Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.523
Filtrar
Más filtros

Intervalo de año de publicación
1.
Int J Biol Macromol ; 267(Pt 2): 131588, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615860

RESUMEN

Dietary selenium (Se) supplementation has recently received increasing attention; however, Selenium nanoparticles (SeNPs) exhibit poor stability and tend to aggregate in aqueous solution. Therefore, enhancing the stability of SeNPs and their effective delivery to plants remain challenging. In this study, sodium alginate (SA) and lysozyme (LZ) were reacted via the wet-heat Maillard reaction (MR) to obtain amphiphilic alginate-based polymers (SA-LZ). Alkyl glycosides (APG) were introduced into SA-LZ to enhance the deposition of SeNPs in leaves. Thus, a renewable and degradable polysaccharide-based material (SA-LZ/APG) loaded with Se formed an amphiphilic alginate-based-based shell with a Se core. Notably, the encapsulation of SeNPs into a polysaccharide base (SA-LZ/APG) increased the stabilization of SeNPs and resulted in orange-red, zero-valent, monoclinic and spherical SeNPs with a mean diameter of approximately 43.0 nm. In addition, SA-LZ/APG-SeNPs reduced the interfacial tension of plant leaves and increased the Se content of plants compared to the blank group. In vitro studies have reported that SA-LZ/APG-SeNPs and SA-LZ-SeNPs have significantly better clearance of DDPH and ABTS than that of APG-SeNPs. Thus, we believe that SA-LZ/APG is a promising smart delivery system that can synergistically enhance the stability of SeNPs in aqueous solutions and improve the bioavailability of Se nutrient solutions.


Asunto(s)
Alginatos , Glicósidos , Nanopartículas , Selenio , Alginatos/química , Selenio/química , Nanopartículas/química , Glicósidos/química , Hojas de la Planta/química , Muramidasa/química , Tensoactivos/química , Estabilidad de Medicamentos
2.
Food Chem ; 448: 139054, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552465

RESUMEN

Quercetin (QUE) sufferred from poor processing adaptability and absorbability, hindering its application as a dietary supplement in the food industry. In this study, fatty acids (FAs)-sodium caseinate (NaCas) ligand complexes carriers were fabricated to improve the aqueous dispersibility, storage/thermal stability, and bioaccessibility of QUE using an ultrasound method. The results indicated that all six selected common dietary FAs formed stable hydrophilic complexes with NaCas and the FAs-NaCas complexes achieved an encapsulation efficiency greater than 90 % for QUE. Furthermore, the introduction of FAs enhanced the binding affinity between NaCas and QUE, but did not change the binding mode (static bursting) and types of intermolecular forces (mainly hydrogen bonding). In addition, a distinct improvement was discovered in the storage stability (>2.37-fold), thermal processing stability (>32.54 %), and bioaccessibility (>2.37-fold) of QUE. Therefore, the FAs-NaCas ligand complexes could effectively protect QUE to minimize degradation as fat-soluble polyphenol delivery vehicles.


Asunto(s)
Caseínas , Ácidos Grasos , Quercetina , Quercetina/química , Quercetina/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Caseínas/química , Caseínas/metabolismo , Estabilidad de Medicamentos , Disponibilidad Biológica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Agua/química , Grasas de la Dieta/metabolismo
3.
J AOAC Int ; 107(1): 2-13, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37676824

RESUMEN

BACKGROUND: Zinc helps with cell division, growth, wound healing, and carbohydrate breakdown. Humanbeings have to obtain zinc from food or supplements because our bodies do not produce it naturally. In view of the greater advantages (such as low cost, time of analysis, and stability-indicating) compared to other quantification methods (titration, ion chromatography, Atomic absorption spectroscopy) proposed in the literature, a refractive index detector coupled with HPLC has been used in quantification of zinc. OBJECTIVE: The goal of this research is to develop and validate a sensitive, low-cost, high-resolution, and stability- indicating method for detecting and quantifying zinc levels in zinc supplement pharmaceutical products (injectables, tablets, and capsules). METHODS: A novel isocratic reverse-phase HPLC method with a refractive index detector (with sensitivity 64, detector temperature 35°C, and positive polarity) was developed using a carboxyl functional group packed column and 0.8% (v/v) formic acid as the mobile phase to detect and quantify zinc content. RESULTS: The reported method has a good optimal sensitivity (LOQ: 0.006 mg/mL and LOD: 0.002 mg/mL). The correlation coefficient (r) obtained from the zinc calibration plot was greater than 0.998, indicating that the method was linear and that there was a strong correlation between zinc concentration (0.006 mg/mL to 0.375 mg/mL) and peak response. The accuracy at LOQ level was found to be 95-105% and 97-103% at the remaining levels (50, 100, and 150%). CONCLUSION: The proposed method was successfully developed and validated as per International council for harmonisation (ICH) guidelines. Therefore, this method can be used for the quantitative testing of zinc in the QC laboratory. HIGHLIGHTS: A novel method was developed for zinc levels determination in pharmaceutical products using HPLC with a refractive index detector. The present approach has a quick run time of 10 min and is inexpensive.


Asunto(s)
Refractometría , Zinc , Estabilidad de Medicamentos , Suplementos Dietéticos , Preparaciones Farmacéuticas , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados
4.
Mol Pharm ; 20(10): 4802-4825, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37699354

RESUMEN

Does the performance of an amorphous solid dispersion rely on having 100% amorphous content? What specifications are appropriate for crystalline content within an amorphous solid dispersion (ASD) drug product? In this Perspective, the origin and significance of crystallinity within amorphous solid dispersions will be considered. Crystallinity can be found within an ASD from one of two pathways: (1) incomplete amorphization, or (2) crystal creation (nucleation and crystal growth). While nucleation and crystal growth is the more commonly considered pathway, where crystals originate as a physical stability failure upon accelerated or prolonged storage, manufacturing-based origins of crystallinity are possible as well. Detecting trace levels of crystallinity is a significant analytical challenge, and orthogonal methods should be employed to develop a holistic assessment of sample properties. Probing the impact of crystallinity on release performance which may translate to meaningful clinical significance is inherently challenging, requiring optimization of dissolution test variables to address the complexity of ASD formulations, in terms of drug physicochemical properties (e.g., crystallization tendency), level of crystallinity, crystal reference material selection, and formulation characteristics. The complexity of risk presented by crystallinity to product performance will be illuminated through several case studies, highlighting that a one-size-fits-all approach cannot be used to set specification limits, as the risk of crystallinity can vary widely based on a multitude of factors. Risk assessment considerations surrounding drug physicochemical properties, formulation fundamentals, physical stability, dissolution, and crystal micromeritic properties will be discussed.


Asunto(s)
Solubilidad , Cristalización/métodos , Estabilidad de Medicamentos
5.
J Pharm Biomed Anal ; 233: 115470, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37210891

RESUMEN

5-Hydroxymethyl-2-furaldehyde (5-HMF) is a kind of aldehyde compound with highly active furan ring, which is generated by dehydration of glucose, fructose, and other monosaccharides. It widely exists in drugs, foods, health products, cosmetics, and traditional Chinese medicine preparations with high sugar content. Due to the toxicity, the concentration of 5-HMF was always monitored to identify non-conformities and adulteration, as well as ensure the process efficiency, traceability and safety in foods or drugs in the pharmacopoeias of various countries. Herein, a comprehensive forced degradation study was performed to characterize the degradation products (DPs) of 5-HMF under hydrolytic (neutral, acidic, and alkaline) degradation, oxidative, thermal, humidity, and photolytic degradation conditions. A total of five degradants were identified, and two of them (DP-3 and DP-5) were novel DPs first reported in our study. Major DPs (i.e., DP-1 and DP-2) with relatively high peak areas were isolated using semi-preparative HPLC and characterized by LC-LTQ/Orbitrap and NMR. 5-HMF was only stable in alkaline hydrolysis condition. In addition, the degradation pathways and mechanism of these DPs were also explained using LC-LTQ/Orbitrap. In silico toxicity and metabolism behavior of the DPs were evaluated using Derek Nexus and Meteor Nexus software, respectively. The predicted toxicity data indicated that both the drug 5-HMF and its DPs bear the potential of hepatotoxicity, mutagenicity, chromosome damage, and skin sensitisation. Our research may be beneficial for the quality control and suitable storage conditions of 5-HMF.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Espectroscopía de Resonancia Magnética , Estabilidad de Medicamentos , Hidrólisis , Oxidación-Reducción , Fotólisis
6.
Molecules ; 28(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770661

RESUMEN

Enteric dysfunctions are common for various histamine-related intestinal disorders. Vegetal diamine oxidase (vDAO), an enzyme able to decompose histamine and thus alleviate histamine-related dysfunctions, was formulated in gastro-resistant tablet forms for oral administration as a food supplement and possible therapeutic agent. A major challenge for the use of proteins in the pharmaceutical field is their poor stability. In this study, vDAO was freeze-dried in the absence or in the presence of sucrose or trehalose as cryoprotectants and then formulated as tablets by direct compression. The stability of the obtained preparations was followed during storage at 4 °C and -20 °C for 18 months. In vitro dissolution tests with the vDAO powders formulated as tablets were performed in simulated gastric and in simulated intestinal fluids. The tablets obtained with the powder of the vDAO lyophilized with sucrose or trehalose cryoprotectants offered better protection for enzyme activity. Furthermore, the release of the vDAO lyophilized with the cryoprotectants was around 80% of the total loaded activity (enzyme units) compared to 20% for the control (vDAO powder prepared without cryoprotectants). This report revealed the potential of sucrose and trehalose as cryoprotectants to protect vDAO from freeze-drying stress and during storage, and also to markedly improve the vDAO release performance of tablets obtained with vDAO powders.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Trehalosa , Sacarosa , Histamina , Polvos , Crioprotectores/farmacología , Liofilización , Estabilidad de Medicamentos
7.
ACS Appl Mater Interfaces ; 14(36): 40698-40710, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36054111

RESUMEN

Preventing crystallization is a primary concern when developing amorphous drug formulations. Recently, atomic layer coatings (ALCs) of aluminum oxide demonstrated crystallization inhibition of high drug loading amorphous solid dispersions (ASDs) for over 2 years. The goal of the current study was to probe the breadth and mechanisms of this exciting finding through multiple drug/polymer model systems, as well as particle and coating attributes. The model ASD systems selected provide for a range of hygroscopicity and chemical functional groups, which may contribute to the crystallization inhibition effect of the ALC coatings. Atomic layer coating was performed to apply a 5-25 nm layer of aluminum oxide or zinc oxide onto ASD particles, which imparted enhanced micromeritic properties, namely, reduced agglomeration and improved powder flowability. ASD particles were stored at 40 °C and a selected relative humidity level between 31 and 75%. Crystallization was monitored by X-ray powder diffraction and scanning electron microscopy (SEM) up to 48 weeks. Crystallization was observable by SEM within 1-2 weeks for all uncoated samples. After ALC, crystallization was effectively delayed or completely inhibited in some systems up to 48 weeks. The delay achieved was demonstrated regardless of polymer hygroscopicity, presence or absence of hydroxyl functional groups in drugs and/or polymers, particle size, or coating properties. The crystallization inhibition effect is attributed primarily to decreased surface molecular mobility. ALC has the potential to be a scalable strategy to enhance the physical stability of ASD systems to enable high drug loading and enhanced robustness to temperature or relative humidity excursions.


Asunto(s)
Óxido de Aluminio , Polímeros , Cristalización , Estabilidad de Medicamentos , Polímeros/química , Polvos/química , Solubilidad
8.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4365-4371, 2022 Aug.
Artículo en Chino | MEDLINE | ID: mdl-36046863

RESUMEN

This study was designed to explore the potential of gypenosides as a novel natural stabilizer for the production of nanosuspensions. The gypenosides-stabilized quercetin nanosuspensions(QUE-NS) were prepared using the high-speed shearing and high-pressure homogenization method with quercetin as a model drug, followed by their in vitro evaluation.Based on the measured mean particle size and polydispersity index(PDI) of QUE-NS,the single factor experiment was conducted to optimize the preparation process parameters.The freeze-drying method was used to transform QUE-NS into freeze-dried powders, whose storage stability and saturation solubility were then studied.Moreover, the effects of pH and ionic strength on the physical stability of the nanosuspension system were examined.According to the results, the optimized process parameters were listed as follows: shear rate 13 000 r·min~(-1),shear time 2 min, homogenization pressure 100 MPa, and homogenization frequency 12 times.The mean particle size of QUE-NS prepared under the optimum process conditions was(461.9±2.4) nm, and the PDI was 0.059±0.016.During the two months of storage at room temperature, the freeze-dried QUE-NS powders remained stable.The saturation solubility of freeze-dried QUE-NS powders was proved higher than those of quercetin and the physical mixture.The results of stability testing demonstrated that QUE-NS stabilized with gypenosides exhibited good stability within the pH range of 6 to 8,while coalescence was prone to occur in the presence of salt.Overall, gypenosides is expected to become a new natural stabilizer for the preparation of nanosuspensions.


Asunto(s)
Nanopartículas , Quercetina , Estabilidad de Medicamentos , Gynostemma , Tamaño de la Partícula , Extractos Vegetales , Polvos , Solubilidad , Suspensiones
9.
Mar Drugs ; 20(3)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35323471

RESUMEN

In the present study, a selenium-chondroitin sulfate (SeCS) was synthesized by the sodium selenite (Na2SeO3) and ascorbic acid (Vc) redox reaction using chondroitin sulfate derived from shark cartilage as a template, and characterized by SEM, SEM-EDS, FTIR and XRD. Meanwhile, its stability was investigated at different conditions of pH and temperatures. Besides, its antioxidant activity was further determined by the DPPH and ABTS assays. The results showed the SeCS with the smallest particle size of 131.3 ± 4.4 nm and selenium content of 33.18% was obtained under the optimal condition (CS concentration of 0.1 mg/mL, mass ratio of Na2SeO3 to Vc of 1:8, the reaction time of 3 h, and the reaction temperature of 25 °C). SEM image showed the SeCS was an individual and spherical nanostructure and its structure was evidenced by FTIR and XRD. Meanwhile, SeCS remained stable at an alkaline pH and possessed good storage stability at 4 °C for 28 days. The results on scavenging free radical levels showed that SeCS exhibited significantly higher antioxidant activity than SeNPs and CS, indicating that SeCS had a potential antioxidant effect.


Asunto(s)
Antioxidantes/química , Cartílago/química , Sulfatos de Condroitina/química , Nanopartículas/química , Selenio/química , Tiburones , Animales , Benzotiazoles/química , Compuestos de Bifenilo/química , Sulfatos de Condroitina/aislamiento & purificación , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Picratos/química , Ácidos Sulfónicos/química , Temperatura
10.
Molecules ; 27(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35209242

RESUMEN

The objective of the current research is to develop ZnO-Manjistha extract (ZnO-MJE) nanoparticles (NPs) and to investigate their transdermal delivery as well as antimicrobial and antioxidant activity. The optimized formulation was further evaluated based on different parameters. The ZnO-MJE-NPs were prepared by mixing 10 mM ZnSO4·7H2O and 0.8% w/v NaOH in distilled water. To the above, a solution of 10 mL MJE (10 mg) in 50 mL of zinc sulfate was added. Box-Behnken design (Design-Expert software 12.0.1.0) was used for the optimization of ZnO-MJE-NP formulations. The ZnO-MJE-NPs were evaluated for their physicochemical characterization, in vitro release activity, ex vivo permeation across rat skin, antimicrobial activity using sterilized agar media, and antioxidant activity by the DPPH free radical method. The optimized ZnO-MJE-NP formulation (F13) showed a particle size of 257.1 ± 0.76 nm, PDI value of 0.289 ± 0.003, and entrapment efficiency of 79 ± 0.33%. Drug release kinetic models showed that the formulation followed the Korsmeyer-Peppas model with a drug release of 34.50 ± 2.56 at pH 7.4 in 24 h. In ex vivo studies ZnO-MJE-NPs-opt permeation was 63.26%. The antibacterial activity was found to be enhanced in ZnO-MJE-NPs-opt and antioxidant activity was found to be highest (93.14 ± 4.05%) at 100 µg/mL concentrations. The ZnO-MJE-NPs-opt formulation showed prolonged release of the MJE and intensified permeation. Moreover, the formulation was found to show significantly (p < 0.05) better antimicrobial and antioxidant activity as compared to conventional suspension formulations.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Nanopartículas del Metal/química , Extractos Vegetales/química , Rubia/química , Piel/efectos de los fármacos , Óxido de Zinc/química , Animales , Antiinfecciosos/química , Antioxidantes/química , Fenómenos Químicos , Química Farmacéutica , Composición de Medicamentos , Liberación de Fármacos , Estabilidad de Medicamentos , Pruebas de Sensibilidad Microbiana , Modelos Químicos , Ratas , Piel/metabolismo , Análisis Espectral
11.
Zhongguo Zhong Yao Za Zhi ; 47(1): 103-110, 2022 Jan.
Artículo en Chino | MEDLINE | ID: mdl-35178916

RESUMEN

The present study explored the effect of co-amorphous technology in improving the dissolution rate and stability of silybin based on the puerarin-silybin co-amorphous system prepared by the spray-drying method. Solid-state characterization was carried out by powder X-ray diffraction(PXRD), polarizing microscopy(PLM), Fourier transform infrared spectroscopy(FT-IR), differential scanning calorimetry(DSC), etc. Saturated powder dissolution, intrinsic dissolution rate, moisture absorption, and stability were further investigated. The results showed that puerarin and silybin formed a co-amorphous system at a single glass transition temperature which was higher than that of any crude drug. The intrinsic dissolution rate and supersaturated powder dissolution of silybin in the co-amorphous system were higher than those of the crude drug and amorphous system. The co-amorphous system kept stable for as long as three months under the condition of 40 ℃, 75% relative humidity, which was longer than that of the single amorphous silybin. Therefore, the co-amorphous technology could significantly improve the dissolution and stability of silybin.


Asunto(s)
Desecación , Tecnología , Rastreo Diferencial de Calorimetría , Composición de Medicamentos/métodos , Estabilidad de Medicamentos , Silibina , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
12.
Int J Pharm Compd ; 26(1): 65-71, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35081046

RESUMEN

The objective of this study was to evaluate the physical stability and drug-release profile of gabapentin from different compounded formulations of Pluronic lecithin organogel containing gabapentin, thus confirming the stability of the preparations. Eight different formulations of compounded Pluronic lecithin organogel containing gabapentin alone or gabapentin in combination with other drugs were prepared using the cold incorporation method. Organoleptic properties, pH values, rheology, and gelation temperature were studied at 1, 7, and 14 days after preparation. The release of gabapentin out of Pluronic lecithin organogel was measured by diffusion across cellulose membranes (0.45 um) in the Franz diffusion cell system. The organoleptic properties were constant during the stability study in all formulations. The values of pH varied depending on the formulation, with slight increases after the the 7th day of the study. Gelation temperature, rheology, and drug release of gabapentin out of Pluronic lecithin organogel were remarkably dependent on the nature of combination in formulations during the time of assay. Formulations of Pluronic lecithin organogel containing only gabapentin or gabapentin with another drug were physically stable for 14 days. However, 3- and 4-combined drug formulations demonstrated an altered pseudoplastic behavior and instability during the study period.


Asunto(s)
Lecitinas , Neuralgia , Estabilidad de Medicamentos , Gabapentina , Geles , Humanos , Poloxámero , Viscosidad
13.
Gene ; 815: 146178, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34995733

RESUMEN

Frailty develops due to multiple factors, such as sarcopenia, chronic pain, and dementia. Go-sha-jinki-Gan (GJG) is a traditional Japanese herbal medicine used for age-related symptoms. We have reported that GJG improved sarcopenia, chronic pain, and central nervous system function through suppression of tumor necrosis factor-alpha (TNF-α) production. In the present study, GJG was found to reduce the production of TNF-α in the soleus muscle of senescence-accelerated mice at 12 weeks and 36 weeks. GJG did not change the differentiation of C2C12 cells with 2% horse serum. GJG significantly decreased the expression of Muscle atrophy F-box protein (MAFbx) induced by TNF-α in C2C12 cells on real-time PCR. TNF-α significantly decreased the expression of PGC-1α and negated the enhancing effect of GJG for the expression of PGC-1α on digital PCR. Examining 20 chemical compounds derived from GJG, cinnamaldehyde from cinnamon bark and Chikusetsusaponin V (CsV) from Achyrantes Root dose-dependently decreased the production of TNF-⍺ in RAW264.7 cells stimulated by LPS. CsV inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB) p65 in RAW264.7 cells. CsV showed low permeability using Caco-2 cells. However, the plasma concentration of CsV was detected from 30 min to 6 h and peaked at 1 h in the CD1 (ICR) mice after a single dose of GJG. In 8-week-old SAMP8 mice fed 4% (w/w) GJG from one week to four weeks, the plasma CsV concentration ranged from 0.0500 to 10.0 ng/mL. The evidence that CsV plays an important role in various anti-aging effects of GJG via suppression of TNF-⍺ expression is presented.


Asunto(s)
Envejecimiento/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Saponinas/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Estabilidad de Medicamentos , Medicamentos Herbarios Chinos/química , Masculino , Ratones , Ratones Endogámicos ICR , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Células RAW 264.7 , Proteínas Ligasas SKP Cullina F-box/metabolismo , Saponinas/administración & dosificación , Saponinas/sangre , Solubilidad , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
14.
Adv Drug Deliv Rev ; 182: 114108, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34990792

RESUMEN

Within the past decades, extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in both prokaryotes and higher eukaryotes to regulate a diverse range of biological processes. Besides EVs, exosome-like nanoparticles (ELNs) derived from plants were also emerging. Comparing to EVs, ELNs are source-widespread, cost-effective and easy to obtain. Their definite activities can be utilized for potential prevention/treatment of an abundance of diseases, including metabolic syndrome, cancer, colitis, alcoholic hepatitis and infectious diseases, which highlights ELNs as promising biotherapeutics. In addition, the potential of ELNs as natural or engineered drug carriers is also attractive. In this review, we tease out the timeline of plant EVs and ELNs, introduce the arising separation, purification and characterization techniques, state the stability and transport manner, discuss the therapeutic opportunities as well as the potential as novel drug carriers. Finally, the challenges and the direction of efforts to realize the clinical transformation of ELNs are also discussed.


Asunto(s)
Química Farmacéutica/métodos , Portadores de Fármacos/farmacología , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Plantas/metabolismo , Animales , Biomarcadores , Comunicación Celular/fisiología , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidad , Estabilidad de Medicamentos , Humanos , Sistema de Administración de Fármacos con Nanopartículas/metabolismo , Sistema de Administración de Fármacos con Nanopartículas/farmacología , Sistema de Administración de Fármacos con Nanopartículas/toxicidad
15.
Crit Rev Food Sci Nutr ; 62(5): 1204-1221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33103462

RESUMEN

Amorphous solid products have recently gained a lot of attention as key solutions to improve the solubility and bioavailability of poorly soluble nutraceuticals. A pure amorphous drug is a high-energy form; physically/chemically unstable and so easily gets recrystallized into the less soluble crystalline form limiting solubility and bioavailability issues. Amorphous solid dispersion and co-amorphous are new formulation approach that stabilized unstable amorphous form through different mechanisms such as preventing mobility, high glass transition temperature and molecular interaction. Nutraceuticals have been received the utmost importance due to their health benefits. However, most of these compounds have been associated with poor oral bioavailability due to poor solubility, high lipophilicity, high melting point, poor permeability, degradability and rapid metabolism in the gastrointestinal tract (GIT) which limits its health benefits. This review provides us a systematic application of amorphous systems to the delivery of poorly soluble nutraceuticals, with the aim of overcoming their pharmacokinetic limitations and improved pharmacological potential. In particular, it describes the challenges associated with delivery of oral nutraceuticals, various methods involved in the preparation and characterization of amorphous systems and permeability enhancement of nutraceuticals are in detail.


Asunto(s)
Preparaciones Farmacéuticas , Disponibilidad Biológica , Suplementos Dietéticos , Estabilidad de Medicamentos , Solubilidad
16.
Fitoterapia ; 156: 105084, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34785239

RESUMEN

The stability of molecular curcumin (purcumin, 1a) in solution is strongly light-dependent. Under laboratory artificial light, a relative stability is observed only at neutral pH, while more intense light and/or solar light can trigger degradation via a combination of hydrolytic and oxidative fragmentation of the heptadiendione moiety. Minor curcuminoids in commercial curcumin (purcuminoids) can improve the stability of molecular curcumin, but only under conditions of low irradiation. While confirming earlier observations alerting to the instability of purcumin, our results provide new rationales for unexplained differences between previous studies, question the biological relevance of a non-enzymatic degradation for the bioactivity profiles that have been reported for purcumin, and highlight the need of a better characterization of the degradation of purcuminoids under visible light irradiation.


Asunto(s)
Curcumina/metabolismo , Cromatografía Líquida de Alta Presión , Curcumina/química , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Soluciones
17.
Int J Biol Macromol ; 194: 982-992, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852260

RESUMEN

Resveratrol (RSV) is a lipophilic polyphenol susceptible to photo- and thermal degradation, and strategies are to be studied to enable its distribution in food matrices, prevent its degradation during storage, and increase its bioaccessibility during digestion. In this study, the porous matrix of natural starch, in the form of milled freeze-dried potato microparticles (FDPMs), was studied as an absorbent to load RSV. The binary solvent of ethanol and polyethylene glycol 400 (40:60 v/v) was used to dissolve 30% w/v RSV for diffusion into FDPMs. After ethanol was evaporated, the loading capacity was 112 mg RSV/g FDPMs and was maintained at 104 mg RSV/g FDPMs (92.9% retention) after 110-day ambient storage. The RSV stability under UV irradiation at 253 nm was improved by 32% due to shielding effect of FDPMs, and the ferric reducing power was 25% higher than the pristine RSV. The release of RSV in FDPMs was significantly higher than pristine RSV during simulated gastric and intestinal digestions (82.3% vs 51.4% bioaccessibility). The increased reducing power and bioaccessibility were supported by the amorphous state of RSV in FDPMs. The present study illustrates the potential of porous vegetable microparticles as natural matrices to load lipophilic bioactive compounds in functional foods.


Asunto(s)
Microesferas , Resveratrol/química , Resveratrol/farmacología , Almidón/química , Biopolímeros/química , Fenómenos Químicos , Difusión , Portadores de Fármacos , Estabilidad de Medicamentos , Porosidad , Solanum tuberosum , Análisis Espectral , Termodinámica
18.
J Nanobiotechnology ; 19(1): 439, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930289

RESUMEN

BACKGROUND: Cancer is one of the devastating diseases in the world. The development of nanocarrier provides a promising perspective for improving cancer therapeutic efficacy. However, the issues with potential toxicity, quantity production, and excessive costs limit their further applications in clinical practice. RESULTS: Herein, we proposed a nanocarrier obtained from aloe with stability and leak-proofness. We isolated nanovesicles from the gel and rind of aloe (gADNVs and rADNVs) with higher quality and yield by controlling the final centrifugation time within 20 min, and modulating the viscosity at 2.98 mPa S and 1.57 mPa S respectively. The gADNVs showed great structure and storage stability, antioxidant and antidetergent capacity. They could be efficiently taken up by melanoma cells, and with no toxicity in vitro or in vivo. Indocyanine green (ICG) loaded in gADNVs (ICG/gADNVs) showed great stability in both heating system and in serum, and its retention rate exceeded 90% after 30 days stored in gADNVs. ICG/gADNVs stored 30 days could still effectively damage melanoma cells and inhibit melanoma growth, outperforming free ICG and ICG liposomes. Interestingly, gADNVs showed prominent penetrability to mice skin which might be beneficial to noninvasive transdermal administration. CONCLUSIONS: Our research was designed to simplify the preparation of drug carrier, and reduce production cost, which provided an alternative for the development of economic and safe drug delivery system.


Asunto(s)
Aloe/química , Verde de Indocianina/química , Nanoestructuras/química , Aloe/metabolismo , Animales , Antioxidantes/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocinas/sangre , Estabilidad de Medicamentos , Hemólisis/efectos de los fármacos , Humanos , Verde de Indocianina/farmacología , Verde de Indocianina/uso terapéutico , Liposomas/química , Melanoma Experimental/tratamiento farmacológico , Ratones , Nanoestructuras/uso terapéutico , Nanoestructuras/toxicidad , Tamaño de la Partícula
19.
Molecules ; 26(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34885653

RESUMEN

In this research, the effects of drying method, storage temperature, and color protector glucose on anthocyanin preservation in the Lycium ruthenicum Murr. fruit were studied. Compared with hot-air drying, vacuum freeze-drying preserved about 5.8-fold more anthocyanins. The half-life of anthocyanins in the freeze-dried fruit samples with glucose was 3.6 days, 1.8 days, and 1.7 days at 4 °C, 20 °C, and 37 °C, respectively. On the other hand, the half-life values without glucose addition were 2.2 days, 2.3 days, and 2.1 days at each temperature, respectively, indicating that glucose protected anthocyanins at low temperature. The composition and contents of anthocyanins and anthocyanidins in the freeze-dried Lycium ruthenicum Murr., stored for 20 days, were investigated with a HPLC-MS/MS setup. It was found that most anthocyanidins in Lycium ruthenicum Murr. are linked with coumaroyl glucose to form anthocyanins, while glycosylated and acetyl-glycosylated anthocyanins were also detected. Five anthocyanidins were detected: delphinidin, cyanidin, petunidin, malvidin, and peonidin, and delphinidin accounts for about half of the total amount of anthocyanidins. It is much more economic to conserve anthocyanins in situ with freeze-drying methods and to store the fruits at low temperatures with glucose.


Asunto(s)
Antocianinas/análisis , Frutas/química , Lycium/química , Pigmentos Biológicos/análisis , Extractos Vegetales/análisis , Cromatografía Líquida de Alta Presión/métodos , Estabilidad de Medicamentos , Liofilización/métodos , Glucosa/química , Semivida , Espectrometría de Masas en Tándem/métodos , Temperatura
20.
Molecules ; 26(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34885982

RESUMEN

Some seed-derived antioxidant peptides are known to regulate cellular modulators of ROS production, including those proposed to be promising targets of anticancer therapy. Nevertheless, research in this direction is relatively slow owing to the inevitable time-consuming nature of wet-lab experimentations. To help expedite such explorations, we performed structure-based virtual screening on seed-derived antioxidant peptides in the literature for anticancer potential. The ability of the peptides to interact with myeloperoxidase, xanthine oxidase, Keap1, and p47phox was examined. We generated a virtual library of 677 peptides based on a database and literature search. Screening for anticancer potential, non-toxicity, non-allergenicity, non-hemolyticity narrowed down the collection to five candidates. Molecular docking found LYSPH as the most promising in targeting myeloperoxidase, xanthine oxidase, and Keap1, whereas PSYLNTPLL was the best candidate to bind stably to key residues in p47phox. Stability of the four peptide-target complexes was supported by molecular dynamics simulation. LYSPH and PSYLNTPLL were predicted to have cell- and blood-brain barrier penetrating potential, although intolerant to gastrointestinal digestion. Computational alanine scanning found tyrosine residues in both peptides as crucial to stable binding to the targets. Overall, LYSPH and PSYLNTPLL are two potential anticancer peptides that deserve deeper exploration in future.


Asunto(s)
Antineoplásicos/metabolismo , Antioxidantes/metabolismo , Quimioinformática/métodos , Descubrimiento de Drogas/métodos , Péptidos/metabolismo , Extractos Vegetales/metabolismo , Semillas/química , Antineoplásicos/química , Antioxidantes/química , Dominio Catalítico , Estabilidad de Medicamentos , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptidos/química , Peroxidasa/química , Peroxidasa/metabolismo , Extractos Vegetales/química , Unión Proteica , Xantina Oxidasa/química , Xantina Oxidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA