Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
World J Microbiol Biotechnol ; 39(9): 251, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37442840

RESUMEN

Squalene is a widely distributed natural triterpene, as it is a key precursor in the biosynthesis of all sterols. It is a compound of high commercial value worldwide because it has nutritional, medicinal, pharmaceutical, and cosmetic applications, due to its different biological properties. The main source of extraction has been shark liver oil, which is currently unviable on a larger scale due to the impacts of overexploitation. Secondary sources are mainly vegetable oils, although a limited one, as they allow low productive yields. Due to the diversity of applications that squalene presents and its growing demand, there is an increasing interest in identifying sustainable sources of extraction. Wild species of thraustochytrids, which are heterotrophic protists, have been identified to have the highest squalene content compared to bacteria, yeasts, microalgae, and vegetable sources. Several studies have been carried out to identify the bioprocess conditions and regulation factors, such as the use of eustressors that promote an increase in the production of this triterpene; however, studies focused on optimizing their productive yields are still in its infancy. This review includes the current trends that also comprises the advances in genetic regulations in these microorganisms, with a view to identify the culture conditions that have been favorable in increasing the production of squalene, and the influences that both bioprocess conditions and applied regulation factors partake at a metabolic level.


Asunto(s)
Escualeno , Estramenopilos , Escualeno/metabolismo , Aceites de Plantas , Estramenopilos/genética , Estramenopilos/metabolismo , Esteroles
2.
Microb Cell Fact ; 22(1): 12, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36647076

RESUMEN

Microalgae are considered a suitable production platform for high-value lipids and oleochemicals. Several species including Nannochloropsis oceanica produce large amounts of essential [Formula: see text]-3 polyunsaturated fatty acids (PUFAs) which are integral components of food and feed and have been associated with health-promoting effects. N. oceanica can further accumulate high contents of non-polar lipids with chemical properties that render them a potential replacement for plant oils such as palm oil. However, biomass and lipid productivities obtained with microalgae need to be improved to reach commercial feasibility. Genetic engineering can improve biomass and lipid productivities, for instance by increasing carbon flux to lipids. Here, we report the overexpression of glycerol-3-phosphate acyltransferase (GPAT) in N. oceanica during favorable growth conditions as a strategy to increase non-polar lipid content. Transformants overproducing either an endogenous (NoGPAT) or a heterologous (Acutodesmus obliquus GPAT) GPAT enzyme targeted to the endoplasmic reticulum had up to 42% and 51% increased non-polar lipid contents, respectively, compared to the wild type. Biomass productivities of transformant strains were not substantially impaired, resulting in lipid productivities that were increased by up to 37% and 42% for NoGPAT and AoGPAT transformants, respectively. When exposed to nutrient stress, transformants and wild type had similar lipid contents, suggesting that GPAT enzyme exerts strong flux control on lipid synthesis in N. oceanica under favorable growth conditions. NoGPAT transformants further accumulated PUFAs in non-polar lipids, reaching a total of 6.8% PUFAs per biomass, an increase of 24% relative to the wild type. Overall, our results indicate that GPAT is an interesting target for engineering of lipid metabolism in microalgae, in order to improve non-polar lipid and PUFAs accumulation in microalgae.


Asunto(s)
Microalgas , Estramenopilos , Glicerol/metabolismo , Aceites/metabolismo , Ingeniería Genética , Glicerol-3-Fosfato O-Aciltransferasa/genética , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Estramenopilos/genética , Microalgas/genética , Microalgas/metabolismo , Biomasa , Fosfatos/metabolismo
3.
Food Funct ; 13(24): 12799-12813, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36421064

RESUMEN

Omega-3 PUFAs rich in fish oil are believed to prevent obesity by improving lipid metabolism and regulating gut microbiota. Microalgae oil is considered as an alternative source of omega-3 PUFAs owing to diminishing fish resources. Schizochytrium microalgae oil (SMO), with a high DHA proportion, is a promising source for commercial DHA production. However, its weight-loss and gut microbiota-regulating properties are not well studied. Here we compared the obesity reducing effects of SMO, commercial fish oil (FO) and a weight-loss drug, Orlistat (OL), in a high-fat diet (HFD) induced obesity mouse model. We found that SMO is comparable to commercial FO and OL with regard to weight loss, and it even exhibits the weight-loss effects earlier than FO and OL. It can efficiently inhibit the expression of lipogenesis-related genes and induce the expression of lipolysis-related genes. Moreover, SMO has different gut microbiota modulating effects from those of FO and OL. It does not influence the diversity of bacterial community, but does increase the abundance of several beneficial SCFAs-producing bacteria and inhibits obesity-promoting Desulfovibrio and several pathogens. We also found that SMO recovers the HFD-disturbed metabolic capability of gut microbiota. It can increase the abundance of several metabolism-related pathways, such as those of amino acids, SCFAs and bile acid, and decrease the level of the LPS biosynthesis pathway, which probably contributes to an improvement of lipid metabolism and restoration of the colonic mucosal barrier impaired by HFD. Our data suggest that SMO can be used as a superior dietary supplement for alleviating obesity.


Asunto(s)
Ácidos Grasos Omega-3 , Microalgas , Estramenopilos , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Obesidad/metabolismo , Aceites de Pescado/farmacología , Ácidos Grasos Omega-3/efectos adversos , Estramenopilos/genética , Bacterias/genética
4.
Mar Biotechnol (NY) ; 24(4): 733-743, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35841466

RESUMEN

Squalene has a wide range of applications in the industry sectors of dietary supplements, cosmetics, immunization, and pharmaceuticals. Yet, suitable organisms as the source of squalene are limited. It is reported that the thraustochytrid Aurantiochytrium sp. strain 18W-13a can accumulate high content of squalene. However, squalene production in this organism is fluctuated under various conditions and is not yet optimized for commercialization. In this organism, the mevalonate pathway supplies isopentenyl pyrophosphate, the initial substrate for squalene production. In this pathway, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) is the rate-limiting enzyme. We found that the HMGR activity had a strong positive correlation with the squalene contents in the strain. We constitutively expressed the HMGR in this organism and found that the transformant showed increased and stable production of squalene as well as carotenoids and biomass. These results clearly indicated that the HMGR expression is the bottleneck of squalene synthesis in Aurantiochytrium sp.


Asunto(s)
Escualeno , Estramenopilos , Acilcoenzima A/metabolismo , Ácido Mevalónico/metabolismo , Escualeno/metabolismo , Estramenopilos/genética , Estramenopilos/metabolismo
5.
Microb Cell Fact ; 21(1): 117, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710482

RESUMEN

BACKGROUND: Astaxanthin is a ketocarotenoid with high antioxidant power used in different fields as healthcare, food/feed supplementation and as pigmenting agent in aquaculture. Primary producers of astaxanthin are some species of microalgae, unicellular photosynthetic organisms, as Haematococcus lacustris. Astaxanthin production by cultivation of Haematococcus lacustris is costly due to low biomass productivity, high risk of contamination and the requirement of downstream extraction processes, causing an extremely high price on the market. Some microalgae species are also primary producers of omega-3 fatty acids, essential nutrients for humans, being related to cardiovascular wellness, and required for visual and cognitive development. One of the main well-known producers of omega-3 fatty eicosapentaenoic acid (EPA) is the marine microalga Nannochloropsis gaditana (named also Microchloropsis gaditana): this species has been already approved by the Food and Drug Administration (FDA) for human consumption and it is characterized by a fast grow phenotype. RESULTS: Here we obtained by chemical mutagenesis a Nannochloropsis gaditana mutant strain, called S4, characterized by increased carotenoid to chlorophyll ratio. S4 strain showed improved photosynthetic activity, increased lipid productivity and increased ketocarotenoids accumulation, producing not only canthaxanthin but also astaxanthin, usually found only in traces in the WT strain. Ketocarotenoids produced in S4 strain were extractible in different organic solvents, with the highest efficiency observed upon microwaves pre-treatment followed by methanol extraction. By cultivation of S4 strain at different irradiances it was possible to produce up to 1.3 and 5.2 mgL-1 day-1 of ketocarotenoids and EPA respectively, in a single cultivation phase, even in absence of stressing conditions. Genome sequencing of S4 strain allowed to identify 199 single nucleotide polymorphisms (SNP): among the mutated genes, mutations in a carotenoid oxygenase gene and in a glutamate synthase gene could explain the different carotenoids content and the lower chlorophylls content, respectively. CONCLUSIONS: By chemical mutagenesis and selection of strain with increased carotenoids to chlorophyll ratio it was possible to isolate a new Nannochloropsis gaditana strain, called S4 strain, characterized by increased lipids and ketocarotenoids accumulation. S4 strain can thus be considered as novel platform for ketocarotenoids and EPA production for different industrial applications.


Asunto(s)
Microalgas , Estramenopilos , Carotenoides/química , Clorofila , Ácido Eicosapentaenoico , Microalgas/química , Microalgas/genética , Estramenopilos/genética , Xantófilas
6.
Bioprocess Biosyst Eng ; 41(9): 1355-1370, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29948212

RESUMEN

Results to date suggest that microalgal Thraustochytrids family strains can be used to produce high-functional omega-3 rich oil (~ 30-70% of dry cell weight) and carotenoid-based antioxidant pigments simultaneously with value-added bioactive potential. In the present study, we describe the isolation and characterization of a new Thraustochytrid Schizochytrium sp. from the west coastal area of Korea. This newly isolated Thraustochytrid, identified as Schizochytrium sp. through 18S rRNA analysis and named SH104, simultaneously produces high levels of DHA and carotenoid-based antioxidant pigments. An improved Schizochytrium mutant, named SHG104, was obtained from the original host strain by γ-irradiation-induced mutagenesis. Under combined temperature-shift cultivation conditions employing white-light LEDs (light-emitting diodes), Schizochytrium sp. SHG104 yielded 10.8 g L-1 of biomass comprising 45.8% total lipids (32.1% DHA) and 4.6 mg L-1 of astaxanthin. In addition to DHA, the main fatty acids produced by Schizochytrium sp. SHG104 were palmitic acid and a trace of other long-chain fatty acids. The carotenoid profile of SH104 and SHG104 was ß-carotene, astaxanthin, canthaxanthin, pheonicoxanthin and echinenone, which analyzed by HPLC and LC/APCI-MS. Furthermore, genomic analysis of Schizochytrium and Aurantiochytrium microalgae confirmed that the presence of carotenogenesis pathway enzymes and genes including geranylgeranyl diphosphate, phytoene synthase, lycopene cyclase, and cytochrome P450 hydroxylase that necessary for the production of antioxidants via a complete biosynthetic KEGG synthesis pathway. This newly isolated Schizochytrium microalga potentially have wide application as a source of antioxidants for astaxanthin-containing pigments, commercial omega-3 lipids and feed additives, such as nutritional supplements for aquaculture.


Asunto(s)
Carotenoides/biosíntesis , Ácidos Docosahexaenoicos/metabolismo , Estramenopilos/crecimiento & desarrollo , Rayos gamma , Mutagénesis , Estramenopilos/genética , Estramenopilos/aislamiento & purificación
7.
Environ Microbiol ; 20(3): 1078-1094, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29345115

RESUMEN

Despite numerous laboratory studies on physiologies of harmful algal bloom (HAB) species, physiologies of these algae during a natural bloom are understudied. Here, we investigated a bloom of the raphidophyte Heterosigma akashiwo in the East China Sea in 2014 using metabarcode (18S rDNA) and metatranscriptome sequencing. Based on 18S rDNA analyses, the phytoplankton community shifted from high diversity in the pre-bloom stage to H. akashiwo predominance during the bloom. A sharp decrease in ambient dissolved inorganic phosphate and strong up-regulation of phosphate and dissolved organic phosphorus (DOP) uptake genes, including the rarely documented (ppGpp)ase, in H. akashiwo from pre-bloom to bloom was indicative of rapid phosphorus uptake and efficient utilization of DOP that might be a driver of the H. akashiwo bloom. Furthermore, observed up-regulated expression of mixotrophy-related genes suggests potential contribution of mixotrophy to the bloom. Accelerating photosynthetic carbon fixation was also implied by the up-regulation of carbonic anhydrase genes during the bloom. Notably, we also observed a strong morning-to-afternoon shift in the expression of many genes. Our findings provide insights into metabolic processes likely important for H. akashiwo bloom formation, and suggest the need to consider timing of sampling in field studies on this alga.


Asunto(s)
Floraciones de Algas Nocivas/fisiología , Fitoplancton/clasificación , Estramenopilos/crecimiento & desarrollo , Estramenopilos/genética , China , Clorofila/análisis , ADN Ribosómico/genética , Dinoflagelados/crecimiento & desarrollo , Océanos y Mares , Fosfatos/metabolismo , Fósforo/metabolismo , Fotosíntesis/genética , Fitoplancton/genética , Pirofosfatasas/biosíntesis , Pirofosfatasas/genética , ARN Ribosómico 18S/genética
8.
Appl Microbiol Biotechnol ; 102(5): 2351-2361, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29356868

RESUMEN

Schizochytrium sp. accumulates valuable polyunsaturated fatty acid (PUFA), such as docosahexaenoic acid (DHA). In order to increase DHA synthesis in this microorganism, physical or chemical mutagenesis aided with powerful screening methods are still preferable, as its DHA synthetic pathway has not yet been clearly defined for gene manipulation. To breed this agglomerate microorganism of thick cell wall and rather large genome for increasing lipid content and DHA percentage, a novel strategy of atmospheric and room temperature plasma (ARTP) mutagenesis coupled with stepped malonic acid (MA) and zeocin resistance screening was developed. The final resulted mutant strain mz-17 was selected with 1.8-fold increased DHA production. Accompanied with supplementation of Fe2+ in shake flask cultivation, DHA production of 14.0 g/L on average was achieved. This work suggests that ARTP mutation combined with stepped MA and zeocin resistance screening is an efficient method of breeding Schizochytrium sp. of high DHA production, and might be applied on other microorganisms for obtaining higher desired PUFA products.


Asunto(s)
Bleomicina/farmacología , Ácidos Docosahexaenoicos/biosíntesis , Malonatos/farmacología , Estramenopilos/efectos de los fármacos , Estramenopilos/genética , Mutagénesis , Mutación/efectos de los fármacos , Estramenopilos/metabolismo
9.
Braz. j. microbiol ; Braz. j. microbiol;48(4): 671-679, Oct.-Dec. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-889179

RESUMEN

ABSTRACT Thraustochytrids are unicellular protists belonging to the Labyrinthulomycetes class, which are characterized by the presence of a high lipid content that could replace conventional fatty acids. They show a wide geographic distribution, however their diversity in the Antarctic Region is rather scarce. The analysis based on the complete sequence of 18S rRNA gene showed that strain 34-2 belongs to the species Thraustochytrium kinnei, with 99% identity. The total lipid profile shows a wide range of saturated fatty acids with abundance of palmitic acid (16:0), showing a range of 16.1-19.7%. On the other hand, long-chain polyunsaturated fatty acids, mainly docosahexaenoic acid and eicosapentaenoic acid are present in a range of 24-48% and 6.1-9.3%, respectively. All factors analyzed in cells (biomass, carbon consumption and lipid content) changed with variations of culture temperature (10 °C and 25 °C). The growth in glucose at a temperature of 10 °C presented the most favorable conditions to produce omega-3fatty acid. This research provides the identification and characterization of a Thraustochytrids strain, with a total lipid content that presents potential applications in the production of nutritional supplements and as well biofuels.


Asunto(s)
Agua de Mar/microbiología , Ácidos Grasos/metabolismo , Estramenopilos/metabolismo , Filogenia , Biotecnología , Ácidos Grasos/química , Estramenopilos/aislamiento & purificación , Estramenopilos/clasificación , Estramenopilos/genética , Regiones Antárticas
10.
Braz J Microbiol ; 48(4): 671-679, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28651890

RESUMEN

Thraustochytrids are unicellular protists belonging to the Labyrinthulomycetes class, which are characterized by the presence of a high lipid content that could replace conventional fatty acids. They show a wide geographic distribution, however their diversity in the Antarctic Region is rather scarce. The analysis based on the complete sequence of 18S rRNA gene showed that strain 34-2 belongs to the species Thraustochytrium kinnei, with 99% identity. The total lipid profile shows a wide range of saturated fatty acids with abundance of palmitic acid (16:0), showing a range of 16.1-19.7%. On the other hand, long-chain polyunsaturated fatty acids, mainly docosahexaenoic acid and eicosapentaenoic acid are present in a range of 24-48% and 6.1-9.3%, respectively. All factors analyzed in cells (biomass, carbon consumption and lipid content) changed with variations of culture temperature (10°C and 25°C). The growth in glucose at a temperature of 10°C presented the most favorable conditions to produce omega-3fatty acid. This research provides the identification and characterization of a Thraustochytrids strain, with a total lipid content that presents potential applications in the production of nutritional supplements and as well biofuels.


Asunto(s)
Ácidos Grasos/metabolismo , Agua de Mar/microbiología , Estramenopilos/metabolismo , Regiones Antárticas , Biotecnología , Ácidos Grasos/química , Filogenia , Estramenopilos/clasificación , Estramenopilos/genética , Estramenopilos/aislamiento & purificación
11.
Mar Biotechnol (NY) ; 18(6): 659-671, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27819120

RESUMEN

Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.


Asunto(s)
Archaea/genética , Bacterias/genética , Hongos/genética , Metagenoma , Poríferos/microbiología , Estramenopilos/genética , Animales , Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Evolución Biológica , Carbono/metabolismo , Hongos/clasificación , Hongos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Redes y Vías Metabólicas/genética , Microbiota/genética , Nitrógeno/metabolismo , Fósforo/metabolismo , Filogenia , Poríferos/clasificación , Poríferos/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , Estramenopilos/clasificación , Estramenopilos/metabolismo , Azufre/metabolismo , Simbiosis/fisiología
12.
Enzyme Microb Technol ; 93-94: 182-190, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27702480

RESUMEN

Developing a strain with high docosahexaenoic acid (DHA) yield and stable fermenting-performance is an imperative way to improve DHA production using Aurantiochytrium sp., a microorganism with two fatty acid synthesis pathways: polyketide synthase (PKS) pathway and Type I fatty acid synthase (FAS) pathway. This study investigated the growth and metabolism response of Aurantiochytrium sp. CGMCC 6208 to two inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan), and proposed a method of screening high DHA yield Aurantiochytrium sp. strains with heavy ion mutagenesis and pre-selection by synergistic usage of cold stress (4°C) and FAS inhibitors (triclosan and isoniazid). Results showed that (1) isoniazid and triclosan have positive effects on improving DHA level of cells; (2) mutants from irradiation dosage of 120Gy yielded more DHA compared with cells from 40Gy, 80Gy treatment and wild type; (3) DHA contents of mutants pre-selected by inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan)at 4°C, were significantly higher than that of wild type; (4) compared to the wild type, the DHA productivity and yield of a mutant (T-99) obtained from Aurantiochytrium sp. CGMCC 6208 by the proposed method increased by 50% from 0.18 to 0.27g/Lh and 30% from 21 to 27g/L, respectively. In conclusion, this study developed a feasible method to screen Aurantiochytrium sp. with high DHA yield by a combination of heavy-ion mutagenesis and mutant-preselection by FAS inhibitors and cold stress.


Asunto(s)
Ácidos Docosahexaenoicos/biosíntesis , Enoil-ACP Reductasa (NADPH Específica B)/antagonistas & inhibidores , Estramenopilos/genética , Estramenopilos/metabolismo , Frío , Suplementos Dietéticos , Enoil-ACP Reductasa (NADPH Específica B)/genética , Enoil-ACP Reductasa (NADPH Específica B)/metabolismo , Inhibidores Enzimáticos/farmacología , Acido Graso Sintasa Tipo II/antagonistas & inhibidores , Fermentación , Iones , Isoniazida/farmacología , Mutagénesis , Estramenopilos/efectos de los fármacos , Estrés Fisiológico , Triclosán/farmacología
13.
BMC Genomics ; 16: 799, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26475325

RESUMEN

BACKGROUND: Schizochytrium limacinum SR21 is a potential industrial strain for docosahexaenoic acid (DHA) production that contains more than 30-40 % DHA among its total fatty acids. METHODS: To resolve the DHA biosynthesis mechanism and improve DHA production at a systematic level, a genomescale metabolic model (GSMM), named iCY1170_DHA, which contains 1769 reactions, 1659 metabolites, and 1170 genes, was reconstructed. RESULTS: Based on genome annotation results and literature reports, a new DHA synthesis pathway based on a polyketide synthase (PKS) system was detected in S. limacinum. Similarly to conventional fatty acid synthesis, the biosynthesis of DHA via PKS requires abundant acetyl-CoA and NADPH. The in silico addition of malate and citrate led to increases of 24.5 % and 37.1 % in DHA production, respectively. Moreover, based on the results predicted by the model, six amino acids were shown to improve DHA production by experiment. Finally, 30 genes were identified as potential targets for DHA over-production using a Minimization of Metabolic Adjustment algorithm. CONCLUSIONS: The reconstructed GSMM, iCY1170_DHA, could be used to elucidate the mechanism by which DHA is synthesized in S. limacinum and predict the requirements of abundant acetyl-CoA and NADPH for DHA production as well as the enhanced yields achieved via supplementation with six amino acids, malate, and citrate.


Asunto(s)
Ácidos Docosahexaenoicos/biosíntesis , Ácidos Grasos/biosíntesis , Ingeniería Metabólica , Sintasas Poliquetidas/metabolismo , Reactores Biológicos , Vías Biosintéticas/genética , Ácidos Docosahexaenoicos/genética , Ácidos Grasos/genética , Fermentación , Sintasas Poliquetidas/genética , Estramenopilos/genética , Estramenopilos/metabolismo
14.
Biotechnol Lett ; 36(1): 141-5, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24068506

RESUMEN

A novel cDNA gene, NgLACS, that encodes a long-chain acyl-CoA sythetase (LACS), was cloned from Nannochloropsis gaditana and characterized. The cDNA was 2,360 bp in length, consisting of an ORF of 1,950 bp, a 5'-untranslated region of 88 bp and a 3'-untranslated region of 322 bp. The deduced amino acid sequence of LACS was 649 amino acid residues in length with a predicted molecular weight of 71 kDa and an isoelectric point of pH 7.8. When the alga was treated with excessive nitrogen and iron, and at 15 °C, the proportion of long-chain polyunsaturated acyl-CoAs in the total acyl-CoAs and the abundance of NgLACS cDNA gene transcript were up-regulated. Over-expression of NgLACS in Saccharomyces cerevisiae caused the accumulation of eicosapentaenoic acid and docosahexaenoic acid.


Asunto(s)
Coenzima A Ligasas/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Proteínas Recombinantes/metabolismo , Estramenopilos/enzimología , Coenzima A Ligasas/análisis , Coenzima A Ligasas/química , Coenzima A Ligasas/genética , ADN Complementario/genética , ADN Complementario/metabolismo , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Estramenopilos/genética , Estrés Fisiológico
15.
Environ Microbiol ; 16(8): 2444-57, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24373102

RESUMEN

Targeted gene expression using quantitative reverse transcription polymerase chain reaction (qRT-PCR) was employed to track patterns in the expression of genes indicative of nitrogen or phosphorus deficiency in the brown tide-forming alga Aureococcus anophagefferens. During culture experiments, a xanthine/uracil/vitamin C permease (XUV) was upregulated ∼20-fold under nitrogen-deficient conditions relative to a nitrogen-replete control and rapidly returned to nitrogen-replete levels after nitrogen-deficient cells were resupplied with nitrate or ammonium. It was not responsive to phosphorus deficiency. Expression of an inorganic phosphate transporter (PTA3) was enriched ∼10-fold under phosphorus-deficient conditions relative to a phosphorus-replete control, and this signal was rapidly lost upon phosphate resupply. PTA3 was not upregulated by nitrogen deficiency. Natural A. anophagefferens populations from a dense brown tide that occurred in Long Island, NY, in 2009 were assayed for XUV and PTA3 expression and compared with nutrient concentrations over the peak of a bloom. Patterns in XUV expression were consistent with nitrogen-replete growth, never reaching the values observed in N-deficient cultures. PTA3 expression was highest prior to peak bloom stages, reaching expression levels within the range of P-deficient cultures. These data highlight the value of molecular-level assessments of nutrient deficiency and suggest that phosphorus deficiency could play a role in the dynamics of destructive A. anophagefferens blooms.


Asunto(s)
Proteínas Algáceas/genética , Proteínas de Transporte de Membrana/genética , Phaeophyceae/genética , Proteínas de Transporte de Fosfato/genética , Estramenopilos/genética , Proteínas Algáceas/metabolismo , Regulación de la Expresión Génica , Floraciones de Algas Nocivas , Proteínas de Transporte de Membrana/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Phaeophyceae/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Estramenopilos/metabolismo , Xantina/metabolismo
16.
J Ind Microbiol Biotechnol ; 40(11): 1231-40, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23990167

RESUMEN

Marine heterotrophic microbes are capable of accumulating large amounts of lipids, omega-3 fatty acids, carotenoids, and have potential for biodiesel production. Pollen baiting using Pinus radiata pollen grain along with direct plating techniques were used in this study as techniques for the isolation of oil-producing marine thraustochytrid species from Queenscliff, Victoria, Australia. Thirteen isolates were obtained using either direct plating or using pine pollen, with pine pollen acting as a specific substrate for the surface attachment of thraustochytrids. The isolates obtained from the pollen baiting technique showed a wide range of docosahexaenoic acid (DHA) accumulation, from 11 to 41 % of total fatty acid content (TFA). Direct plating isolates showed a moderate range of DHA accumulation, from 19 to 25 % of TFA. Seven isolates were identified on the basis of 18S rRNA sequencing technique as Thraustochytrium species, Schizochytrium species, and Ulkenia species. Although both methods appear to result in the isolation of similar strains, pollen baiting proved to be a simpler method for the isolation of these relatively slow-growing organisms.


Asunto(s)
Biocombustibles/provisión & distribución , Ácidos Grasos Omega-3/biosíntesis , Polen/fisiología , Estramenopilos/aislamiento & purificación , Estramenopilos/metabolismo , Carbono/metabolismo , Ácidos Docosahexaenoicos/análisis , Ácidos Docosahexaenoicos/biosíntesis , Ácidos Grasos/análisis , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/análisis , Filogenia , Pinus , ARN Ribosómico 18S/genética , Estramenopilos/clasificación , Estramenopilos/genética , Victoria
17.
ISME J ; 7(7): 1333-43, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23466703

RESUMEN

The trace element selenium (Se) is required for the biosynthesis of selenocysteine (Sec), the 21st amino acid in the genetic code, but its role in the ecology of harmful algal blooms (HABs) is unknown. Here, we examined the role of Se in the biology and ecology of the harmful pelagophyte, Aureococcus anophagefferens, through cell culture, genomic analyses, and ecosystem studies. This organism has the largest and the most diverse selenoproteome identified to date that consists of at least 59 selenoproteins, including known eukaryotic selenoproteins, selenoproteins previously only detected in bacteria, and novel selenoproteins. The A. anophagefferens selenoproteome was dominated by the thioredoxin fold proteins and oxidoreductase functions were assigned to the majority of detected selenoproteins. Insertion of Sec in these proteins was supported by a unique Sec insertion sequence. Se was required for the growth of A. anophagefferens as cultures grew maximally at nanomolar Se concentrations. In a coastal ecosystem, dissolved Se concentrations were elevated before and after A. anophagefferens blooms, but were reduced by >95% during the peak of blooms to 0.05 nM. Consistent with this pattern, enrichment of seawater with selenite before and after a bloom did not affect the growth of A. anophagefferens, but enrichment during the peak of the bloom significantly increased population growth rates. These findings demonstrate that Se inventories, which can be anthropogenically enriched, can support proliferation of HABs, such as A. anophagefferens through its synthesis of a large arsenal of Se-dependent oxidoreductases that fine-tune cellular redox homeostasis.


Asunto(s)
Agua de Mar/parasitología , Selenio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Estramenopilos/fisiología , Bioquímica , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Elementos Transponibles de ADN/genética , Ecología , Genes Protozoarios/genética , Proteoma , Selenio/farmacología , Estramenopilos/efectos de los fármacos , Estramenopilos/genética , Estramenopilos/crecimiento & desarrollo , Estramenopilos/metabolismo , Oligoelementos/farmacología
18.
ISME J ; 5(9): 1414-25, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21430787

RESUMEN

Microbes have central roles in ocean food webs and global biogeochemical processes, yet specific ecological relationships among these taxa are largely unknown. This is in part due to the dilute, microscopic nature of the planktonic microbial community, which prevents direct observation of their interactions. Here, we use a holistic (that is, microbial system-wide) approach to investigate time-dependent variations among taxa from all three domains of life in a marine microbial community. We investigated the community composition of bacteria, archaea and protists through cultivation-independent methods, along with total bacterial and viral abundance, and physico-chemical observations. Samples and observations were collected monthly over 3 years at a well-described ocean time-series site of southern California. To find associations among these organisms, we calculated time-dependent rank correlations (that is, local similarity correlations) among relative abundances of bacteria, archaea, protists, total abundance of bacteria and viruses and physico-chemical parameters. We used a network generated from these statistical correlations to visualize and identify time-dependent associations among ecologically important taxa, for example, the SAR11 cluster, stramenopiles, alveolates, cyanobacteria and ammonia-oxidizing archaea. Negative correlations, perhaps suggesting competition or predation, were also common. The analysis revealed a progression of microbial communities through time, and also a group of unknown eukaryotes that were highly correlated with dinoflagellates, indicating possible symbioses or parasitism. Possible 'keystone' species were evident. The network has statistical features similar to previously described ecological networks, and in network parlance has non-random, small world properties (that is, highly interconnected nodes). This approach provides new insights into the natural history of microbes.


Asunto(s)
Alveolados/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Plancton/clasificación , Agua de Mar/microbiología , Estramenopilos/metabolismo , Alveolados/clasificación , Alveolados/genética , Alveolados/aislamiento & purificación , Amoníaco/metabolismo , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , California , Biología Marina , Océanos y Mares , Plancton/aislamiento & purificación , Plancton/metabolismo , Reacción en Cadena de la Polimerasa , Agua de Mar/parasitología , Análisis de Secuencia de ADN , Estramenopilos/clasificación , Estramenopilos/genética , Estramenopilos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA