Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 926: 172172, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38575019

RESUMEN

To improve the retention and slow-release abilities of nitrogen (N) and phosphorus (P), an 82 %-purity struvite fertilizer (MAP-BC) was synthesized using magnesium-modified biochar and a solution with a 2:1 concentration ratio of NH4+ to PO43- at a pH of 8. Batch microscopic characterizations and soil column leaching experiments were conducted to study the retention and slow-release mechanisms and desorption kinetics of MAP-BC. The slow-release mechanism revealed that the dissolution rate of high-purity struvite was the dominant factor of NP slow release. The re-adsorption of NH4+ and PO43- by biochar and unconsumed MgO prolonged slow release. Mg2+ ionized by MgO could react with PO43- released from struvite to form Mg3(PO4)2. The internal biochar exhibited electrostatic attraction and pore restriction towards NH4+, while magnesium modification and nutrient loading formed a physical antioxidant barrier that ensured long-term release. The water diffusion experiment showed a higher cumulative release rate for PO43- compared to NH4+, whereas in soil column leaching, the trend was reversed, suggesting that soil's competitive adsorption facilitated the desorption of NH4+ from MAP-BC. During soil leaching, cumulative release rates of NH4+ and PO43- from chemical fertilizers were 3.55-3.62 times faster than those from MAP-BC. The dynamic test data for NH4+ and PO43- in MAP-BC fitted the Ritger-Peppas model best, predicting release periods of 163 days and 166 days, respectively. The leaching performances showed that MAP-BC reduced leaching solution volume by 5.58 % and significantly increased soil large aggregates content larger than 0.25 mm by 24.25 %. The soil nutrients retention and pH regulation by MAP-BC reduced leaching concentrations of NP. Furthermore, MAP-BC significantly enhanced plant growth, and it is more suitable as a NP source for long-term crops. Therefore, MAP-BC is expected to function as a long-term and slow-release fertilizer with the potential to minimize NP nutrient loss and replace part of quick-acting fertilizer.


Asunto(s)
Fertilizantes , Magnesio , Estruvita/química , Magnesio/química , Fertilizantes/análisis , Óxido de Magnesio , Fósforo/química , Carbón Orgánico/química , Suelo/química , Nitrógeno/análisis
2.
Environ Sci Pollut Res Int ; 31(11): 17481-17493, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342832

RESUMEN

Excessive phosphorus will lead to eutrophication in aquatic environment; the efficient removal of phosphorus is crucial for wastewater engineering and surface water management. This study aimed to fabricate a nanorod-like sepiolite-supported MgO (S-MgO) nanocomposite with high specific surface area for efficient phosphate removal using a facile microwave-assisted method and calcining processes. The impact of solution pH, adsorbent dosage, contact time, initial phosphate concentrations, Ca2+ addition, and N/P ratio on the phosphate removal was extensively examined by the batch experiments. The findings demonstrated that the S-MgO nanocomposite exhibited effective removal performance for low-level phosphate (0 ~ 2.0 mM) within the pH range of 3.0 ~ 10.0. Additionally, the nanocomposite can synchronously remove phosphate and ammonium in high-level nutrient conditions (> 2.0 mM), with the maximum removal capacities of 188.49 mg P/g and 89.78 mg N/g. Quantitative and qualitative analyses confirmed the successful harvesting of struvite in effluent with high-phosphate concentrations, with the mechanisms involved attributed to a synergistic combination of sorption and struvite crystallization. Due to its proficient phosphate removal efficiency, cost-effectiveness, and substantial removal capacity, the developed S-MgO nanocomposite exhibits promising potential for application in phosphorus removal from aquatic environments.


Asunto(s)
Silicatos de Magnesio , Nanocompuestos , Contaminantes Químicos del Agua , Fósforo/química , Estruvita/química , Óxido de Magnesio , Nitrógeno , Fosfatos/química
3.
Sci Rep ; 14(1): 1093, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212440

RESUMEN

One of the main factors considered in assessing the nutritional value of feed is its chemical composition, which can be modified by fertilization. Faced with reducing P resources, alternative sources of this element are being sought. Phosphorus is an essential nutrient in soybean cultivation. The aim of the study was to use an alternative source of phosphorus fertilizer and compare its impact on the chemical composition of soybean seeds with that of a traditional fertilizer (Super FOS DAR). The study investigated a range of factors in animal nutrition as well as the basic content of macro- and microelements. A pot experiment with the Abelina soybean variety was conducted at the Experimental Station of the Wroclaw University of Environmental and Life Sciences. The experiment considered two factors against the control: phosphorus fertilizer placement (band, broadcast) and different phosphorus fertilization (Super FOS DAR, Crystal Green). Use of struvite (Crystal Green)) caused positive changes in selected amino acids content and in the nutritional value of protein in soybean seeds; this can enhance the value of soybean seeds as well as increase certain macroelements and microelements. Phosphorus fertilizer significantly increased the content of lysine, leucine, valine, phenyloalanine and tyrosine. Band fertilization with struvite caused a significant increase in amino acids (lysine, leucine, valine, phenyloalanine and tyrosine) as well as in the nutritional value of protein (as measured by the essential amino acid index, protein efficiency ratio and biological value of the protein). Favorable changes under the influence of the application of struvite were recorded in the content of calcium, as well as phosphorus, iron, and manganese. The value of the struvite in the case of its use as phosphorus fertilizer is promising; however, it needs further study.


Asunto(s)
Glycine max , Fosfatos , Animales , Estruvita/química , Fosfatos/química , Fertilizantes , Leucina , Lisina , Fósforo/química , Tirosina , Valina
4.
Water Res ; 246: 120460, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37857006

RESUMEN

Phosphorus recovery from human waste will help assure global food security, reduce environmental impact, and ensure effective stewardship of this limited and valuable resource. This can be accomplished by the precipitation of struvite (MgNH4PO4·6H2O) in a two-zone reactor, continuously fed with nutrient-rich hydrolysed urine and a magnesium solution. The solid struvite crystals are periodically "harvested", removing accumulated crystal mass - and therefore recovered nutrients - from the process, and the operating campaign can, in principle, be continuously operated in a batch-continuous operating mode. A previously developed process model is augmented, incorporating two well-mixed volumes (upper zone and lower zone) that are coupled by intermixing forward and back flows. The intermixing back flow is parametrised and, therefore, adjusted for analysis. Crystal linear growth rate is modelled by a simple power-law kinetic, driven by the nutrient solution's saturation index (SI) of struvite. The instantaneous mass transfer rate of struvite constituents from liquid to solid phase is predicted, using the total interfacial area of the crystal population exposed to the well-mixed solution. This model describes a 12-L, laboratory reactor operated in the hybrid batch-continuous mode, although larger reactors could easily be accommodated, subject to their mixing behaviours. Experiments were performed at a 10-hour hydraulic residence time (HRT), which, importantly, is based on the volume of the well-mixed lower zone, since this is the volume of liquid that actively interacts with the suspended struvite crystals. The Mg/P feed molar ratio was varied (0.34, 0.64 and 1.29) to assess Mg feed rate-limiting behaviour. The concentration profiles of elemental P and Mg agree with experimentation, while P and Mg composition in the solid and X-ray diffraction support the production of struvite.


Asunto(s)
Fosfatos , Fósforo , Humanos , Estruvita/química , Fosfatos/química , Fósforo/química , Cristalización , Nutrientes , Eliminación de Residuos Líquidos
5.
Sci Rep ; 13(1): 12702, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543617

RESUMEN

Struvite is regarded as a promising phosphorus fertilizer alternative to mineral fertilizers; however before fertilizing, soil tests should be undertaken to determine fertilizer recommendations. In May 2022, soil was sampled from a pot experiment with the application of phosphorus set up at the Wroclaw University and Environmental and Life Sciences. Chemical analysis of the soil included total and available phosphorus, potassium, magnesium determined by the Egner-Riehm, Mehlich 3 and Yanai methods. The purpose of the article is to compare soil element extraction by three different methods under struvite fertilization and its use in soybean cultivation. The application of these methods indicated an unambiguous increase in soil Mg content after struvite application. Broadcast soybean fertilization affected the phosphorus content of the soil. The results of the study indicated that different extraction methods presented different contents of P from soil. The content of available phosphorus was circa 122-156 mg kg-1 dm, 35.4-67.5 mg kg-1 dm and 100-159 mg kg-1 dm according to the Mehlich, Yanai and Egner-Riehm methods, respectively. A positive correlation was found between the content of Mg and K in soil determined by the Mehlich 3 and Yanai methods, which may suggest that the Yanai method could be introduced into standard soil chemical analysis in Poland. Such a correlation was not found for phosphorus, which is a difficult element to determine due to the multitude of factors affecting its availability.


Asunto(s)
Glycine max , Suelo , Humanos , Suelo/química , Estruvita/química , Fertilizantes/análisis , Fósforo/análisis , Nitrógeno/análisis
6.
J Environ Manage ; 344: 118383, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348306

RESUMEN

Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion.


Asunto(s)
Fosfatos , Aguas Residuales , Estruvita/química , Fósforo/química , Cristalización , Ecosistema , Nutrientes , Eliminación de Residuos Líquidos
7.
Sci Total Environ ; 890: 164084, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37207781

RESUMEN

Struvite precipitation is a well-known technology to recover and upcycle phosphorus from municipal wastewater as a slow-release fertiliser. However, the economic and environmental costs of struvite precipitation are constrained by using technical-grade reagents as a magnesium source. This research evaluates the feasibility of using a low-grade magnesium oxide (LG-MgO) by-product from the calcination of magnesite as a magnesium source to precipitate struvite from anaerobic digestion supernatants in wastewater treatment plants. Three distinct LG-MgOs were used in this research to capture the inherent variability of this by-product. The MgO content of the LG-MgOs varied from 42 % to 56 %, which governed the reactivity of the by-product. Experimental results showed that dosing LG-MgO at P:Mg molar ratio close to stoichiometry (i.e. 1:1 and 1:2) favoured struvite precipitation, whereas higher molar ratios (i.e. 1:4, 1:6 and 1:8) favoured calcium phosphate precipitation due to the higher calcium concentration and pH. At a P:Mg molar ratio of 1:1 and 1:2, the percentage of phosphate precipitated was 53-72 % and 89-97 %, respectively, depending on the LG-MgO reactivity. A final experiment was performed to examine the composition and morphology of the precipitate obtained under the most favourable conditions, which showed that (i) struvite was the mineral phase with the highest peaks intensity and (ii) struvite was present in two different shapes: hopper and polyhedral. Overall, this research has demonstrated that LG-MgO is an efficient source of magnesium for struvite precipitation, which fits the circular economy principles by valorising an industrial by-product, reducing the pressure on natural resources, and developing a more sustainable technology for phosphorus recovery.


Asunto(s)
Óxido de Magnesio , Purificación del Agua , Estruvita/química , Óxido de Magnesio/química , Magnesio/química , Compuestos de Magnesio/química , Anaerobiosis , Fosfatos/química , Fósforo/química , Precipitación Química , Eliminación de Residuos Líquidos/métodos
8.
Bioresour Technol ; 381: 129082, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37100300

RESUMEN

Recovering finite and non-substitutable phosphorus from liquid waste streams through bio-mediated techniques has attracted increasing interest, but current approaches are incredibly dependent on ammonium. Herein, a process to recover phosphorus from wastewater under multiple nitrogen species conditions was developed. This study compared the effects of nitrogen species on the recovery of phosphorus resources by a bacterial consortium. It found that the consortium could not only efficiently utilize ammonium to enable phosphorus recovery but also utilize nitrate via dissimilatory nitrate reduction to ammonium (DNRA) to recover phosphorus. The characteristics of the generated phosphorus-bearing minerals, including magnesium phosphate and struvite, were evaluated. Furthermore, nitrogen loading positively influenced the stability of the bacterial community structure. The genus Acinetobacter was dominant under nitrate and ammonium conditions, with a relatively stable abundance of 89.01% and 88.54%, respectively. The finding may provide new insights into nutrient biorecovery from phosphorus-containing wastewater contaminated with multiple nitrogen species.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Fósforo , Nitratos , Nitrógeno , Fosfatos , Estruvita/química , Bacterias
9.
Environ Sci Pollut Res Int ; 30(16): 47699-47711, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36745345

RESUMEN

This present study investigated the removal of COD and ammoniacal nitrogen (NH4+-N) from tannery deliming wastewater (TDLWW) through microbes immobilized carbon consisted a bioreactor (MICCR) and reactive struvite crystallization process. Initially, 90% of the organic content of TDLWW was removed using a MICCR reactor at 24 h retention time. Nanoporous carbon (NPC) was used as the carrier matrix for the MICCR reactor. SEM and AFM images of NPC used in the MICCR reactor identify different microorganisms on its surface. The microbial profile of NPC used in the MICCR was analyzed, and the relative abundance is phyla Firmicutes, 25.64%; Proteobacteria, 43.68%; Bacteroidetes, 6.58%; Cyanobacteria, 2.22%; Actinobacteria, 2.34% reason for organic removal. The removal of organics follows the pseudo-second-order rate kinetics with the rate constant of 1.75 × 10-3 L COD-1 h-1. For the reactive struvite crystallization, MgO and Na2HPO4.2H2O were taken as the precipitating agents. The optimum molar ratio for the maximum conversion of NH4+-N into struvite was obtained as 1:1.4:1.4 (NH4+-N:MgO:Na2HPO4.2H2O). The volume of struvite precipitate was 48.5 mL/L of TDLWW, and the dry weight was 8.89 g/L. More than 93% of NH4+-N was converted as the struvite fertilizer. The conversion of NH4+-N into struvite follows the pseudo-first-order rate kinetics with the rate constant of 1.67 × 10-2 min-1. Despite the conversion of NH4+-N into struvite, COD removal was observed, which confirms the conversion of organic nitrogen into struvite. The struvite was evaluated using SEM, XRD, TGA, DSC, and FT-IR spectroscopic analysis. Hence, the integrated MICCR and the reactive struvite crystallization process can be applied to manage tannery deliming wastewater.


Asunto(s)
Fosfatos , Aguas Residuales , Estruvita/química , Óxido de Magnesio , Carbono , Espectroscopía Infrarroja por Transformada de Fourier , Nitrógeno , Eliminación de Residuos Líquidos/métodos , Fósforo
10.
J Environ Manage ; 334: 117506, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801679

RESUMEN

The ever-growing contamination of surface water due to various catchment activities poses threats and stress to downstream water treatment entities. Specifically, the presence of ammonia, microbial contaminants, organic matter, and heavy metals has been an issue of paramount concern to water treatment entities since stringent regulatory frameworks require these pollutants to be removed prior to water consumption. Herein, a hybrid approach that integrates struvite crystallization (precipitation) and breakpoint chlorination (stripping) for the removal of ammonia from aqueous solution was evaluated. To fulfil the goals of this study, batch experimental studies were pursued through the adoption of the well-known one-factor-at-a-time (AFAAT) method, specifically the effects of time, concentration/dosage, and mixing speed. The fate of chemical species was underpinned using the state-of-the-art analytical instruments and accredited standard methods. Cryptocrystalline magnesium oxide nanoparticles (MgO-NPs) were used as the magnesium source while the high-test hypochlorite (HTH) was used as the source of chlorine. From the experimental results, the optimum conditions were observed to be, i.e., Stage 1 - struvite synthesis, 110 mg/L of Mg and P dosage (concentration), 150 rpm of mixing speed, 60 min of contact time, and lastly, 120 min of sedimentation while optimum condition for the breakpoint chlorination (Stage 2) were 30 min of mixing and 8:1 Cl2:NH3 weight ratio. Specifically, in Stage 1, i.e., MgO-NPs, the pH increased from 6.7 to ≥9.6, while the turbidity was reduced from 9.1 to ≤1.3 NTU. Mn removal efficacy attained ≥97.70% (reduced from 174 µg/L to 4 µg/L) and Fe attained ≥96.64% (reduced from 11 mg/L to 0.37 mg/L). Elevated pH also led to the deactivation of bacteria. In Stage 2, i.e. breakpoint chlorination, the product water was further polished by eliminating residual ammonia and TPC at 8:1 Cl2-NH3 weight ratio. Interestingly, ammonia was reduced from 6.51 to 2.1 mg/L in Stage 1 (67.74% removal) and then from 2.1 to 0.002 mg/L post breakpoint chlorination (99.96% removal), i.e., stage 2. Overall, synergistic and complementary effects of integrating struvite synthesis and breakpoint chlorination hold great promise for the removal of ammonia from aqueous solutions thus confirming that this technology could potentially be used to curtail the effects of ammonia in the receiving environments and drinking water.


Asunto(s)
Amoníaco , Contaminantes Químicos del Agua , Estruvita/química , Amoníaco/química , Halogenación , Óxido de Magnesio , Magnesio/química , Fosfatos/química , Contaminantes Químicos del Agua/química
11.
Waste Manag ; 155: 252-259, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36399852

RESUMEN

Phosphorus recovery from digestate is considered a challenge because the possible discharge can lead to eutrophication. This study focuses on phosphorus recovery as struvite from the liquid fraction of swine manure digestate at a high total solids concentration, by using a lab-scale crystallizer operated in continuous mode (7 L·d-1). A by-product of salt production (seawater bittern, SWB) was assessed as Mg source for the formation of struvite instead of a chemical dosage (MgCl2) within a circular economy approach. Different Mg/P (1.8:1; 2:1; 3:1) ratios and different TS contents (TS 3.5 and 4.5 %) were studied. The maximum P recovery of 85 % and N recovery of 52 % was obtained at 4.5 % of TS and Mg/P ratio of 2:1, corresponding to an overall P and N recovery on the raw digestate of 70 % and 46 %, respectively. The presence of struvite was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM-EDS). Dried samples were then used as fertilizer in agronomic pot tests using Brassica rapa chinensis. Struvite obtained, showed comparable fertilizing properties in comparison with conventional fertilizers in terms of P (Mineral 5.6 ± 0.4; Poultry 5.7 ± 0.2; Struvite 5.9 ± 0.1 g kg-1), N and total biomass content such as chlorophylls ratio. The growth tests confirmed the possible use of struvite recovered as competitive alternative to conventional chemical phosphate fertilizers. The results showed that it can be possible to promote sustainable P recovery from high solids digestates by the combination of crystallizer reactor and Mg-salt byproducts.


Asunto(s)
Magnesio , Fósforo , Porcinos , Animales , Fósforo/química , Estruvita/química , Magnesio/química , Fertilizantes , Agua de Mar/química
12.
J Environ Manage ; 325(Pt A): 116548, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36308786

RESUMEN

With the exacerbating water eutrophication globally, it is important to recover nitrogen (N) and phosphorus (P) from sewage for recycle. In this study, coconut shell biochar and ethylene diamine tetraacetic acid (EDTA) were added into the designed fluidized bed reactor (FBR) to create struvite-biochar. N and P released from struvite-biochar and the recovery efficiency of N and P from concentrated sludge supernatant were analyzed. Results showed that the optimal operation condition for hydraulic retention time (HRT), pH, Mg/P molar ration, and addition amount EDTA were 90 min, 9.5, 1.2, and 0.2 g/L, respectively. The recovery efficiency of NH4+-N and PO43--P, and purity struvite for FBR were 34.41%-38.05%, 64.95-68.40%, and 84.15%, respectively. The recovery efficiency of NH4+-N and PO43--P were respectively increased by 7.23% and 5.36% when FBR with addition of 0.33 g/L coconut shell biochar, but purity struvite from struvite-biochar decreased by 45.70%. Contents of As, Cd, Pb, and Cr in struvite and struvite-biochar were all lower than Chinese Standard Limits of Fertilizer. Compared to commercial chemical fertilizer, such as superphosphate and urea, struvite-biochar and struvite have slowly released N and P. The amounts of released P, NO3--N and NH4+-N from struvite-biochar were higher than struvite during the five leaching times. Compared with struvite, the total amounts of released P, NO3--N and NH4+-N from struvite-biochar increased by 4.9%, 3.5% and 8.3%, respectively. Therefore, it is valuable to add biochar into FBR to recovery N and P from concentrated sludge supernatant and make struvite-biochar as a slow-release fertilizer.


Asunto(s)
Fertilizantes , Aguas del Alcantarillado , Estruvita/química , Aguas del Alcantarillado/química , Ácido Edético , Fósforo/química , Nutrientes , Fosfatos
13.
Environ Sci Pollut Res Int ; 30(8): 20721-20735, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36255572

RESUMEN

Phosphorus recovery is indispensable due to the rapid depletion of its natural reserves and excessive utility in agriculture. Though human urine has high nutrient content including phosphate, nitrogen and potassium; direct use as a fertilizer is restricted due to hygienic, environmental, social and ethical issues. To overcome these limitations, the nutrients are precipitated by the external addition of magnesium (Mg) to form a slow-releasing fertilizer called struvite. The present study aims to maximize phosphate recovery through optimizing struvite production by an emerging electrocoagulation technique. A maximum of 95% phosphate recovery was achieved using inter-electrode distance of 0.5 cm, 2 A current from undiluted urine using Mg-Mg electrodes in a reaction time of 30 min. Further, kinetic modeling of phosphate recovery through electrocoagulation was conducted to comprehend the intended mechanism through the order of kinetics. The results revealed that the data best correlated with first-order kinetics with a correlation coefficient of 0.95. Electrocoagulation improved the supernatant quality by reducing the ion concentrations other than phosphate (30-50%), salinity (40-45%), and microbial population (99%). Qualitative assessment of the precipitate through sophisticated analysis further confirmed the presence of struvite crystals.


Asunto(s)
Fertilizantes , Fosfatos , Humanos , Fosfatos/química , Estruvita/química , Fertilizantes/análisis , Cinética , Fósforo/análisis , Magnesio/química , Electrocoagulación , Orina/química
14.
Sci Total Environ ; 866: 161172, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36572313

RESUMEN

To provide for the globally increasing demand for proteinaceous food, microbial protein (MP) has the potential to become an alternative food or feed source. Phosphorus (P), on the other hand, is a critical raw material whose global reserves are declining. Growing MP on recovered phosphorus, for instance, struvite obtained from wastewater treatment, is a promising MP production route that could supply protein-rich products while handling P scarcity. The aim of this study was to explore struvite dissolution kinetics in different MP media and characterize MP production with struvite as sole P-source. Different operational parameters, including pH, temperature, contact surface area, and ion concentrations were tested, and struvite dissolution rates were observed between 0.32 and 4.7 g P/L/d and a solubility between 0.23 and 2.22 g P-based struvite/L. Growth rates and protein production of the microalgae Chlorella vulgaris and Limnospira sp. (previously known as Arthrospira sp.), and the purple non­sulfur bacterium Rhodopseudomonas palustris on struvite were equal to or higher than growth on conventional potassium phosphate. For aerobic heterotrophic bacteria, two slow-growing communities showed decreased growth on struvite, while the growth was increased for a third fast-growing one. Furthermore, MP protein content on struvite was always comparable to the one obtained when grown on standard media. Together with the low content in metals and micropollutants, these results demonstrate that struvite can be directly applied as an effective nutrient source to produce fast-growing MP, without any previous dissolution step. Combining a high purity recovered product with an efficient way of producing protein results in a strong environmental win-win.


Asunto(s)
Chlorella vulgaris , Compuestos de Magnesio , Estruvita/química , Solubilidad , Compuestos de Magnesio/química , Aguas Residuales , Fosfatos/química , Fósforo/química , Nutrientes
15.
Environ Technol ; 44(25): 3911-3925, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35545934

RESUMEN

Diminishing phosphorus resources worldwide requires developing new technologies to recover phosphorus (P) from wastewaters. A lab-scale electrolytic reactor with a magnesium anode was investigated to remove NH4+ and PO43- from synthetic wastewater by producing struvite. The effects of mixing speed, pH, and applied current on struvite yield, NH4+, and PO43- removal efficiencies were first evaluated using a factorial design. Then, the two most significant parameters were further optimized using Central Composite Design (CCD) coupled with Response Surface Methodology (RSM). The struvite was characterized by SEM, XRD, and FT-IR. A 5.7-fold increase in struvite yield was achieved by increasing the applied current from 0.1 to 0.5 A. The three regression equations generated by the CCD/RSM design with applied current and mixing speed as the two independent parameters were highly correlated with the response variables (struvite yield, NH4+ and PO43- removal efficiencies). The desirability analysis showed the best operating condition: current, 0.5 A and mixing speed, 414 rpm, for the reactor system, under which the optimal struvite yield and NH4+ and PO43- removal efficiencies were 4.75 g/L, 93.0%, and 58.4%, respectively. The SEM, XRD, and FT-IR analyses confirmed the high purity and quality of the struvite produced by the electrolytic reactor system.


Asunto(s)
Magnesio , Aguas Residuales , Estruvita/química , Magnesio/química , Espectroscopía Infrarroja por Transformada de Fourier , Fósforo/química , Electrodos , Fosfatos/química
16.
Sci Total Environ ; 856(Pt 2): 159283, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36208738

RESUMEN

Global food security, which has emerged as one of the sustainability challenges, impacts every country. As food cannot be generated without involving nutrients, research has intensified recently to recover unused nutrients from waste streams. As a finite resource, phosphorus (P) is largely wasted. This work critically reviews the technical applicability of various water technologies to recover macro-nutrients such as P, N, and K from wastewater. Struvite precipitation, adsorption, ion exchange, and membrane filtration are applied for nutrient recovery. Technological strengths and drawbacks in their applications are evaluated and compared. Their operational conditions such as pH, dose required, initial nutrient concentration, and treatment performance are presented. Cost-effectiveness of the technologies for P or N recovery is also elaborated. It is evident from a literature survey of 310 published studies (1985-2022) that no single technique can effectively and universally recover target macro-nutrients from liquid waste. Struvite precipitation is commonly used to recover over 95 % of P from sludge digestate with its concentration ranging from 200 to 4000 mg/L. The recovered precipitate can be reused as a fertilizer due to its high content of P and N. Phosphate removal of higher than 80 % can be achieved by struvite precipitation when the molar ratio of Mg2+/PO43- ranges between 1.1 and 1.3. The applications of artificial intelligence (AI) to collect data on critical parameters control optimization, improve treatment effectiveness, and facilitate water utilities to upscale water treatment plants. Such infrastructure in the plants could enable the recovered materials to be reused to sustain food security. As nutrient recovery is crucial in wastewater treatment, water treatment plant operators need to consider (1) the costs of nutrient recovery techniques; (2) their applicability; (3) their benefits and implications. It is essential to note that the treatment cost of P and/or N-laden wastewater depends on the process applied and local conditions.


Asunto(s)
Fertilizantes , Aguas Residuales , Estruvita/química , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Inteligencia Artificial , Fósforo/análisis , Fosfatos/química , Nutrientes , Minerales , Seguridad Alimentaria
17.
Nefrologia (Engl Ed) ; 43 Suppl 2: 32-37, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38245438

RESUMEN

INTRODUCTION: Hemodialysis wastewater contains high concentrations of ammonia nitrogen and phosphorus. Recovery of these nutrients as soil fertilizers represents an interesting opportunity to ensure a sustainable fertilizer supply. METHODS: In this paper, a simple method for recovering phosphorous and nitrogen as crystalline struvite [MgNH4PO4·6H2O] is presented. An integrated cost model is also presented in order to create a positive business case. RESULTS: Recovery rates in form of struvite of 95% of PO43--P and 23% of NH4+-N were achieved with a profit. CONCLUSION: To the best of our knowledge, this paper is the first to study the recovery of these naturally occurring minerals from hemodialysis wastewater. This offers great potential for the valorization of this type of wastewater.


Asunto(s)
Fósforo , Aguas Residuales , Estruvita/química , Fertilizantes , Fosfatos , Nitrógeno
18.
Artículo en Inglés | MEDLINE | ID: mdl-36293743

RESUMEN

Recovery of phosphorus from sludge will help to alleviate the phosphorus resource crisis. However, the release of phosphorus from sludge is accompanied by the leaching of large amounts of coexisting ions, i.e., Fe, Al, Ca, and organic matter, which decreases the purity of sludge-derived products. In this study, an adsorption-desorption process using magnetic zirconia (MZ) as the adsorbent is proposed to obtain a high purity recovery product. The process involves selective adsorption of phosphate from the hydrothermally treated sludge supernatant (HTSS) using MZ, followed by desorption and precipitation to obtain the final product: struvite. The results indicated that at a dosage of 15 g/L, more than 95% of phosphorus in the HTSS could be adsorbed by MZ. Coexisting ions (Ca2+, Mg2+, Fe3+, Al3+, SO42-, NO3-, Cl-, etc.) and organic matter (substances similar to fulvic and humic acid) in the HTSS had a limited inhibitory effect on phosphate adsorption. Using a binary desorption agent (0.1 mol/L NaOH + 1 mol/L NaCl), 90% of the adsorbed phosphorus could be desorbed. Though adsorption-desorption treatment, struvite purity of the precipitated product increased from 41.3% to 91.2%. Additionally, MZ showed good reusability, maintaining a >75% capacity after five cycles. X-ray photoelectron spectroscopy (XPS) indicated that MZ adsorbed phosphate mainly by inner-sphere complexation. This study provided a feasible approach for the recovery of phosphorus from sludge with high purity.


Asunto(s)
Sustancias Húmicas , Aguas del Alcantarillado , Estruvita/química , Aguas del Alcantarillado/química , Cloruro de Sodio , Hidróxido de Sodio , Fósforo/química , Fosfatos , Adsorción , Fenómenos Magnéticos
19.
J Environ Manage ; 321: 115898, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985267

RESUMEN

Recovery of nutrients from wastewater has a paramount importance for a sustainable and safe environment. In this study removal of ammonia and recovery of resources in the form of struvite from a complex pharmaceutical acidic wastewater having high concentration of ammoniacal nitrogen (NH4-N > 40 g/L) and other co-existing contaminants (magnesium, phosphorous, phenol etc.) was explored. Response Surface Methodology (RSM) was employed for design of experiments and process optimization. RSM results revealed that removal of ammoniacal nitrogen, i.e., struvite precipitation was found to be maximum in alkaline pH (10.5-11.0) at a N:Mg molar ratio (1:0.030 to 1:0.035) and N:P molar ratio (1:0.025 to 1:0.030). X-Ray diffraction, thermo-gravimetric analysis and Fourier transform-infrared spectroscopy confirmed the presence of struvite crystals in the obtained precipitate. Techno-economic assessment (TEA) based on mass energy balance principle and market equipment specifications revealed that a pilot-scale plant set up would have a break-even period of 1.06 years with a return on investment as 94.28%. This clearly elucidated the economic viability of the developed process for industrial applications for management of high ammonia laden pharmaceutical wastewater. While further specific technological improvements are needed for reduction of cost, this study will guide researchers and industries for careful selection of target markets to reduce the cost for successful implementation.


Asunto(s)
Amoníaco , Purificación del Agua , Amoníaco/análisis , Precipitación Química , Fertilizantes/análisis , Nitrógeno/análisis , Preparaciones Farmacéuticas , Fosfatos/química , Fósforo , Estruvita/química , Aguas Residuales/química
20.
Sci Rep ; 12(1): 14176, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986201

RESUMEN

Struvite (St) recovered from wastewaters is a sustainable option for phosphorus (P) recovery and fertilization, whose solubility is low in water and high in environments characterized by a low pH, such as acidic soils. To broaden the use of struvite in the field, its application as granules is recommended, and thus the way of application should be optimized to control the solubility. In this study struvite slow-release fertilizers were designed by dispersing St particles (25, 50, and 75 wt%) in a biodegradable and hydrophilic matrix of thermoplastic starch (TPS). It was shown that, in citric acid solution (pH = 2), TPS promoted a steadier P-release from St compared to the pure St pattern. In a pH neutral sand, P-diffusion from St-TPS fertilizers was slower than from the positive control of triple superphosphate (TSP). Nevertheless, St-TPS featured comparable maize growth (i.e. plant height, leaf area, and biomass) and similar available P as TSP in sand after 42 days of cultivation. These results indicated that St-TPS slow P release could provide enough P for maize in sand, achieving a desirable agronomic efficiency while also reducing P runoff losses in highly permeable soils.


Asunto(s)
Fertilizantes , Arena , Fertilización , Fertilizantes/análisis , Fosfatos/química , Fósforo/química , Suelo/química , Estruvita/química , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA