Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 529(1): 91-96, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32560825

RESUMEN

As structural components of biological membranes, phytosterols are essential not only for a variety of cellular functions but are also precursors for brassinosteroid (BR) biosynthesis. Plant CYP51 is the oldest and most conserved obtusifoliol 14α-demethylase in eukaryotes and is an essential component of the sterol biosynthesis pathway. However, little is known about rice (Oryza sativa L.) CYP51G1. In this study, we showed that rice OsCYP51G1 shared high homology with obtusifoliol 14α-demethylase and OsCYP51G1 was strongly expressed in most of rice organs. Subcellular localization analysis indicated that OsCYP51G1 was localized to the endoplasmic reticulum. Knockdown and knockout of OsCYP51G1 resulted in delayed flowering, impaired membrane integrity, abnormal pollen, and reduced grain yield, whereas OsCYP51G1 overexpression led to increased grain yield. Knockdown of OsCYP51G1 also reduced the levels of end-products (sitosterol and stigmasterol) and increased those of upstream intermediates (24-methylene-cycloartenol and cycloeucalenol) of the OsCYP51G1-mediated sterol biosynthesis step. In contrast, overexpression of OsCYP51G1 increased the sitosterol and stigmasterol content and reduced that of cycloeucalenol. However, knockdown of OsCYP51G1 by RNAi did not elicit these BR deficiency-related phenotypes, such as dwarfism, erect leaves and small seeds, nor was the leaf lamina angle sensitive to brassinolide treatment. These results revealed that rice OsCYP15G1 encodes an obtusifoliol 14α-demethylase for the phytosterols biosynthesis and possible without affecting the biosynthesis of downstream BRs, which was different from its homolog, OsCYP51G3.


Asunto(s)
Oryza/metabolismo , Fitosteroles/biosíntesis , Proteínas de Plantas/metabolismo , Esterol 14-Desmetilasa/metabolismo , Brasinoesteroides/biosíntesis , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Genes de Plantas , Germinación/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polen/crecimiento & desarrollo , Polen/metabolismo , Interferencia de ARN , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Esterol 14-Desmetilasa/genética
2.
J Mycol Med ; 30(2): 100953, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32362445

RESUMEN

OBJECTIVE: The present study was designed to discover novel biomarkers involved in voriconazole resistance in clinical isolates of Aspergillus flavus. MATERIALS AND METHODS: Two voriconazole non-wild-type and two voriconazole-wild-type A. flavus clinical isolates were selected to evaluate possible molecular mechanism involved in A. flavus resistance to voriconazole using the mutation assessment, Quantitative real- time PCR of cyp51A and cyp51C genes and complementary DNA- amplified fragment length polymorphism technique. RESULTS: No mutations were seen in the cyp51A and cyp51C genes in voriconazole non-wild-type isolates compared to wild- type and reference strains. Regarding to mRNA expression results, no changes were observed in expression fold of cyp51A and cyp51C mRNA expression level in first non- wild- type isolate compared to wild-type isolate. For second isolate cyp51C mRNA expression level was down regulated (5.6 fold). The set of genes including ABC fatty acid transporter XM- 002375835 and aldehydereductase XM- 002376518 and three unknown functional genes were identified. Based on results, the over-expression of AKR1 and ABC fatty acid transporter in the voriconazole non- wild- type isolates suggests these genes could represent a novel molecular marker linked to the voriconazole resistance in A. flavus. CONCLUSION: The results obtained in this study showed a novel finding as the authors identified AKR1 and ABC fatty acid transporter genes as possible voriconazole target genes in Iranian clinical isolates of A. flavus.


Asunto(s)
Aspergilosis/microbiología , Aspergillus flavus/genética , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Voriconazol/uso terapéutico , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Antifúngicos/uso terapéutico , Aspergilosis/tratamiento farmacológico , Aspergilosis/genética , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/aislamiento & purificación , Biomarcadores/análisis , Sistema Enzimático del Citocromo P-450/genética , Análisis Mutacional de ADN/métodos , Regulación Fúngica de la Expresión Génica , Humanos , Pruebas de Sensibilidad Microbiana , Técnicas de Tipificación Micológica , Mutación Puntual , Esterol 14-Desmetilasa/genética
3.
J Mycol Med ; 30(1): 100915, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32008963

RESUMEN

Aspergillus infections are increasingly recognized as a global health problem because of limited antifungal drugs and occurrence of azole resistance worldwide. More cyp51-mediated and non-cyp51-mediated mechanisms of azole resistance have been identified in clinical and laboratory studies in recent years with applications of molecular biotechnology including next-generation sequencing, reverse genetics and so on. In this review, current research on the molecular mechanisms of azole resistance in A. fumigatus were presented and summarized and meanwhile the putative clinical relevance of these findings from bench work were discussed. Important aims are to gain more insight to mechanism of azole resistance and provide some efficient lead for prevention strategy.


Asunto(s)
Antifúngicos/uso terapéutico , Aspergillus fumigatus/genética , Azoles/uso terapéutico , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Aspergilosis/genética , Aspergilosis/microbiología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/patogenicidad , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Esterol 14-Desmetilasa/genética
4.
Curr Mol Med ; 19(7): 506-524, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31109273

RESUMEN

BACKGROUND: The incidence of fungal infections has increased significantly. Specifically the cases of candida albicans infection are increasing day by day and their resistance to clinically approved drugs is a major concern for humans. Various classes of antifungal drugs are available in the market for the treatment of these infections but unfortunately, none of them is able to treat the infection. OBJECTIVES: Thus, in the present investigation, we have repurposed the well-known drug (Fluvastatin) in the treatment of Candida albicans infections by using in silico, in vitro and ex vivo techniques. MATERIAL AND METHODS: Computational and in vitro techniques. RESULTS: Firstly, we developed and validated a simple model of CYP45014α-lanosterol demethylase of Candida albicans by using crystal structure of Mycobacterium tuberculosis (1EA1). Further, fluvastatin was docked with a validated model of CYP45014α-lanosterol demethylase and revealed good binding affinity as that of fluconazole. In vitro results (Percentage growth retardation, Fungal growth kinetics, Biofilm test and Post antifungal test) have shown good antifungal activity of fluvastatin. Finally, the results of MTT assay have shown non-cytotoxic effect of fluvastatin in murine splenocytes and thymocytes. CONCLUSION: However, further in vivo studies are required to confirm the complete role of fluvastatin as an antifungal agent.


Asunto(s)
Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Fluvastatina/farmacología , Esterol 14-Desmetilasa/genética , Animales , Antifúngicos/farmacología , Candida albicans/patogenicidad , Candidiasis/genética , Candidiasis/microbiología , Biología Computacional , Reposicionamiento de Medicamentos , Fluvastatina/química , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Esterol 14-Desmetilasa/efectos de los fármacos
5.
J Cell Biochem ; 119(3): 2588-2603, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28980720

RESUMEN

Sterol 14α-Demethylase Cytochrome P450 (CYP51) protein involved in ergosterol biosynthesis pathways turn out to be a crucial target for the fungicidal compound. However, the recognition mechanism and dynamic behavior of CYP51 in wheat leaf rust pathogen, Puccinia triticina, is still obscure. Previously, a mutation at position 134 (Y134F) was reported in five European isolates of P. triticina, conversely, structural basis of this mutation remains unclear. To address this problem, three-dimensional structure of CYP51 protein from P. triticina was successfully built using homology modeling approach. To assess the protein structure stability, wild and mutant-type CYP51 proteins bound with azole fungicide was subjected to 50 ns molecular dynamics (MD) simulations run. Observably, the comparative protein-ligand interaction analysis and binding free energy results revealed that impact of the mutation on the thermodynamics and conformational stability of the CYP51 protein was negligible. In addition, we carried out structure-based virtual screening and identified potent novel fungicidal compounds from four different databases and libraries. Consequently, through MD simulation and thermodynamic integration, four novel compounds such as CoCoCo54211 (CoCoCo database), ZINC04089470 (ZINC database), Allyl pyrocatechol 3,4 diacetate (Natural compound library), and 9-octadecenoic acid (Traditional Chinese Medicine database) has been predicted as potent fungicidal compound against CYP51 with XPGlide docking score of -11.41, -13.64, -7.40, and -6.55 kcal/mol, respectively. These compounds were found to form hydrogen bonds with heme group of CYP51, subsequently disturbing the stability and survival of fungus and can be used to control leaf rust in wheat.


Asunto(s)
Basidiomycota/genética , Proteínas Fúngicas/genética , Micosis/genética , Enfermedades de las Plantas/genética , Esterol 14-Desmetilasa/genética , Triticum/microbiología , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/química , Fungicidas Industriales/farmacología , Genes Fúngicos/genética , Simulación de Dinámica Molecular , Mutación , Conformación Proteica , Esterol 14-Desmetilasa/química
6.
J Biomol Struct Dyn ; 35(7): 1446-1463, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27142238

RESUMEN

Candida albicans infections and their resistance to clinically approved azole drugs are major concerns for human. The azole antifungal drugs inhibit the ergosterol synthesis by targeting lanosterol 14α-demethylase of cytochrome P450 family. The lack of high-resolution structural information of fungal pathogens has been a barrier for the design of modified azole drugs. Thus, a preliminary theoretical molecular dynamic study is carried out to develop and validate a simple homologous model using crystallographic structure of the lanosterol 14α-demethylase of Mycobacterium tuberculosis (PDB ID-1EA1) in which the active site residues are substituted with that of C. albicans (taxid 5476). Further, novel designed pyrazole analogs (SGS1-16) docked on chimeric 1EA1 and revealed that SGS-16 show good binding affinity through non-bonding interaction with the heme, which is different from the leading azole antifungals. The ADME-T results showed these analogs can be further explored in design of more safe and effective antifungal agents.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/química , Antifúngicos/química , Candida albicans/enzimología , Proteínas Fúngicas/química , Pirazoles/química , Proteínas Recombinantes de Fusión/química , Esterol 14-Desmetilasa/química , Inhibidores de 14 alfa Desmetilasa/síntesis química , Secuencia de Aminoácidos , Antifúngicos/síntesis química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Candida albicans/química , Candida albicans/genética , Dominio Catalítico , Cristalografía por Rayos X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Pirazoles/síntesis química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Esterol 14-Desmetilasa/genética , Esterol 14-Desmetilasa/metabolismo , Homología Estructural de Proteína , Termodinámica
7.
Antimicrob Agents Chemother ; 59(12): 7249-54, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26369964

RESUMEN

Coccidioidomycosis, or valley fever, is a growing health concern endemic to the southwestern United States. Safer, more effective, and more easily administered drugs are needed especially for severe, chronic, or unresponsive infections. The novel fungal CYP51 inhibitor VT-1161 demonstrated in vitro antifungal activity, with MIC50 and MIC90 values of 1 and 2 µg/ml, respectively, against 52 Coccidioides clinical isolates. In the initial animal study, oral doses of 10 and 50 mg/kg VT-1161 significantly reduced fungal burdens and increased survival time in a lethal respiratory model in comparison with treatment with a placebo (P < 0.001). Oral doses of 25 and 50 mg/kg VT-1161 were similarly efficacious in the murine central nervous system (CNS) model compared to placebo treatment (P < 0.001). All comparisons with the positive-control drug, fluconazole at 50 mg/kg per day, demonstrated either statistical equivalence or superiority of VT-1161. VT-1161 treatment also prevented dissemination of infection from the original inoculation site to a greater extent than fluconazole. Many of these in vivo results can be explained by the long half-life of VT-1161 leading to sustained high plasma levels. Thus, the efficacy and pharmacokinetics of VT-1161 are attractive characteristics for long-term treatment of this serious fungal infection.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/farmacología , Antifúngicos/farmacología , Coccidioides/efectos de los fármacos , Coccidioidomicosis/tratamiento farmacológico , Fluconazol/farmacología , Fungemia/prevención & control , Piridinas/farmacología , Tetrazoles/farmacología , Inhibidores de 14 alfa Desmetilasa/sangre , Inhibidores de 14 alfa Desmetilasa/farmacocinética , Animales , Antifúngicos/sangre , Antifúngicos/farmacocinética , Coccidioides/enzimología , Coccidioides/crecimiento & desarrollo , Coccidioidomicosis/microbiología , Coccidioidomicosis/mortalidad , Coccidioidomicosis/patología , Modelos Animales de Enfermedad , Femenino , Fluconazol/sangre , Fluconazol/farmacocinética , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungemia/microbiología , Fungemia/mortalidad , Fungemia/patología , Semivida , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Piridinas/sangre , Piridinas/farmacocinética , Esterol 14-Desmetilasa/genética , Esterol 14-Desmetilasa/metabolismo , Análisis de Supervivencia , Tetrazoles/sangre , Tetrazoles/farmacocinética , Resultado del Tratamiento
8.
Int J Mol Sci ; 16(6): 12014-34, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-26016505

RESUMEN

Leptographium qinlingensis is a fungal associate of the Chinese white pine beetle (Dendroctonus armandi) and a pathogen of the Chinese white pine (Pinus armandi) that must overcome the terpenoid oleoresin defenses of host trees. L. qinlingensis responds to monoterpene flow with abundant mechanisms that include export and the use of these compounds as a carbon source. As one of the fungal cytochrome P450 proteins (CYPs), which play important roles in general metabolism, CYP51 (lanosterol 14-α demethylase) can catalyze the biosynthesis of ergosterol and is a target for antifungal drug. We have identified an L. qinlingensis CYP51F1 gene, and the phylogenetic analysis shows the highest homology with the 14-α-demethylase sequence from Grosmannia clavigera (a fungal associate of Dendroctonus ponderosae). The transcription level of CYP51F1 following treatment with terpenes and pine phloem extracts was upregulated, while using monoterpenes as the only carbon source led to the downregulation of CYP5F1 expression. The homology modeling structure of CYP51F1 is similar to the structure of the lanosterol 14-α demethylase protein of Saccharomyces cerevisiae YJM789, which has an N-terminal membrane helix 1 (MH1) and transmembrane helix 1 (TMH1). The minimal inhibitory concentrations (MIC) of terpenoid and azole fungicides (itraconazole (ITC)) and the docking of terpenoid molecules, lanosterol and ITC in the protein structure suggested that CYP51F1 may be inhibited by terpenoid molecules by competitive binding with azole fungicides.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Saccharomycetales/enzimología , Esterol 14-Desmetilasa/química , Esterol 14-Desmetilasa/genética , Proteínas Fúngicas/efectos de los fármacos , Floema/química , Filogenia , Extractos Vegetales/química , Extractos Vegetales/farmacología , ARN de Hongos/efectos de los fármacos , ARN de Hongos/metabolismo , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Saccharomycetales/efectos de los fármacos , Saccharomycetales/genética , Homología de Secuencia de Ácido Nucleico , Esterol 14-Desmetilasa/efectos de los fármacos , Homología Estructural de Proteína , Terpenos/farmacología
9.
Antimicrob Agents Chemother ; 59(1): 450-60, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25385095

RESUMEN

In Candida albicans, the ERG11 gene encodes lanosterol demethylase, the target of the azole antifungals. Mutations in ERG11 that result in an amino acid substitution alter the abilities of the azoles to bind to and inhibit Erg11, resulting in resistance. Although ERG11 mutations have been observed in clinical isolates, the specific contributions of individual ERG11 mutations to azole resistance in C. albicans have not been widely explored. We sequenced ERG11 in 63 fluconazole (FLC)-resistant clinical isolates. Fifty-five isolates carried at least one mutation in ERG11, and we observed 26 distinct positions in which amino acid substitutions occurred. We mapped the 26 distinct variant positions in these alleles to four regions in the predicted structure for Erg11, including its predicted catalytic site, extended fungus-specific external loop, proximal surface, and proximal surface-to-heme region. In total, 31 distinct ERG11 alleles were recovered, with 10 ERG11 alleles containing a single amino acid substitution. We then characterized 19 distinct ERG11 alleles by introducing them into the wild-type azole-susceptible C. albicans SC5314 strain and testing them for susceptibilities to FLC, itraconazole (ITC), and voriconazole (VRC). The strains that were homozygous for the single amino acid substitutions Y132F, K143R, F145L, S405F, D446E, G448E, F449V, G450E, and G464S had a ≥ 4-fold increase in FLC MIC. The strains that were homozygous for several double amino acid substitutions had decreased azole susceptibilities beyond those conferred by any single amino acid substitution. These findings indicate that mutations in ERG11 are prevalent among azole-resistant clinical isolates and that most mutations result in appreciable changes in FLC and VRC susceptibilities.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/uso terapéutico , Azoles/uso terapéutico , Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Esterol 14-Desmetilasa/genética , Sustitución de Aminoácidos , Antifúngicos/uso terapéutico , Candidiasis/microbiología , Dominio Catalítico/genética , Farmacorresistencia Fúngica , Fluconazol/uso terapéutico , Humanos , Itraconazol/uso terapéutico , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Voriconazol/uso terapéutico
10.
Appl Environ Microbiol ; 80(19): 6154-66, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25085484

RESUMEN

A candidate CYP51 gene encoding sterol 14α-demethylase from the fish oomycete pathogen Saprolegnia parasitica (SpCYP51) was identified based on conserved CYP51 residues among CYPs in the genome. It was heterologously expressed in Escherichia coli, purified, and characterized. Lanosterol, eburicol, and obtusifoliol bound to purified SpCYP51 with similar binding affinities (Ks, 3 to 5 µM). Eight pharmaceutical and six agricultural azole antifungal agents bound tightly to SpCYP51, with posaconazole displaying the highest apparent affinity (Kd, ≤3 nM) and prothioconazole-desthio the lowest (Kd, ∼51 nM). The efficaciousness of azole antifungals as SpCYP51 inhibitors was confirmed by 50% inhibitory concentrations (IC50s) of 0.17 to 2.27 µM using CYP51 reconstitution assays. However, most azole antifungal agents were less effective at inhibiting S. parasitica, Saprolegnia diclina, and Saprolegnia ferax growth. Epoxiconazole, fluconazole, itraconazole, and posaconazole failed to inhibit Saprolegnia growth (MIC100, >256 µg ml(-1)). The remaining azoles inhibited Saprolegnia growth only at elevated concentrations (MIC100 [the lowest antifungal concentration at which growth remained completely inhibited after 72 h at 20°C], 16 to 64 µg ml(-1)) with the exception of clotrimazole, which was as potent as malachite green (MIC100, ∼1 µg ml(-1)). Sterol profiles of azole-treated Saprolegnia species confirmed that endogenous CYP51 enzymes were being inhibited with the accumulation of lanosterol in the sterol fraction. The effectiveness of clotrimazole against SpCYP51 activity (IC50, ∼1 µM) and the concentration inhibiting the growth of Saprolegnia species in vitro (MIC100, ∼1 to 2 µg ml(-1)) suggest that clotrimazole could be used against Saprolegnia infections, including as a preventative measure by pretreatment of fish eggs, and for freshwater-farmed fish as well as in leisure activities.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/farmacología , Antifúngicos/farmacología , Clotrimazol/farmacología , Enfermedades de los Peces/tratamiento farmacológico , Saprolegnia/efectos de los fármacos , Animales , Antifúngicos/química , Azoles/química , Azoles/farmacología , Vías Biosintéticas , Clotrimazol/química , Enfermedades de los Peces/microbiología , Peces , Pruebas de Sensibilidad Microbiana/veterinaria , Filogenia , Saprolegnia/enzimología , Esterol 14-Desmetilasa/química , Esterol 14-Desmetilasa/genética , Esterol 14-Desmetilasa/metabolismo , Esteroles/análisis
12.
Antimicrob Agents Chemother ; 58(8): 4476-85, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24867971

RESUMEN

We characterized two additional membrane transporters (Fur4p and Dal4p) of the nucleobase cation symporter 1 (NCS1) family involved in the uptake transport of pyrimidines and related molecules in the opportunistic pathogenic yeast Candida lusitaniae. Simple and multiple null mutants were constructed by gene deletion and genetic crosses. The function of each transporter was characterized by supplementation experiments, and the kinetic parameters of the uptake transport of uracil were measured using radiolabeled substrate. Fur4p specifically transports uracil and 5-fluorouracil. Dal4p is very close to Fur4p and transports allantoin (glyoxyldiureide). Deletion of the FUR4 gene confers resistance to 5-fluorouracil as well as cross-resistance to triazoles and imidazole antifungals when they are used simultaneously with 5-fluorouracil. However, the nucleobase transporters are not involved in azole uptake. Only fluorinated pyrimidines, not pyrimidines themselves, are able to promote cross-resistance to azoles by both the salvage and the de novo pathway of pyrimidine synthesis. A reinterpretation of the data previously obtained led us to show that subinhibitory doses of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine also were able to trigger resistance to fluconazole in susceptible wild-type strains of C. lusitaniae and of different Candida species. Our results suggest that intracellular fluorinated nucleotides play a key role in azole resistance, either by preventing azoles from targeting the lanosterol 14-alpha-demethylase or its catalytic site or by acting as a molecular switch for the triggering of efflux transport.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Proteínas de Transporte de Nucleobases/genética , Proteínas de Transporte de Nucleótidos/genética , Azoles/farmacología , Transporte Biológico , Candida/genética , Candida/metabolismo , Cruzamientos Genéticos , Antagonismo de Drogas , Farmacorresistencia Fúngica , Flucitosina/farmacología , Fluorouracilo/farmacología , Proteínas Fúngicas/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas de Transporte de Nucleobases/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Esterol 14-Desmetilasa/genética , Esterol 14-Desmetilasa/metabolismo , Uracilo/farmacología , Uridina/análogos & derivados , Uridina/farmacología
13.
Antimicrob Agents Chemother ; 56(8): 4223-32, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22615281

RESUMEN

We identified a clinical isolate of Candida glabrata (CG156) exhibiting flocculent growth and cross-resistance to fluconazole (FLC), voriconazole (VRC), and amphotericin B (AMB), with MICs of >256, >256, and 32 µg ml(-1), respectively. Sterol analysis using gas chromatography-mass spectrometry (GC-MS) revealed that CG156 was a sterol 14α-demethylase (Erg11p) mutant, wherein 14α-methylated intermediates (lanosterol was >80% of the total) were the only detectable sterols. ERG11 sequencing indicated that CG156 harbored a single-amino-acid substitution (G315D) which nullified the function of native Erg11p. In heterologous expression studies using a doxycycline-regulatable Saccharomyces cerevisiae erg11 strain, wild-type C. glabrata Erg11p fully complemented the function of S. cerevisiae sterol 14α-demethylase, restoring growth and ergosterol synthesis in recombinant yeast; mutated CG156 Erg11p did not. CG156 was culturable using sterol-free, glucose-containing yeast minimal medium ((glc)YM). However, when grown on sterol-supplemented (glc)YM (with ergosta 7,22-dienol, ergosterol, cholestanol, cholesterol, Δ(7)-cholestenol, or desmosterol), CG156 cultures exhibited shorter lag phases, reached higher cell densities, and showed alterations in cellular sterol composition. Unlike comparator isolates (harboring wild-type ERG11) that became less sensitive to FLC and VRC when cultured on sterol-supplemented (glc)YM, facultative sterol uptake by CG156 did not affect its azole-resistant phenotype. Conversely, CG156 grown using (glc)YM with ergosterol (or with ergosta 7,22-dienol) showed increased sensitivity to AMB; CG156 grown using (glc)YM with cholesterol (or with cholestanol) became more resistant (MICs of 2 and >64 µg AMB ml(-1), respectively). Our results provide insights into the consequences of sterol uptake and metabolism on growth and antifungal resistance in C. glabrata.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Azoles/farmacología , Candida glabrata/metabolismo , Farmacorresistencia Fúngica Múltiple/genética , Mutación Missense , Esterol 14-Desmetilasa/genética , Secuencia de Bases , Transporte Biológico , Candida glabrata/efectos de los fármacos , Candida glabrata/genética , Candida glabrata/aislamiento & purificación , Ergosterol/metabolismo , Fluconazol/farmacología , Proteínas Fúngicas/genética , Humanos , Pruebas de Sensibilidad Microbiana , Pirimidinas/farmacología , Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN , Esteroles/metabolismo , Triazoles/farmacología , Voriconazol
14.
Pest Manag Sci ; 68(7): 1003-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22345072

RESUMEN

BACKGROUND: The long-term preservation of interesting phenotypes in plant pathogenic fungi allows for follow-up studies in the future. Twelve storage approaches were investigated to determine their effects on instability of propiconazole resistance for three demethylation inhibitor (DMI) fungicide-resistant and two DMI-sensitive isolates of Monilinia fructicola. They included mycelium in PDA slants under mineral oil, in PDA plugs under 10% glycerol, on dried filter paper and conidia on silica gel, each stored for 36 weeks at 4, - 20, and - 80 °C. RESULTS: None of the storage approaches prevented the rapid decline of EC(50) values for propiconazole in the three resistant isolates, and no significant differences were found among storage approaches (P = 0.787) or between storage approaches and consecutive transfers (P = 0.053). Most of the decline in resistance occurred during the first 4 weeks of storage. The DMI resistance-associated genetic element Mona, located in the immediate upstream region of the MfCYP51 gene, was still present in the three resistant isolates after 36 weeks of storage and weekly transfers. Furthermore, the Mona element and a portion of the MfCYP51 gene, which encodes the target enzyme for DMIs, did not reveal signs of DNA methylation. Resistance to propiconazole was partially regained in resistant isolates after two growth cycles on fresh peach fruit. CONCLUSIONS: Obtained data indicate that the decline of DMI resistance in M. fructicola cannot be prevented using commonly employed storage methods at various temperatures. The number of consecutive transfers and the storage duration prior to fungicide sensitivity tests in M. fructicola should be indicated in scientific papers.


Asunto(s)
Ascomicetos/efectos de los fármacos , Farmacorresistencia Fúngica , Fungicidas Industriales/toxicidad , Manejo de Especímenes/métodos , Triazoles/toxicidad , Ascomicetos/enzimología , Ascomicetos/genética , Metilación de ADN/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Manipulación de Alimentos , Glucosa/química , Prunus/microbiología , Solanum tuberosum/química , Esterol 14-Desmetilasa/genética
15.
Phytopathology ; 102(3): 298-305, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22085297

RESUMEN

The hemibiotrophic fungus Cercospora beticola causes leaf spot of sugar beet. Leaf spot control measures include the application of sterol demethylation inhibitor (DMI) fungicides. However, reduced sensitivity to DMIs has been reported recently in the Red River Valley sugar beet-growing region of North Dakota and Minnesota. Here, we report the cloning and molecular characterization of CbCyp51, which encodes the DMI target enzyme sterol P450 14α-demethylase in C. beticola. CbCyp51 is a 1,632-bp intron-free gene with obvious homology to other fungal Cyp51 genes and is present as a single copy in the C. beticola genome. Five nucleotide haplotypes were identified which encoded three amino acid sequences. Protein variant 1 composed 79% of the sequenced isolates, followed by protein variant 2 that composed 18% of the sequences and a single isolate representative of protein variant 3. Because resistance to DMIs can be related to polymorphism in promoter or coding sequences, sequence diversity was assessed by sequencing >2,440 nucleotides encompassing CbCyp51 coding and flanking regions from isolates with varying EC(50) values (effective concentration to reduce growth by 50%) to DMI fungicides. However, no mutations or haplotypes were associated with DMI resistance or sensitivity. No evidence for alternative splicing or differential methylation of CbCyp51 was found that might explain reduced sensitivity to DMIs. However, CbCyp51 was overexpressed in isolates with high EC(50) values compared with isolates with low EC(50) values. After exposure to tetraconazole, isolates with high EC(50) values responded with further induction of CbCyp51, with a positive correlation of CbCyp51 expression and tetraconazole concentration up to 2.5 µg ml(-1).


Asunto(s)
Ascomicetos/enzimología , Beta vulgaris/microbiología , Farmacorresistencia Fúngica/genética , Esterol 14-Desmetilasa/genética , Ascomicetos/efectos de los fármacos , Ascomicetos/genética , Secuencia de Bases , Clorobencenos/farmacología , Clonación Molecular , ADN Complementario/genética , ADN de Hongos/química , ADN de Hongos/genética , Dioxolanos/farmacología , Dosificación de Gen/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Haplotipos , Datos de Secuencia Molecular , Mutación , Hojas de la Planta/microbiología , Análisis de Secuencia de ADN , Esterol 14-Desmetilasa/aislamiento & purificación , Triazoles/farmacología
16.
J Agric Food Chem ; 58(24): 12810-6, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21090752

RESUMEN

Ustilago maydis infection is a serious disease affecting corn crops worldwide. Sterol 14α-demethylase (CYP51) is one of the key enzymes of sterol biosynthesis and an effective target of antifungal drugs. To further study the interaction between CYP51 and drugs and exploit more specific 14α-demethylase inhibitor (DMI) fungicides for U. maydis, in this study homology modeling of CYP51 from U. maydis (UmCYP51) templated as the eukaryotic orthologues (the human CYP51) and screening of new DMI fungicides based on optimized expression were carried out for the first time. In addition, XF-113 and ZST-4 were screened by analyzing the spectral characteristics between the purified UmCYP51-35 and fungicides. These results provide a theoretical basis and new ideas for efficient design and development of new antifungal drugs.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/química , Proteínas Fúngicas/metabolismo , Fungicidas Industriales/química , Expresión Génica , Esterol 14-Desmetilasa/genética , Ustilago/enzimología , Inhibidores de 14 alfa Desmetilasa/farmacología , Secuencia de Aminoácidos , Evaluación Preclínica de Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Fungicidas Industriales/farmacología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Alineación de Secuencia , Esterol 14-Desmetilasa/química , Esterol 14-Desmetilasa/aislamiento & purificación , Esterol 14-Desmetilasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA