression of protein levels such as p-ERK/ERK, p-AKT/AKT, Caspase-3, Bcl-2 and Bax. Therefore, PGG has the potential to develop into drugs for improving spermatogenic disorders.


Asunto(s)
Panax/metabolismo , Extractos Vegetales/farmacología , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Animales , Animales no Consanguíneos , Masculino , Ratones
8.
Sci Rep ; 11(1): 18824, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552120

RESUMEN

Akt and nuclear factor kappa B (NF-κB) signaling pathways are involved in germ cell apoptosis and inflammation after testicular heat stress (THS). We observed that after THS induced by the exposure of rat testes to 43 °C for 20 min, their weight decreased, the fraction of apoptotic testicular germ cells significantly increased, and the proliferation of germ cells was inhibited. In addition, THS lowered serum testosterone (T) level, whereas the levels of follicle stimulating hormone and luteinizing hormone were not significantly changed. The ultrastructure of the seminiferous tubules became abnormal after THS, the structure of the blood-testis barrier (BTB) became loose, and the Sertoli cells showed a trend of differentiation. The level of phosphorylated Akt was reduced, whereas the amount of phosphorylated NF-κB p65 was augmented by THS. Wuzi-Yanzong (WZYZ), a classic Chinese medicine prescription for the treatment of male reproductive dysfunctions, alleviated the changes induced by THS. In order to determine the mechanism of action of WZYZ, we investigated how this preparation modulated the levels of T, androgen receptor (AR), erythropoietin (EPO), EPO receptor, and Tyro-3, Axl, and Mer (TAM) family of tyrosine kinase receptors. We found that WZYZ activated the Akt pathway, inhibited the Toll-like receptor/MyD88/NF-κB pathway, and repaired the structure of BTB by regulating the levels of T, AR, TAM receptors, and EPO. In conclusion, these results suggest that WZYZ activates the Akt pathway and inhibits the NF-κB pathway by acting on the upstream regulators, thereby improving spermatogenesis deficit induced by THS.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Animales , Hormona Folículo Estimulante/sangre , Respuesta al Choque Térmico , Hormona Luteinizante/sangre , Masculino , Ratas , Ratas Wistar , Células de Sertoli/efectos de los fármacos , Testosterona/sangre
9.
Biomed Pharmacother ; 143: 112201, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34560547

RESUMEN

Methotrexate (MTX) is commonly used as a therapeutic agent in the treatment of malignancies and autoimmune disorders. Risk of subsequent infertility following MTX administration has been reported as a significant side effect due to testicular toxicity. The aim of the study was to evaluate the modulatory effects of Ginkgo biloba (standardized extract, EGb 761) on MTX-induced testicular oxidative stress, energy deficits and spermatogenic status in rats. All groups received intraperitoneal injection of MTX (0.5 mg/kg) twice weekly for four weeks except the control group that received the corresponding vehicles. Other groups received oral EGb761, at doses 25, 50 or 100 mg/kg/day, for four weeks, concurrently with MTX. Blood and semen sampling followed by testis dissection were performed 24 h after last EGb 761 treatment. Semen was examined for sperm progressive motility, percent of normal spermatozoa and sperm cell concentration as well as seminal plasma essential and non-essential amino acids. Serum LH, FSH and testosterone were detected as well as testicular MDA, GSH, GSSG, TNF-α, IL-1ß, IL-6, NF-κB and the nuclear, cytoplasmic and mRNA expression levels of Nrf-2 besides the testicular cell energy; AMP, ADP and ATP. Histopathological studies of interstitial fibrosis and the severity of germ cell degeneration were also conducted. MTX induced significant decline in sperm quality along with decreased essential and non-essential amino acids in seminal plasma. MTX reduced serum FSH, LH and testosterone as well as testicular ATP, GSH and Nrf2, while increased levels of testicular ADP, AMP, MDA, GSSG and TNF-α. Results were confirmed by prominent interstitial fibrosis and severe germ cell degeneration in MTX group. Concurrent treatment with EGb 761 alleviated MTX-induced testicular insult evidenced by amelioration of oxidative stress biomarkers, energy functions, seminal sperms abnormalities and spermatogenesis status. The present study suggests a beneficial role of EGb 761 in MTX-induced testicular injury and subsequent distortion of spermatogenesis.


Asunto(s)
Antioxidantes/farmacología , Metabolismo Energético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Enfermedades Testiculares/prevención & control , Testículo/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Fibrosis , Ginkgo biloba , Masculino , Metotrexato , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ratas Wistar , Espermatozoides/metabolismo , Espermatozoides/patología , Enfermedades Testiculares/inducido químicamente , Enfermedades Testiculares/metabolismo , Enfermedades Testiculares/patología , Testículo/metabolismo , Testículo/patología
10.
Reprod Biol Endocrinol ; 19(1): 120, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344365

RESUMEN

BACKGROUND: This study aimed to detect the effect of angiotensin receptor 1 (AT1) knock out (KO) on spermatogenesis and hypothalamic-pituitary-gonadal (HPG) axis hormone expression. METHODS: Normal C57BL/6 male mice were used as control group or treated with angiotensin receptor blocker, in addition heterozygous ± AT1KO mice were generated. After caged at a ratio of 2 to 1 with females, pregnancy rates of female mice were determined by detection of vaginal plugs. Deformity rate of spermatozoa was evaluated by eosin staining and morphology evaluation. The AT1 mRNA expression in the testes of male ± AT1KO mice was detected by quantitative real-time polymerase chain reaction (QRT-PCR). Serum GnRH level was determined by ELISA. RESULTS: Compared to control, ± AT1KO mice showed reduced expression of AT1 in testes, pituitary and hypothalamus. In addition, decreased level of GnRH, but not follicle stimulating hormone (FSH) or luteinizing hormone (LH), in ± AT1KO mice was detected. Treatment with angiotensin receptor blocker (ARB) did not have significant effects on HPG hormones. ± AT1KO mice exhibited male infertility and significant abnormality of sperm morphology. CONCLUSION: Reduced AT1 knockout resulted in male infertility, potentially by inducing abnormal spermatogenesis. Both testis and HPG axis signaling may be involved.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Infertilidad Masculina/genética , Receptor de Angiotensina Tipo 1/genética , Espermatogénesis/genética , Testículo/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Hormona Liberadora de Gonadotropina/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Infertilidad Masculina/metabolismo , Losartán/farmacología , Masculino , Ratones , Ratones Noqueados , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Espermatogénesis/efectos de los fármacos , Testículo/efectos de los fármacos
11.
Reprod Sci ; 28(11): 3123-3136, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34231174

RESUMEN

Exposure to heat in the male reproductive system can lead to transient periods of partial or complete infertility. The current study aimed to examine the beneficial effects of  Fisetin against spermatogenic disorders in mice affected by long-term scrotal hyperthermia. For this purpose, hyperthermia was induced daily by exposure to the temperature of 43 °C for 20 min for 5 weeks. Except for the Healthy group, six other groups were exposed to heat stress: two treated groups including Preventive and Curative which received oral administration of fisetin (10 mg/kg/day) starting immediately before heat exposure and 15 consecutive days after the end of the heat exposure, respectively. And for each treated group, two groups including Positive Control (Pre/Cur+PC group) and vehicle (Pre/Cur+DMSO group) were considered. Our results showed that the testicular volume; the density of spermatogonia, primary spermatocyte, round spermatid, and Sertoli and Leydig cells; and sperm parameters, as well biochemical properties of the testis tissue, were remarkably higher in both Preventive and Curative groups compared to the other hyperthermia-induced groups and were highest in Preventive ones. Unlike the c-kit gene transcript which was significantly increased in the  Fisetin treatment groups (specially the Preventive group), the expression of HSP72 and NF-kß genes, Caspase3 protein, and DFI in sperm cells were significantly more decreased in Preventive and Curative groups compared to other hyperthermia-induced groups and were lowest in Preventive ones. Overall,  Fisetin exerts preventive and curative effects against spermatogenic disorders induced by long-term scrotal hyperthermia.


Asunto(s)
Flavonoles/farmacología , Hipertermia Inducida/efectos adversos , Escroto/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Animales , Hipertermia Inducida/métodos , Hipertermia Inducida/tendencias , Masculino , Ratones , Sustancias Protectoras/farmacología , Escroto/metabolismo , Escroto/patología , Análisis de Semen/métodos , Análisis de Semen/tendencias , Espermatogénesis/fisiología , Espermatozoides/metabolismo , Espermatozoides/patología , Factores de Tiempo
12.
J Ethnopharmacol ; 280: 114440, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34293456

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Wu-Zi-Yan-Zong-Wan (WZYZW) is a classical traditonal Chinese herbal formula and a Chinese patent medicine used to treat male infertility. However, the chemical components of WZYZW and its mechanism are not yet fully clarified. AIM OF THE STUDY: The purpose of this study is to observe the effect and underlying mechanism of WZYZW on ameliorating blood-testis barrier (BTB) dysfunction in mice with spermatogenic dysfunction induced by administration of Tripterygium wilfordii Hook. f. multiglycosides (GTW). MATERIALS AND METHODS: WZYZW was administered by gavage to mice with GTW-induced spermatogenic dysfunction (kidney essence deficiency pattern) for 40 days. Testis tissues were obtained for subsequent histopathological analysis. Biotin tracing was used to evaluate the permeability of Sertoli cell tight junctions. The levels of proinflammatory cytokines including interleukin (IL)-6, IL-17A, IL-1α and tumor necrosis factor (TNF)-α were analyzed by ELISA. The expression levels of proteins related to tight junction including ZO-1, JAM-A and occludin were analyzed by western blotting. The ultrastructures of tight junctions were observed by transmission electron microscopy. RESULTS: WZYZW ameliorated GTW-induced testicular spermatogenic dysfunction. Levels of IL-6, IL-17A, IL-1α, and TNF-α in the groups receiving low, medium, and high doses of WZYZW decreased in a dose-dependent manner. WZYZW impeded a biotin tracer from permeating the BTB, protecting its integrity in GTW-treated mice. In addition, our results showed no significant changes in the protein expressions of ZO-1, JAM-A, and occludin after WZYZW administration compared with the GTW group. Meanwhile, WZYZW exhibited a linear arrangement and restored the typical "sandwich" structure of BTB. No acute poisoning incidences were observed in all groups during the experiment. CONCLUSIONS: Our findings demonstrate that WZYZW may ameliorate some GTW-induced BTB dysfunction, possibly by regulating proinflammatory cytokine levels. In vitro studies on the regulation of BTB permeability by WZYZW and its active components are further required.


Asunto(s)
Barrera Hematotesticular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Glicósidos/toxicidad , Inflamación/metabolismo , Testículo/metabolismo , Tripterygium/química , Animales , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Espermatogénesis/efectos de los fármacos , Testículo/irrigación sanguínea
13.
J Ethnopharmacol ; 280: 114443, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34302943

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Wuzi Yanzong pill (WZYZP) is a classical traditional Chinese medicine (TCM) formula originated from the Tang dynasty. WZYZP has a long history of use for reinforcing kidney and alleviating male infertility in China. AIM OF THE STUDY: The effect of WZYZP on male infertility and the mechanism underlying this effect was not clarified clearly. Therefore, this study aimed to investigate the protective effect of WZYZP in experimental spermatogenesis disorder via in vivo and in vitro studies, to promote the use of this formula for the treatment of spermatogenesis disorder. MATERIAL AND METHODS: Male SD rats were exposed to tripterygium glycosides to induce experimental spermatogenesis disorder, and WZYZP was subsequently administrated at different dosages for treatment. Sperm counts, sperm motility, and serum hormone levels were detected. HE staining and TUNEL staining were performed to evaluate the pathological lesions and apoptosis of testes, respectively. Next, germ cells were isolated from spermatogenesis disorder-model rats and treated with WZYZP- containing serum at different concentrations. CCK-8 assay and flow cytometry assay were performed to detect cell proliferation and apoptosis. Immunofluorescence assay, qRT-PCR and Western blotting analyses were performed to detect the expression of Beclin 1, LC3 and TGF-ß-PI3k/AKT-mTOR pathway - related factors, including TGF-ß, PI3K, AKT, mTOR, 4 EBP-1 and p70S6K. RESULTS: In vivo experiments showed that WZYZP protected against spermatogenesis disorder in model rats by improving sperm count and motility, as well as restoring serum hormone levels. HE and TUNEL staining demonstrated that the pathological injuries and cell apoptosis in testes of the model rats were alleviated by WZYZP treatment. Moreover, in vitro experiments of germ cells isolated from spermatogenesis disorder-model rats showed that WZYZP treatment increased the cell proliferation, inhibited cell apoptosis and autophagy. qRT-PCR and Western blotting assay results showed that this protective effect was associated with the regulation of the TGF-ß/PI3K/AKT/mTOR signaling pathway. The expression levels of p-PI3K/PI3K, p-AKT/AKT, p-mTOR/mTOR, 4 EBP-1 and p70S6K were increased, while TGF-ß was inhibited in the WZYZP treated groups. CONCLUSION: The results showed that WZYZP could protect against experimental spermatogenesis disorder by increasing the germ cell proliferation and inhibiting their apoptosis. Our support the clinical use of this formula for the management of spermatogenesis disorder.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Infertilidad Masculina/tratamiento farmacológico , Espermatogénesis/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Modelos Animales de Enfermedad , Células Germinativas/citología , Células Germinativas/efectos de los fármacos , Masculino , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Motilidad Espermática/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Testículo/efectos de los fármacos
14.
Physiol Res ; 70(4): 591-603, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34062077

RESUMEN

Arsenic trioxide (As2O3) poisoning and associated potential lesions are of a global concern. Inversely, riboflavin (vitamin B2, VB2) as a component of flavoproteins could play a vital role in the spermatogenic enzymatic reactions. Thus, this research aimed to explore potential beneficial roles of VB2 during As2O3-injured-toxicity. Rats were randomly allocated into 4 groups (n=8/group) and challenged as follows (for 30 days continuously): Group 1 received normal saline; Group 2 was treated with 3 mg As2O3/L; Group 3 received 40 mg VB2/L; Group 4 received 3 mg As2O3/L + 40 mg VB2/L. Both As2O3 and VB2 were dissolved in deionized water. Malondialdehyde (MDA), Glutathione Peroxidase (GSH-Px), Superoxide dismutase (SOD), and Catalase (CAT) were assessed for the oxidative profile, while TAS (Total Antioxidative Status) levels were evaluated for the antioxidant system, in both serum and testicular tissue. P<0.05 was considered statistically significant. The results show that As2O3 significantly decreased the body weight, testicular weight and testis volume, semen quality and testicular cell count (p<0.05). Furthermore, MDA content in the testicular tissue of the As2O3 group rats was significantly higher in comparison to the vehicle group (p<0.05). Likewise, TAS and the activities of GSH-Px, CAT and SOD were reduced (p<0.05) when compared to the control. As(2)O(3) induced testicular damage and seminiferous tubular atrophy. Monodansylcadaverine assays mirrored the histopathology observations. Meanwhile, As2O3 upregulated the expression of mitophagy-related genes including PINK1, Parkin, USP8, LC3-I, Fis1 and Mfn2. The p38 gene, responsible to stress stimuli, was also upregulated by As2O3 administration. Meanwhile, exposure to VB2 led to a significant decrease of the expression levels of mitophagy related genes. Our study revealed that VB2 supplementation protected testicular structures against As2O3-induced injury via a dual inhibition of oxidative changes and a regulation of the PINK1-mediated pathway.


Asunto(s)
Antioxidantes/farmacología , Trióxido de Arsénico/toxicidad , Estrés Oxidativo/efectos de los fármacos , Proteínas Quinasas/metabolismo , Riboflavina/farmacología , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Animales , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Masculino , Mitofagia/efectos de los fármacos , Proteínas Quinasas/genética , Ratas Wistar , Transducción de Señal , Espermatozoides/enzimología , Espermatozoides/patología , Testículo/enzimología , Testículo/patología
15.
Phytomedicine ; 88: 153596, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34092456

RESUMEN

BACKGROUND: Azadirachta indica A. Juss. is an Indian medicinal plant with innumerable pharmacological properties. Studies have proven that the phytochemicals from neem possess remarkable contraceptive abilities with limited knowledge on its mechanism of action. PURPOSE: The present review aims to summarize the efficiency of A. indica treatment as a contraceptive. METHODS: The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were used. Published scientific articles on antifertility, antispermatogenic, antiovulation, hormone altering, contraceptive, and abortifacient activities of A. indica were collected from reputed Journals from 1980 to 2020 using electronic databases. Specific keywords search was completed to collect numerous articles with unique experiment design and significant results. This was followed by the selection of the requisite articles based on the criteria designed by the authors. Data extraction was based on the common research elements included in the articles. RESULTS: A total of 27 studies were considered for reviewing, which included key pharmacological investigations. In the beginning, authors evaluated a number of publications on the contraceptive properties of A. indica, in which it was revealed that most of the publications were made between 2005 and 2009. All the collected articles were categorised and reviewed as antifertility, antispermatogenic, antiovulation, hormone altering, contraceptive, and abortifacient. Authors also assessed studies based on the plant parts used for pharmacological evaluations including leaves, seeds, stem-bark, and flowers. The article was primarily divided into different sections based on the previous works of authors on phytochemistry and pharmacological review articles. CONCLUSION: Although A. indica is not reported with the complete alleviation of reproductive system in both male and female animal models, studies have proven its efficacy as a contraceptive. Extracts and phytochemicals from neem neither reduced the libido nor retarded the growth of secondary sexual characters, thus indicating only a temporary and reversible contraceptive activity. However, there is a dearth for clinical studies to prove the efficacy of A. indica as a herbal contraceptive.


Asunto(s)
Azadirachta/química , Anticonceptivos/farmacología , Abortivos/química , Abortivos/farmacología , Animales , Anticonceptivos Femeninos/química , Anticonceptivos Femeninos/farmacología , Medicina Basada en la Evidencia , Femenino , Flores/química , Humanos , Masculino , Fitoquímicos/análisis , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Plantas Medicinales/química , Semillas/química , Espermatogénesis/efectos de los fármacos
16.
Biomed Pharmacother ; 139: 111514, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33951576

RESUMEN

Male immune infertility is a kind of disease that damages family life and happiness. The development of novel methods treating male immune infertility is of great significance. This study aimed to investigate the therapeutic effects of Chinese medicine Xiaokang Liuwei Dihuang decoction on immune infertility of male rats and explored the involved mechanisms. Model rats were established by lipopolysaccharide (LPS) injection. Anti-sperm antibody (AsAb) was detected by ELISA assay and testicular cell apoptosis was evaluated by TUNEL staining to verify the successful model establishment and screen suitable doses of Xiaokang Liuwei Dihuang decoction. Thirty rats were then divided into five groups (n = 6 per group): Control, LPS, Xiaokang Liuwei Dihuang decoction (15.12 g/kg, 30.24 g/kg and 45.36 g/kg). Results of HE staining showed that compared with LPS group, Xiaokang Liuwei Dihuang decoction treatments gradually improved the morphology of seminiferous tubules and elevated the number of spermatogenic cells as the doses increased. The sperm number and the levels of testosterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH) in the serum of 15.12 g/kg, 30.24 g/kg and 45.36 g/kg Xiaokang Liuwei Dihuang decoction groups were much higher than those in LPS group. Results of TUNEL staining, ELISA assay and western blot showed that compared with LPS group, the testicular cell apoptosis and the levels of interleukin 1ß (IL-1ß), tumor necrosis factor α (TNF-α), AsAb, malondialdehyde (MDA) and toll-like receptor 2 (TLR2) in the testicular tissue significantly decreased in three Xiaokang Liuwei Dihuang decoction groups. Compared with LPS group, Bax expression in the 30.24 g/kg and 45.36 g/kg Xiaokang Liuwei Dihuang decoction groups was significantly down-regulated as well. In conclusion, Xiaokang Liuwei Dihuang decoction might ameliorate the immune infertility of male rats induced by LPS through regulating the levels of sex hormones, reactive oxygen species, pro-apoptotic and immune factors.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/biosíntesis , Medicamentos Herbarios Chinos/uso terapéutico , Hormonas Esteroides Gonadales/metabolismo , Infertilidad Masculina/tratamiento farmacológico , Infertilidad Masculina/inmunología , Especies Reactivas de Oxígeno/metabolismo , Animales , Autoanticuerpos/análisis , Factores Inmunológicos/metabolismo , Infertilidad Masculina/inducido químicamente , Lipopolisacáridos , Masculino , Ratas , Túbulos Seminíferos/citología , Túbulos Seminíferos/efectos de los fármacos , Túbulos Seminíferos/metabolismo , Recuento de Espermatozoides , Espermatogénesis/efectos de los fármacos , Espermatozoides/inmunología , Testículo/citología , Testículo/efectos de los fármacos
17.
Mol Reprod Dev ; 88(6): 405-415, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34032349

RESUMEN

The effect of stress on male fertility is a widespread public health issue, but less is known about the related signaling pathway. To investigate this, we established a hypercortisolism mouse model by supplementing the drinking water with corticosterone for four weeks. In the hypercortisolism mice, the serum corticosterone was much higher than in the control, and serum testosterone was significantly decreased. Moreover, corticosterone treatment induced decrease of sperm counts and increase of teratozoospermia. Increased numbers of multinucleated giant cells and apoptotic germ cells as well as downregulated meiotic markers suggested that corticosterone induced impaired spermatogenesis. Further, upregulation of macrophage-specific marker antigen F4/80 as well as inflammation-related genes suggested that corticosterone induced inflammation in the testis. Lactate content was found to be decreased in the testis and Sertoli cells after corticosterone treatment, and lactate metabolism-related genes were downregulated. In vitro phagocytosis assays showed that the phagocytic activity in corticosterone-treated Sertoli cells was downregulated and accompanied by decreased mitochondrial membrane potential, while pyruvate dehydrogenase kinase-4 inhibitor supplementation restored this process. Taken together, our results demonstrated that dysfunctional phagocytosis capacity and lactate metabolism in Sertoli cells participates in corticosterone-induced impairment of spermatogenesis.


Asunto(s)
Glucocorticoides/toxicidad , Células de Sertoli/fisiología , Espermatogénesis/efectos de los fármacos , Animales , Proteínas de Unión al Calcio/análisis , Corticosterona/toxicidad , Síndrome de Cushing/sangre , Síndrome de Cushing/inducido químicamente , Síndrome de Cushing/fisiopatología , Ácido Dicloroacético/farmacología , Hormona Folículo Estimulante/sangre , Ácido Láctico/metabolismo , Hormona Luteinizante/sangre , Masculino , Meiosis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Orquitis/inducido químicamente , Orquitis/metabolismo , Fagocitosis/efectos de los fármacos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/análisis , Células de Sertoli/metabolismo , Recuento de Espermatozoides , Espermatozoides/patología , Testículo/metabolismo , Testosterona/sangre
18.
J Ethnopharmacol ; 275: 114139, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33894286

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetes mellitus (DM), as a multiorgan syndrome, is an endocrine and metabolic disorder that is associated with male reproductive system dysfunction and infertility. Safflower (Carthamus tinctorius L.) as an herbal remedy improves DM and infertility-related disorders. The anti-hypercholesterolemic, anti-inflammatory, and antioxidative properties of this herb have been well documented, but its role in testosterone production, male reproductive system and zinc homeostasis has not been fully illustrated. AIM OF THE STUDY: This study aimed to investigate the preventive and therapeutic properties of different doses of safflower seed oil against reproductive damage caused by type II DM by investigating zinc element homeostasis, inflammation and oxidative damage in testis tissue and their relationship with testosterone production and sperm parameters. MATERIALS AND METHODS: Eighty adult male Sprague-Dawley rats were randomly divided into eight groups and treated daily for 12 and 24 weeks in protective and therapeutic studies, respectively. Type II DM was induced by a High Fat Diet (HFD) in normoglycemic rats for three months. At the end of each study, serum level of glucose, testosterone, gonadotropins, TNF-α, insulin, and leptin were measured. Moreover, antioxidant enzymes activity, lipid peroxidation, zinc and testosterone along with the expression of Nrf-2, NF-κB, TNF-α, StAR, P450scc, and 17ßHSD3 genes in the testis were detected. RESULTS: After the intervention, the activity of antioxidant enzymes and the level of testosterone and gonadotropins significantly decreased in the rats with DM in comparison to the others. However, lipid peroxidation and serum level of insulin, leptin and TNF-α increased and the testicular level of zinc significantly changed in the rats with DM compared to the control groups (p < 0.05). The gene expression of NF-κB and TNF-α were also significantly increased and the gene expression of Nrf2, StAR, P450scc and 17ßHSD3 were decreased in the testis of diabetic rats (p < 0.05). The results showed that pretreatment and treatment with safflower seed oil could improve these parameters in diabetic rats compared with untreated diabetic rats (p < 0.05). CONCLUSION: HFD could impair the production of testosterone and sperm, and reduce gonadotropin by increasing the serum level of leptin and inducing insulin resistance, oxidative stress and inflammation. However, safflower oil in a dose-dependent manner could improve testosterone level and sperm parameters by improving the level of leptin, zinc and insulin resistance, and the genes expression involved in testosterone synthesis, inflammation and oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Inflamación/genética , Lipogénesis/genética , Estrés Oxidativo/genética , Aceite de Cártamo/farmacología , Espermatogénesis/genética , Animales , Antioxidantes/análisis , Antioxidantes/uso terapéutico , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Gonadotropinas/sangre , Inflamación/metabolismo , Insulina/sangre , Leptina/sangre , Peroxidación de Lípido/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Aceite de Cártamo/química , Aceite de Cártamo/uso terapéutico , Semillas/química , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Esteroides/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Testosterona/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Zinc/sangre
19.
BMC Complement Med Ther ; 21(1): 122, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853605

RESUMEN

BACKGROUND: Acrylamide (ACR) is a widespread industrial and food contaminant that garnered considerable attention for its carcinogenic, neurotoxic, and reproductive toxic effects. The antioxidant effects of Portulaca oleracea seeds extract (POS) and its fertility-enhancing effects were inspiring to evaluate the protective potential and pinpoint the mechanisms and molecular targets of the UPLC-MS fingerprinted POS extract on ACR-induced testicular toxicity in rats. METHODS: Male Wistar rats were divided into 6 equal groups of negative control, ACR model (10 mg/kg b.wt.), POS at doses of (200 and 400 mg/kg b.wt.) and POS-treated ACR groups. All treatments were given by oral dosing every day for 60 days. RESULTS: Administration of POS extract reversed the ACR-induced epididymides weight loss with improved semen quality and count, ameliorated the ACR-decreased testicular lesion scoring, testicular oxidative stress, testicular degeneration, Leydig cell apoptosis and the dysregulated PCNA and Caspase-3 expression in a dose-dependent manner. It upregulated the declined level of serum testosterone and the expression of steroidogenic genes such as CYP11A1 and 17ß3-HSD with an obvious histologic improvement of the testes with re-establishment of the normal spermatogenic series, Sertoli and Leydig cells. CONCLUSIONS: The supplementation with POS extract may provide a potential protective effect for ACR-induced testicular dysfunction which is mediated by its antioxidant, antiapoptotic and steroidogenic modulatory effects.


Asunto(s)
Extractos Vegetales/farmacología , Portulaca , Espermatogénesis/efectos de los fármacos , Acrilamida , Animales , Masculino , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Ratas , Ratas Wistar , Semillas
20.
Andrology ; 9(5): 1579-1592, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33818007

RESUMEN

BACKGROUND: The increasing availability of fortified foods and supplements has caused an overconsumption of vitamin A (VA), above the recommended level. To date, the effects of chronic VA excess (VAE) on spermatogenesis remain unclear. OBJECTIVE: This study aims to investigate the long-term excessive intake of VA effects on spermatogenesis in mice. MATERIALS AND METHODS: Dams were initially fed a control diet (4 IU/g) or a VAE diet (250 IU/g), 4 weeks prior to mating and during pregnancy. Dams and their male pups continued this diet regimen until the offspring reached 12 weeks of age. At 12 weeks of age, epididymis caudal spermatozoa and testes were collected. For histological analysis, sections were stained with periodic acid-Schiff-hematoxylin, and quantitative PCR was used to detect changes in gene expression in the testes of the VAE mice. Sperm motility and morphology were evaluated to detect the endpoint of VAE toxicity. RESULTS: Body weights were not significantly different between the control and VAE groups. Testicular cross-sections from the control and VAE mice contained a normal array of germ cells, and the daily sperm production was similar between the two groups. However, the percentage of seminiferous tubules in stages VII and VIII was significantly lower in the VAE mice than in the control. In addition, significant changes in the expression of genes involved in retinoid metabolism, spermatogenesis, and spermiogenesis were detected in the testes of the VAE mice. Consistently, sperm motility and head morphology were significantly impaired in the VAE mice. DISCUSSION AND CONCLUSION: Our findings suggest that long-term dietary intake of VAE was able to influence both pre- and post-meiotic spermatogenesis. As a result of testicular toxicity, we demonstrated, to the best of our knowledge, for the first time that long-term VAE caused sperm-head abnormalities.


Asunto(s)
Dieta/efectos adversos , Ingestión de Alimentos/fisiología , Cabeza del Espermatozoide/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Vitamina A/efectos adversos , Animales , Femenino , Masculino , Ratones , Embarazo , Túbulos Seminíferos/metabolismo , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA