Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Genet Genomics ; 299(1): 43, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598031

RESUMEN

Phosphatidylserine (PS) is important for maintaining growth, cytoskeleton, and various functions in yeast; however, its role in stress responses is poorly understood. In Schizosaccharomyces pombe, the PS synthase deletion (pps1∆) mutant shows defects in growth, morphology, cytokinesis, actin cytoskeleton, and cell wall integrity, and these phenotypes are rescued by ethanolamine supplementation. Here, we evaluated the role of Pps1 in the salt stress response in S. pombe. We found that pps1∆ cells are sensitive to salt stresses such as KCl and CaCl2 even in the presence of ethanolamine. Loss of the functional cAMP-dependent protein kinase (git3∆ or pka1∆) or phospholipase B Plb1 (plb1∆) enhanced the salt stress-sensitive phenotype in pps1∆ cells. Green fluorescent protein (GFP)-Pps1 was localized at the plasma membrane and endoplasmic reticulum regardless of the stress conditions. In pka1∆ cells, GFP-Pps1 was accumulated around the nucleus under the KCl stress. Pka1 was localized in the nucleus and the cytoplasm under normal conditions and transferred from the nucleus to the cytoplasm under salt-stress conditions. Pka1 translocated from the nucleus to the cytoplasm during CaCl2 stress in the wild-type cells, while it remained localized in the nucleus in pps1∆ cells. Expression and phosphorylation of Pka1-GFP were not changed in pps1∆ cells. Our results demonstrate that Pps1 plays an important role in the salt stress response in S. pombe.


Asunto(s)
Schizosaccharomyces , Schizosaccharomyces/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , Cloruro de Calcio , Estrés Salino/genética , Etanolamina , Etanolaminas , Proteínas Fluorescentes Verdes
2.
Planta ; 259(4): 85, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448714

RESUMEN

MAIN CONCLUSION: This study identified seven histone acetyltransferase-encoding genes (HATs) from Beta vulgaris L. (sugar beet) genome through bioinformatics tools and analyzed their expression profiles under salt stress. Sugar beet HATs are phylogenetically divided into four families: GNAT, MYST, CBP, and TAFII250. The BvHAT genes were differentially transcribed in leaves, stems, and roots of B. vulgaris salt-resistant (Casino) and -sensitive (Bravo) cultivars under salt stress. Histone acetylation is regulated by histone acetyltransferases (HATs), which catalyze ɛ-amino bond formation between lysine residues and acetyl groups with a cofactor, acetyl-CoA. Even though the HATs are known to participate in stress response and development in model plants, little is known about the functions of HATs in crops. In sugar beet (Beta vulgaris L.), they have not yet been identified and characterized. Here, an in silico analysis of the HAT gene family in sugar beet was performed, and their expression patterns in leaves, stems, and roots of B. vulgaris were analyzed under salt stress. Salt-resistant (Casino) and -sensitive (Bravo) beet cultivars were used for gene expression assays. Seven HATs were identified from sugar beet genome, and named BvHAG1, BvHAG2, BvHAG3, BvHAG4, BvHAC1, BvHAC2, and BvHAF1. The HAT proteins were divided into 4 groups including MYST, GNAT (GCN5, HAT1, ELP3), CBP and TAFII250. Analysis of cis-acting elements indicated that the BvHAT genes might be involved in hormonal regulation, light response, plant development, and abiotic stress response. The BvHAT genes were differentially expressed in leaves, stems, and roots under control and 300 mM NaCl. In roots of B. vulgaris cv. Bravo, the BvHAG1, BvHAG2, BvHAG4, BvHAF1, and BvHAC1 genes were dramatically expressed after 7 and 14 days of salt stress. Interestingly, the BvHAC2 gene was not expressed under both control and stress conditions. However, the expression of BvHAG2, BvHAG3, BvHAG4, BvHAC1, BvHAC2 genes showed a significant increase in response to salt stress in the roots of cv. Casino. This study provides new insights into the potential roles of histone acetyltransferases in sugar beet.


Asunto(s)
Beta vulgaris , Nitrilos , Beta vulgaris/genética , Filogenia , Estrés Salino/genética , Verduras , Histona Acetiltransferasas/genética , Azúcares
3.
Plant Physiol ; 194(3): 1834-1852, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38057162

RESUMEN

Calcium is known to improve seed-germination rates under salt stress. We investigated the involvement of calcium ions (Ca2+) in regulating HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1; 1), which encodes a Na+/K+ transporter, and its post-translational regulator TYPE 2C PROTEIN PHOSPHATASE 49 (PP2C49), in germinating Arabidopsis (Arabidopsis thaliana) seedlings. Germination rates of hkt1 mutant seeds under salt stress remained unchanged by CaCl2 treatment in wild-type Arabidopsis, whereas pp2c49 mutant seeds displayed improved salt-stress tolerance in the absence of CaCl2 supplementation. Analysis of HKT1;1 and PP2C49 promoter activity revealed that CaCl2 treatment results in radicle-focused expression of HKT1;1 and reduction of the native radicle-exclusive expression of PP2C49. Ion-content analysis indicated that CaCl2 treatment improves K+ retention in germinating wild-type seedlings under salt stress, but not in hkt1 seedlings. Transgenic seedlings designed to exclusively express HKT1;1 in the radicle during germination displayed higher germination rates under salt stress than the wild type in the absence of CaCl2 treatment. Transcriptome analysis of germinating seedlings treated with CaCl2, NaCl, or both revealed 118 upregulated and 94 downregulated genes as responsive to the combined treatment. Bioinformatics analysis of the upstream sequences of CaCl2-NaCl-treatment-responsive upregulated genes revealed the abscisic acid response element CACGTGTC, a potential CaM-binding transcription activator-binding motif, as most prominent. Our findings suggest a key role for Ca2+ in mediating salt-stress responses during germination by regulating genes that function to maintain Na+ and K+ homeostasis, which is vital for seed germination under salt stress.


Asunto(s)
Arabidopsis , Germinación , Germinación/genética , Arabidopsis/genética , Calcio , Cloruro de Calcio , Semillas/genética , Cloruro de Sodio/farmacología , Estrés Salino/genética , Plantones/genética , Iones , Proteínas de Transporte de Membrana
4.
Sci Rep ; 13(1): 22074, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086906

RESUMEN

The continuous increase of saline-alkali areas worldwide has led to the emergence of saline-alkali conditions, which are the primary abiotic stress or hindering the growth of plants. Beet is among the main sources of sugar, and its yield and sugar content are notably affected by saline-alkali stress. Despite sugar beet being known as a salt-tolerant crop, there are few studies on the mechanisms underlying its salt tolerance, and previous studies have mainly delineated the crop's response to stress induced by NaCl. Recently, advancements in miRNA-mRNA network analysis have led to an increased understanding of how plants, including sugar beet, respond to stress. In this study, seedlings of beet variety "N98122" were grown in the laboratory using hydroponics culture and were exposed to salt stress at 40 days of growth. According to the phenotypic adaptation of the seedlings' leaves from a state of turgidity to wilting and then back to turgidity before and after exposure, 18 different time points were selected to collect samples for analysis. Subsequently, based on the data of real-time quantitative PCR (qRT-PCR) of salt-responsive genes, the samples collected at the 0, 2.5, 7.5, and 16 h time points were subjected to further analysis with experimental materials. Next, mRNA-seq data led to the identification of 8455 differentially expressed mRNAs (DEMs) under exposure to salt stress. In addition, miRNA-seq based investigation retrieved 3558 miRNAs under exposure to salt stress, encompassing 887 known miRNAs belonging to 783 families and 2,671 novel miRNAs. With the integrated analysis of miRNA-mRNA network, 57 miRNA-target gene pairs were obtained, consisting of 55 DEMIs and 57 DEMs. Afterwards, we determined the pivotal involvement of aldh2b7, thic, and δ-oat genes in the response of sugar beet to the effect of salt stress. Subsequently, we identified the miRNAs novel-m035-5p and novel-m0365-5p regulating the aldh gene and miRNA novel-m0979-3p regulating the thic gene. The findings of miRNA and mRNA expression were validated by qRT-PCR.


Asunto(s)
Beta vulgaris , MicroARNs , Humanos , MicroARNs/metabolismo , Estrés Salino/genética , Plantones/genética , Plantones/metabolismo , Antioxidantes/metabolismo , Álcalis/farmacología , ARN Mensajero/metabolismo , Azúcares/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Genes (Basel) ; 14(10)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37895292

RESUMEN

GATA proteins are a class of zinc-finger DNA-binding proteins that participate in diverse regulatory processes in plants, including the development processes and responses to environmental stresses. However, a comprehensive analysis of the GATA gene family has not been performed in a wolfberry (Lycium barbarum L.) or other Solanaceae species. There are 156 GATA genes identified in five Solanaceae species (Lycium barbarum L., Solanum lycopersicum L., Capsicum annuum L., Solanum tuberosum L., and Solanum melongena L.) in this study. Based on their phylogeny, they can be categorized into four subfamilies (I-IV). Noticeably, synteny analysis revealed that dispersed- and whole-genome duplication contributed to the expansion of the GATA gene family. Purifying selection was a major force driving the evolution of GATA genes. Moreover, the predicted cis-elements revealed the potential roles of wolfberry GATA genes in phytohormone, development, and stress responses. Furthermore, the RNA-seq analysis identified 31 LbaGATA genes with different transcript profiling under salt stress. Nine candidate genes were then selected for further verification using quantitative real-time PCR. The results revealed that four candidate LbaGATA genes (LbaGATA8, LbaGATA19, LbaGATA20, and LbaGATA24) are potentially involved in salt-stress responses. In conclusion, this study contributes significantly to our understanding of the evolution and function of GATA genes among the Solanaceae species, including wolfberry.


Asunto(s)
Lycium , Solanum tuberosum , Lycium/genética , Factores de Transcripción GATA/genética , Estrés Salino/genética , Estrés Fisiológico/genética , Solanum tuberosum/genética
6.
BMC Plant Biol ; 23(1): 380, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550621

RESUMEN

BACKGROUND: Oregano (Origanum vulgare L.), one of the important medicinal plants in the world, has valuable pharmacological compounds with antimicrobial, antiviral, antioxidant, anti-inflammatory, antispasmodic, antiurolithic, antiproliferative and neuroprotective activities. Phenolic monoterpenes such as thymol and carvacrol with many medical importance are found in Oregano essential oil. The biosynthesis of these compounds is carried out through the methyl erythritol-4 phosphate (MEP) pathway. Environmental stresses such as salinity might improve the secondary metabolites in medicinal plants. The influence of salinity stress (0 (control), 25, 50 and 100 mM NaCl) on the essential oil content, composition and expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), γ-terpinene synthase (Ovtps2) and cytochrome P450 monooxygenases (CYP71D180) genes involved in thymol and carvacrol biosynthesis, was investigated in two oregano subspecies (vulgare and gracile). RESULTS: Essential oil content was increased at low NaCl concentration (25 mM) compared with non-stress conditions, whereas it was decreased as salinity stress intensified (50 and 100 mM). Essential oil content was significantly higher in subsp. gracile than subsp. vulgare. The highest (0.20 mL pot-1) and lowest (0.06 mL pot-1) amount of essential oil yield was obtained in subsp. gracile at 25 and 100 mM NaCl, respectively. The content of carvacrol, as the main component of essential oil, decreased with increasing salinity level in subsp. gracile, but increased in subsp. vulgare. The highest expression of DXR, Ovtps2 and CYP71D180 genes was observed at 50 mM NaCl in subsp. vulgare. While, in subsp. gracile, the expression of the mentioned genes decreased with increasing salinity levels. A positive correlation was obtained between the expression of DXR, Ovtps2 and CYP71D180 genes with carvacrol content in both subspecies. On the other hand, a negative correlation was found between the expression of CYP71D180 and carvacrol content in subsp. gracile. CONCLUSIONS: The findings of this study demonstrated that both oregano subspecies can tolerate NaCl salinity up to 50 mM without significant reduction in essential oil yield. Also, moderate salinity stress (50 mM NaCl) in subsp. vulgare might increase the carvacrol content partly via increment the expression levels of DXR, Ovtps2 and CYP71D180 genes.


Asunto(s)
Aceites Volátiles , Origanum , Aceites Volátiles/metabolismo , Timol , Origanum/genética , Origanum/metabolismo , Cloruro de Sodio , Monoterpenos/metabolismo , Estrés Salino/genética
7.
Plant Sci ; 335: 111794, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37459955

RESUMEN

Salinity is an important environmental factor in crop growth and development. N6-methyladenosine (m6A) is an essential epigenetic modification that regulates plant-environment interaction. Sugar beet is a major sugar-yielding crop that has a certain tolerance to salt, but the dynamic response elicited by the m6A modification of transcripts under salt stress remains unknown. In this study, sugar beet was exposed to 300 mM NaCl to investigate its physiological response to high salinity and transcriptome-wide m6A modification profile. After the salt treatment, 7737 significantly modified m6A sites and 4981 differentially expressed genes (DEGs) were identified. Among the 312 m6A-modified DEGs, 113 hypomethylated DEGs were up-regulated and 99 hypermethylated DEGs were down-regulated, indicating a negative correlation between m6A modification and gene expression. Well-known salt tolerance genes (e.g., sodium/hydrogen exchanger 1, choline monooxygenase, and nucleoredoxin 2) and phospholipid signaling pathway genes (phosphoinositol-specific phospholipase C, phospholipase D, diacylglycerol kinase 1, etc.) were also among the m6A-modified genes. Further analysis showed that m6A modification may regulate salt-tolerant related gene expression by controlling mRNA stability. Therefore, changes in m6A modification may negatively regulate the expression of the salt-resistant genes in sugar beet, at least in part by modulating the stability of the mRNA via demethylase BvAlkbh10B. These findings could provide a better understanding of the epigenetic mechanisms of salt tolerance in sugar beets and uncover new candidate genes for improving the production of sugar beets planted in high-salinity soil.


Asunto(s)
Beta vulgaris , Tolerancia a la Sal , Tolerancia a la Sal/genética , Beta vulgaris/genética , Regulación de la Expresión Génica de las Plantas , Estrés Salino/genética , Verduras
8.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511417

RESUMEN

Salt is one of the most important environmental factors in crop growth and development. N6-methyladenosine (m6A) is an epigenetic modification that regulates plant-environment interaction at transcriptional and translational levels. Sugar beet is a salt-tolerant sugar-yielding crop, but how m6A modification affects its response to salt stress remains unknown. In this study, m6A-seq was used to explore the role of m6A modification in response to salt stress in sugar beet (Beta vulgaris). Transcriptome-wide m6A methylation profiles and physiological responses to high salinity were investigated in beet roots. After treatment with 300 mM NaCl, the activities of peroxidase and catalase, the root activity, and the contents of Na+, K+, and Ca2+ in the roots were significantly affected by salt stress. Compared with the control plants, 6904 differentially expressed genes (DEGs) and 566 differentially methylated peaks (DMPs) were identified. Association analysis revealed that 243 DEGs contained DMP, and 80% of these DEGs had expression patterns that were negatively correlated with the extent of m6A modification. Further analysis verified that m6A methylation may regulate the expression of some genes by controlling their mRNA stability. Functional analysis revealed that m6A modifications primarily affect the expression of genes involved in energy metabolism, transport, signal transduction, transcription factors, and cell wall organization. This study provides evidence that a post-transcriptional regulatory mechanism mediates gene expression during salt stress by affecting the stability of mRNA in the root.


Asunto(s)
Beta vulgaris , Beta vulgaris/metabolismo , Epigenoma , Estrés Salino/genética , Transcriptoma , Azúcares/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Estrés Fisiológico/genética
9.
Int J Biol Macromol ; 240: 124436, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37068542

RESUMEN

NAC (NAM, ATAF1/2 and CUC2) transcription factors (TFs) are a class of TFs families unique to plants, which not only play an important role in the growth and developmental stages of plants but also function in response to stress and regulation of secondary metabolite biosynthesis. However, there are few studies on NAC genes in the medicinal plant Isatis indigotica. In this study, 96 IiNAC genes were identified based on the whole-genome data of I. indigotica, distributed in seven chromosomes and three contigs. IiNAC genes were structurally conserved and divided into 15 subgroups. Cis-elements were identified in the promoter region of the IiNAC gene in response to plant growth and development, abiotic stresses and hormones. In addition, transcriptome and metabolome data of I. indigotica leaves under salt stress were analyzed to construct a network of IiNAC gene co-expression and metabolite association. Ten differentially expressed IiNAC genes were co-expressed with 109 TFs, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that most of these genes were associated with plant growth and development and abiotic stress responses. Eleven IiNAC genes were positively associated with 72 metabolites. Eleven IiNAC genes were positively or negatively associated with 47 metabolites through 37 TFs. Commonly associated secondary metabolites include two terpenoids, abscisic acid and bilobalide, two flavonoids, dihydrokaempferol and syringaldehyde, a coumarin, 7-methoxycoumarin, an alkaloid, lupinine, and quinone dihydrotanshinone I. This study provides important data to support the identification of the NAC gene family in I. indigotica and the regulatory functions of IiNAC genes in metabolites under salt stress.


Asunto(s)
Isatis , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Isatis/genética , Isatis/metabolismo , Transcriptoma , Genes de Plantas , Estrés Salino/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
PeerJ ; 10: e14602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570011

RESUMEN

Soil salinity has been an increasing problem worldwide endangering crop production and human food security. It is an ideal strategy to excavate stress resistant genes and develop salt tolerant crops. NAC (no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon) transcription factors have been demonstrated to be involved in salt stress response. However, relevant studies have not been observed in garlic, an important vegetable consumed in the world. In this study, a total of 46 AsNAC genes encoding NAC proteins were identified in garlic plant by transcriptome data. Phylogenetic analysis showed that the examined AsNAC proteins were clustered into 14 subgroups. Motif discovery revealed that the conserved domain region was mainly composed of five conserved subdomains. Most of the genes selected could be induced by salt stress in different tissues, indicating a potential role in salt stress response. Further studies may focus on the molecular mechanisms of the AsNAC genes in salt stress response. The results of the current work provided valuable resources for researchers aimed at developing salt tolerant crops.


Asunto(s)
Arabidopsis , Ajo , Humanos , Factores de Transcripción/genética , Transcriptoma , Arabidopsis/genética , Ajo/genética , Activación Transcripcional , Meristema/genética , Filogenia , Cotiledón/genética , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Estrés Salino/genética
11.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36232881

RESUMEN

As one of the largest transcription factor families in plants, bZIP transcription factors play important regulatory roles in different biological processes, especially in the process of stress response. Salt stress inhibits the growth and yield of sugar beet. However, bZIP-related studies in sugar beet (Beta vulgaris L.) have not been reported. This study aimed to identify the bZIP transcription factors in sugar beet and analyze their biological functions and response patterns to salt stress. Using bioinformatics, 48 BvbZIP genes were identified in the genome of sugar beet, encoding 77 proteins with large structural differences. Collinearity analysis showed that three pairs of BvbZIP genes were fragment replication genes. The BvbZIP genes were grouped according to the phylogenetic tree topology and conserved structures, and the results are consistent with those reported in Arabidopsis. Under salt stress, the expression levels of most BvbZIP genes were decreased, and only eight genes were up-regulated. GO analysis showed that the BvbZIP genes were mainly negatively regulated in stress response. Protein interaction prediction showed that the BvbZIP genes were mainly involved in light signaling and ABA signal transduction, and also played a certain role in stress responses. In this study, the structures and biological functions of the BvbZIP genes were analyzed to provide foundational data for further mechanistic studies and for facilitating the efforts toward the molecular breeding of stress-resilient sugar beet.


Asunto(s)
Arabidopsis , Beta vulgaris , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Estrés Fisiológico/genética , Azúcares/metabolismo , Factores de Transcripción/metabolismo
12.
BMC Plant Biol ; 22(1): 479, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209052

RESUMEN

BACKGROUND: As the king of all herbs, the medicinal value of ginseng is self-evident. The perennial nature of ginseng causes its quality to be influenced by various factors, one of which is the soil environment. During plant growth and development, MYB transcription factors play an important role in responding to abiotic stresses and regulating the synthesis of secondary metabolites. However, there are relatively few reports on the MYB transcription factor family in Panax ginseng. RESULTS: This study identified 420 PgMYB transcripts under 117 genes ID in the Jilin ginseng transcriptome database. Phylogenetic analysis showed that PgMYB transcripts in Jilin ginseng were classified into 19 functional subclasses. The GO annotation result indicated that the functional differentiation of PgMYB transcripts was annotated to 11 functional nodes at GO Level 2 in ginseng. Expression pattern analysis of PgMYB transcripts based on the expression data (TPM) that PgMYB transcripts were revealed spatiotemporally specific in expression patterns. We performed a weighted network co-expression network analysis on the expression of PgMYB transcripts from different samples. The co-expression network containing 51 PgMYB transcripts was formed under a soft threshold of 0.85, revealing the reciprocal relationship of PgMYB in ginseng. Treatment of adventitious roots of ginseng with different concentrations of NaCl revealed four up-regulated expression of PgMYB transcripts that can candidate genes for salt resistance studies in ginseng. CONCLUSIONS: The present findings provide data resources for the subsequent study of the functions of MYB transcription factor family members in ginseng, and provide an experimental basis for the anti-salt functions of MYB transcription factors in Panax ginseng.


Asunto(s)
Panax , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Panax/genética , Panax/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Cloruro de Sodio/metabolismo , Suelo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36076993

RESUMEN

Salinity is one of the most serious threats to agriculture worldwide. Sugar beet is an important sugar-yielding crop and has a certain tolerance to salt; however, the genome-wide dynamic response to salt stress remains largely unknown in sugar beet. In the present study, physiological and transcriptome analyses of sugar beet leaves and roots were compared under salt stress at five time points. The results showed that different salt stresses influenced phenotypic characteristics, leaf relative water content and root activity in sugar beet. The contents of chlorophyll, malondialdehyde (MDA), the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) were also affected by different salt stresses. Compared with control plants, there were 7391 and 8729 differentially expressed genes (DEGs) in leaves and roots under salt stress, respectively. A total of 41 hub genes related to salt stress were identified by weighted gene co-expression network analysis (WGCNA) from DEGs, and a transcriptional regulatory network based on these genes was constructed. The expression pattern of hub genes under salt stress was confirmed by qRT-PCR. In addition, the metabolite of sugar beet was compared under salt stress for 24 h. A total of 157 and 157 differentially accumulated metabolites (DAMs) were identified in leaves and roots, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis further indicated that DEGs and DAMs act on the starch and sucrose metabolism, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis and plant hormone signal transduction pathway. In this study, RNA-seq, WGCNA analysis and untargeted metabolomics were combined to investigate the transcriptional and metabolic changes of sugar beet during salt stress. The results provided new insights into the molecular mechanism of sugar beet response to salt stress, and also provided candidate genes for sugar beet improvement.


Asunto(s)
Beta vulgaris , Beta vulgaris/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metaboloma , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Salino/genética , Estrés Fisiológico/genética , Azúcares/metabolismo , Transcriptoma
14.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142590

RESUMEN

Sorghum ("Jitian 3") is a salt-tolerant seed cultivar used regularly in marginal lands, such as those with saline soils. Herein, we examined the potential of employing gibberellic acid (GA3) as an inducer of sorghum development during salt stress. Thus far, there have been no reports on the signaling network involved in the GA3-mediated regulation of sorghum development. In this study, we demonstrated that the stimulating properties of 50 mg/L GA3 on sorghum development was far superior to other GA3 concentrations under a 150 mM NaCl salinity condition. Furthermore, using methylated RNA immunoprecipitation sequencing (MeRIP-seq), we established an m6A methylation (m6A-M) profile in sorghum following exposure to 50 mg/L GA3. Overall, 23,363 m6A peaks and 16,200 m6A genes were screened among the GA3-treated and control leaves. These identified peaks were shown to be primarily enriched in the coding, as were the 3'- and 5'-untranslated regions. In addition, we employed m6A and transcript expression cross-analysis to identify 70 genes with differential transcript expression and simultaneous m6A-M. Intriguingly, the principal gene, LOC8066282, which is associated with LOC8084853, was shown to be intricately linked to the phosphatidylinositol signaling, which in turn regulates sorghum development and response to salt stress. This investigation presents a novel RNA m6A-M profile in sorghum, which may facilitate new insights into the underlying signaling behind salt stress resistance. This work will also benefit future investigations on foreign GA3 administration of sorghum.


Asunto(s)
Sorghum , Epigenoma , Perfilación de la Expresión Génica , Fosfatidilinositoles/metabolismo , ARN/metabolismo , Estrés Salino/genética , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Suelo , Sorghum/metabolismo , Transcriptoma , Regiones no Traducidas
15.
PeerJ ; 10: e12719, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35036097

RESUMEN

In eukaryotes, N6 -methyladenosine (m6A) is the most abundant and highly conserved RNA modification. In vivo, m6A demethylase dynamically regulates the m6A level by removing the m6A marker where it plays an important role in plant growth, development and response to abiotic stress. The confirmed m6A demethylases in Arabidopsis thaliana include ALKBH9B and ALKBH10B, both belonging to the ALKB family. In this study, BvALKB family members were identified in sugar beet genome-wide database, and their conserved domains, gene structures, chromosomal locations, phylogeny, conserved motifs and expression of BvALKB genes were analyzed. Almost all BvALKB proteins contained the conserved domain of 2OG-Fe II-Oxy. Phylogenetic analysis suggested that the ten proteins were clustered into five groups, each of which had similar motifs and gene structures. Three Arabidopsis m6A demethylase-homologous proteins (BvALKBH6B, BvALKBH8B and BvALKBH10B) were of particular interest in our study. Expression profile analysis showed that almost all genes were up-regulated or down-regulated to varying degrees under salt stress. More specifically, BvALKBH10B homologous to AtALKBH10B was significantly up-regulated, suggesting that the transcriptional activity of this gene is responsive to salt stress. This study provides a theoretical basis for further screening of m6A demethylase in sugar beet, and also lays a foundation for studying the role of ALKB family proteins in growth, development and response to salinity stress.


Asunto(s)
Arabidopsis , Beta vulgaris , Arabidopsis/genética , Beta vulgaris/genética , Filogenia , Estrés Salino/genética , Estrés Fisiológico/genética , Azúcares/metabolismo , Genoma de Planta , Adenosina/metabolismo
16.
Plant Cell Rep ; 41(3): 535-548, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33651205

RESUMEN

KEY MESSAGE: StCDPK2 is an early player in the salt stress response in potato plants; its overexpression promoted ROS scavenging, chlorophyll stability, and the induction of stress-responsive genes conferring tolerance to salinity. The salinity of soils affects plant development and is responsible for great losses in crop yields. Calcium-dependent protein kinases (CDPKs) are sensor-transducers that decode Ca2+ signatures triggered by abiotic stimuli and translate them into physiological responses. Histochemical analyses of potato plants harboring StCDPK2 promoter fused to the reporter gene ß-glucuronidase (ProStCDPK2:GUS) revealed that GUS activity was high in the leaf blade and veins, it was restricted to root tips and lateral root primordia, and was observed upon stolon swelling. Comparison with ProStCDPK1:GUS and ProStCDPK3:GUS plants revealed their differential activities in the plant tissues. ProStCDPK2:GUS plants exposed to high salt presented enhanced GUS activity in roots which correlated with the numerous stress-responsive sites predicted in its promoter sequence. Moreover, StCDPK2 expression increased in in vitro potato plants after 2 h of high salt exposure and in greenhouse plants exposed to a dynamic stress condition. As inferred from biometric data and chlorophyll content, plants that overexpress StCDPK2 were more tolerant than wild-type plants when exposed to high salt. Overexpressing plants have a more efficient antioxidant system; they showed reduced accumulation of peroxide and higher catalase activity under salt conditions, and enhanced expression of WRKY6 and ERF5 transcription factors under control conditions. Our results indicate that StCDPK2 is an early player in the salt stress response and support a positive correlation between StCDPK2 overexpression and tolerance towards salt stress.


Asunto(s)
Solanum tuberosum , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estrés Salino/genética , Solanum tuberosum/metabolismo , Estrés Fisiológico/genética
17.
PLoS One ; 16(12): e0261215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34914734

RESUMEN

Dehydration Responsive Element Binding (DREB) regulates the expression of numerous stress-responsive genes, and hence plays a pivotal role in abiotic stress responses and tolerance in plants. The study aimed to develop a complete overview of the cis-acting regulatory elements (CAREs) present in S. tuberosum DREB gene promoters. A total of one hundred and four (104) cis-regulatory elements (CREs) were identified from 2.5kbp upstream of the start codon (ATG). The in-silico promoter analysis revealed variable sets of cis-elements and functional diversity with the predominance of light-responsive (30%), development-related (20%), abiotic stress-responsive (14%), and hormone-responsive (12%) elements in StDREBs. Among them, two light-responsive elements (Box-4 and G-box) were predicted in 64 and 61 StDREB genes, respectively. Two development-related motifs (AAGAA-motif and as-1) were abundant in StDREB gene promoters. Most of the DREB genes contained one or more Myeloblastosis (MYB) and Myelocytometosis (MYC) elements associated with abiotic stress responses. Hormone-responsive element i.e. ABRE was found in 59 out of 66 StDREB genes, which implied their role in dehydration and salinity stress. Moreover, six proteins were chosen corresponding to A1-A6 StDREB subgroups for secondary structure analysis and three-dimensional protein modeling followed by model validation through PROCHECK server by Ramachandran Plot. The predicted models demonstrated >90% of the residues in the favorable region, which further ensured their reliability. The present study also anticipated pocket binding sites and disordered regions (DRs) to gain insights into the structural flexibility and functional annotation of StDREB proteins. The protein association network determined the interaction of six selected StDREB proteins with potato proteins encoded by other gene families such as MYB and NAC, suggesting their similar functional roles in biological and molecular pathways. Overall, our results provide fundamental information for future functional analysis to understand the precise molecular mechanisms of the DREB gene family in S. tuberosum.


Asunto(s)
Regiones Promotoras Genéticas/genética , Solanum tuberosum/genética , Factores de Transcripción/genética , Arabidopsis/genética , Deshidratación/genética , Sequías , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Estudio de Asociación del Genoma Completo/métodos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética , Estrés Salino/genética , Homología de Secuencia de Ácido Nucleico , Solanum tuberosum/crecimiento & desarrollo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo
18.
Plant Sci ; 312: 111055, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34620449

RESUMEN

High salt environments can induce stress in different plants. The genes containing the ZAT domain constitute a family that belongs to a branch of the C2H2 family, which plays a vital role in responding to abiotic stresses. In this study, we identified 169 ZAT genes from seven plant species, including 44 ZAT genes from G. hirsutum. Phylogenetic tree analysis divided ZAT genes in six groups with conserved gene structure, protein motifs. Two C2H2 domains and an EAR domain and even chromosomal distribution on At and Dt sub-genome chromosomes of G. hirsutum was observed. GhZAT6 was primarily expressed in the root tissue and responded to NaCl and ABA treatments. Subcellular localization found that GhZAT6 was located in the nucleus and demonstrated transactivation activity during a transactivation activity assay. Arabidopsis transgenic lines overexpressing the GhZAT6 gene showed salt tolerance and grew more vigorously than WT on MS medium supplemented with 100 mmol NaCl. Additionally, the silencing of the GhZAT6 gene in cotton plants showed more obvious leaf wilting than the control plants, which were subjected to 400 mmol NaCl treatment. Next, the expressions of GhAPX1, GhFSD1, GhFSD2, and GhSOS3 were significantly lower in the GhZAT6-silenced plants treated with NaCl than the control. Based on these findings, GhZAT6 may be involved in the ABA pathway and mediate salt stress tolerance by regulating ROS-related gene expression.


Asunto(s)
Estrés Salino/genética , Estrés Salino/fisiología , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiología , Dedos de Zinc/genética , Arabidopsis/genética , Arabidopsis/fisiología , Cacao/genética , Cacao/fisiología , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudio de Asociación del Genoma Completo , Gossypium/genética , Gossypium/fisiología , Oryza/genética , Oryza/fisiología , Filogenia , Plantas Modificadas Genéticamente , Sorghum/genética , Sorghum/fisiología
19.
Plant Signal Behav ; 16(11): 1958129, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34429013

RESUMEN

Sunflower (Helianthus annuus L.) is one of the major oilseed crops cultivated world over for its high-quality oil rich in linoleic acid. It also has established applications in pharmaceutical and biotechnological industries, mainly through recombinant production of unique oil body (OB) membrane proteins-oleosins, which are used for producing a wide variety of vaccines, food products, cosmetics and nutraceuticals. The present review provides a critical analysis of the progress made in advancing our knowledge in sunflower biology, ranging from mechanisms of pollen-stigma interaction, seed development, physiology of seed germination and seedling growth under salt stress, and finally understanding the signaling routes associated with various biochemical pathways regulating seedling growth. Role of nitric oxide (NO) triggered post-translational modifications (PTMs), discovered in the recent past, have paved way for future research directions leading to further understanding of sunflower developmental physiology. Novel protocols recently developed to monitor temporal and spatial distributions of various biochemicals involved in above-stated developmental events in sunflower, will go a long way for similar applications in plant biology in future.


Asunto(s)
Comunicación Celular/fisiología , Flores/metabolismo , Helianthus/crecimiento & desarrollo , Helianthus/metabolismo , Polen/metabolismo , Tolerancia a la Sal/fisiología , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Comunicación Celular/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Helianthus/genética , Polen/genética , Estrés Salino/genética , Estrés Salino/fisiología , Tolerancia a la Sal/genética , Plantones/genética , Plantones/metabolismo , Semillas/genética , Semillas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
20.
BMC Plant Biol ; 21(1): 175, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33838660

RESUMEN

BACKGROUND: Despite its good salt-tolerance level, key genes and pathways involved with temporal salt response of common bermudagrass (Cynodon dactylon (L.) Pers.) have not been explored. Therefore, in this study, to understand the underlying regulatory mechanism following the different period of salt exposure, a comprehensive transcriptome analysis of the bermudagrass roots was conducted. RESULTS: The transcripts regulated after 1 h, 6 h, or 24 h of hydroponic exposure to 200 mM NaCl in the roots of bermudagrass were investigated. Dataset series analysis revealed 16 distinct temporal salt-responsive expression profiles. Enrichment analysis identified potentially important salt responsive genes belonging to specific categories, such as hormonal metabolism, secondary metabolism, misc., cell wall, transcription factors and genes encoded a series of transporters. Weighted gene co-expression network analysis (WGCNA) revealed that lavenderblush2 and brown4 modules were significantly positively correlated with the proline content and peroxidase activity and hub genes within these two modules were further determined. Besides, after 1 h of salt treatment, genes belonging to categories such as signalling receptor kinase, transcription factors, tetrapyrrole synthesis and lipid metabolism were immediately and exclusively up-enriched compared to the subsequent time points, which indicated fast-acting and immediate physiological responses. Genes involved in secondary metabolite biosynthesis such as simple phenols, glucosinolates, isoflavones and tocopherol biosynthesis were exclusively up-regulated after 24 h of salt treatment, suggesting a slightly slower reaction of metabolic adjustment. CONCLUSION: Here, we revealed salt-responsive genes belonging to categories that were commonly or differentially expressed in short-term salt stress, suggesting possible adaptive salt response mechanisms in roots. Also, the distinctive salt-response pathways and potential salt-tolerant hub genes investigated can provide useful future references to explore the molecular mechanisms of bermudagrass.


Asunto(s)
Cynodon/fisiología , Genes de Plantas , Raíces de Plantas/fisiología , Estrés Salino/genética , Transducción de Señal , Transcriptoma/fisiología , Cynodon/genética , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA