Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 89(3): 554-564, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27797425

RESUMEN

We determined the crossover (CO) distribution, frequency and genomic sequences involved in interspecies meiotic recombination by using parent-assigned variants of 52 F6 recombinant inbred lines obtained from a cross between tomato, Solanum lycopersicum, and its wild relative, Solanum pimpinellifolium. The interspecific CO frequency was 80% lower than reported for intraspecific tomato crosses. We detected regions showing a relatively high and low CO frequency, so-called hot and cold regions. Cold regions coincide to a large extent with the heterochromatin, although we found a limited number of smaller cold regions in the euchromatin. The CO frequency was higher at the distal ends of chromosomes than in pericentromeric regions and higher in short arm euchromatin. Hot regions of CO were detected in euchromatin, and COs were more often located in non-coding regions near the 5' untranslated region of genes than expected by chance. Besides overrepresented CCN repeats, we detected poly-A/T and AT-rich motifs enriched in 1-kb promoter regions flanking the CO sites. The most abundant sequence motifs at CO sites share weak similarity to transcription factor-binding sites, such as for the C2H2 zinc finger factors class and MADS box factors, while InterPro scans detected enrichment for genes possibly involved in the repair of DNA breaks.


Asunto(s)
Cromosomas de las Plantas/genética , Intercambio Genético , Genoma de Planta/genética , Solanum lycopersicum/genética , Solanum/genética , Regiones no Traducidas 5'/genética , Cruzamientos Genéticos , ADN de Plantas/genética , Eucromatina/genética , Genes de Plantas/genética , Haplotipos , Heterocromatina/genética , Endogamia , Fitomejoramiento/métodos
2.
BMC Genomics ; 16: 374, 2015 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-25958312

RESUMEN

BACKGROUND: In flowering plants it has been shown that de novo genome assemblies of different species and genera show a significant drop in the proportion of alignable sequence. Within a plant species, however, it is assumed that different haplotypes of the same chromosome align well. In this paper we have compared three de novo assemblies of potato chromosome 5 and report on the sequence variation and the proportion of sequence that can be aligned. RESULTS: For the diploid potato clone RH89-039-16 (RH) we produced two linkage phase controlled and haplotype-specific assemblies of chromosome 5 based on BAC-by-BAC sequencing, which were aligned to each other and compared to the 52 Mb chromosome 5 reference sequence of the doubled monoploid clone DM 1-3 516 R44 (DM). We identified 17.0 Mb of non-redundant sequence scaffolds derived from euchromatic regions of RH and 38.4 Mb from the pericentromeric heterochromatin. For 32.7 Mb of the RH sequences the correct position and order on chromosome 5 was determined, using genetic markers, fluorescence in situ hybridisation and alignment to the DM reference genome. This ordered fraction of the RH sequences is situated in the euchromatic arms and in the heterochromatin borders. In the euchromatic regions, the sequence collinearity between the three chromosomal homologs is good, but interruption of collinearity occurs at nine gene clusters. Towards and into the heterochromatin borders, absence of collinearity due to structural variation was more extensive and was caused by hemizygous and poorly aligning regions of up to 450 kb in length. In the most central heterochromatin, a total of 22.7 Mb sequence from both RH haplotypes remained unordered. These RH sequences have very few syntenic regions and represent a non-alignable region between the RH and DM heterochromatin haplotypes of chromosome 5. CONCLUSIONS: Our results show that among homologous potato chromosomes large regions are present with dramatic loss of sequence collinearity. This stresses the need for more de novo reference assemblies in order to capture genome diversity in this crop. The discovery of three highly diverged pericentric heterochromatin haplotypes within one species is a novelty in plant genome analysis. The possible origin and cytogenetic implication of this heterochromatin haplotype diversity are discussed.


Asunto(s)
Cromosomas de las Plantas , Eucromatina/genética , Heterocromatina/genética , Solanum tuberosum/genética , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Eucromatina/metabolismo , Ligamiento Genético , Genotipo , Haplotipos , Heterocromatina/metabolismo , Hibridación Fluorescente in Situ , Polimorfismo Genético
3.
Plant J ; 71(4): 602-14, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22463056

RESUMEN

We have analysed the structural homology in euchromatin regions of tomato, potato and pepper with special attention for the long arm of chromosome 2 (2L). Molecular organization and colinear junctions were delineated using multi-color BAC FISH analysis and comparative sequence alignment. We found large-scale rearrangements including inversions and segmental translocations that were not reported in previous comparative studies. Some of the structural rearrangements are specific for the tomato clade, and differentiate tomato from potato, pepper and other Solanaceous species. Although local gene vicinity is largely preserved, there are many small-scale synteny perturbations. Gene adjacency in the aligned segments was frequently disrupted for 47% of the ortholog pairs as a result of gene and LTR retrotransposon insertions, and occasionally by single gene inversions and translocations. Our data also suggests that long distance intra-chromosomal rearrangements and local gene rearrangements have evolved frequently during speciation in the Solanum genus, and that small changes are more prevalent than large-scale differences. The occurrence of sonata and harbinger transposable elements and other repeats near or at junction breaks is considered in the light of repeat-mediated rearrangements and a reconstruction scenario for an ancestral 2L topology is discussed.


Asunto(s)
Reordenamiento Génico , Genoma de Planta , Solanaceae/genética , Capsicum/genética , Cromosomas de las Plantas , Resistencia a la Enfermedad/genética , Eucromatina/genética , Evolución Molecular , Hibridación Fluorescente in Situ/métodos , Solanum lycopersicum/genética , Retroelementos , Homología de Secuencia de Ácido Nucleico , Solanum tuberosum/genética
4.
Chromosoma ; 120(4): 409-22, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21594600

RESUMEN

Sugar beet (Beta vulgaris) chromosomes consist of large heterochromatic blocks in pericentromeric, centromeric, and intercalary regions comprised of two different highly abundant DNA satellite families. To investigate DNA methylation at single base resolution at heterochromatic regions, we applied a method for strand-specific bisulfite sequencing of more than 1,000 satellite monomers followed by statistical analyses. As a result, we uncovered diversity in the distribution of different methylation patterns in both satellite families. Heavily methylated CG and CHG (H=A, T, or C) sites occur more frequently in intercalary heterochromatin, while CHH sites, with the exception of CAA, are only sparsely methylated, in both intercalary and pericentromeric/centromeric heterochromatin. We show that the difference in DNA methylation intensity is correlated to unequal distribution of heterochromatic histone H3 methylation marks. While clusters of H3K9me2 were absent from pericentromeric heterochromatin and restricted only to intercalary heterochromatic regions, H3K9me1 and H3K27me1 were observed in all types of heterochromatin. By sequencing of a small RNA library consisting of 6.76 million small RNAs, we identified small interfering RNAs (siRNAs) of 24 nucleotides in size which originated from both strands of the satellite DNAs. We hypothesize an involvement of these siRNAs in the regulation of DNA and histone methylation for maintaining heterochromatin.


Asunto(s)
Beta vulgaris , Centrómero/química , Cromosomas de las Plantas/química , ADN Satélite/química , Epigenómica/métodos , Eucromatina/química , Heterocromatina/química , ARN Interferente Pequeño/química , Beta vulgaris/genética , Beta vulgaris/metabolismo , Southern Blotting , Centrómero/genética , Centrómero/metabolismo , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Análisis por Conglomerados , Metilación de ADN , ADN Satélite/genética , ADN Satélite/metabolismo , Eucromatina/genética , Eucromatina/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Hibridación Fluorescente in Situ , ARN Interferente Pequeño/genética , Análisis de Secuencia de ADN , Bibliotecas de Moléculas Pequeñas/química
5.
Genes Genet Syst ; 85(6): 377-82, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21415567

RESUMEN

Onion, Allium cepa, is a model plant for experimental observation of somatic cell division, whose mitotic chromosome is extremely large, and contains the characteristic terminal heterochromatin. Epigenetic status of the onion chromosome is a matter of deep interest from a molecular cytogenetic point of view, because epigenetic marks regulate chromatin structure and gene expression. Here we examined chromosomal distribution of DNA methylation and histone modification in A. cepa in order to reveal the chromatin structure in detail. Immunodetection of 5-methylcytosine (5mC) and in situ nick-translation analysis showed that onion genomic DNA was highly methylated, and the methylated CG dinucleotides were distributed in entire chromosomes. In addition, distributions of histone methylation codes, which occur in close association with DNA methylation, were similar to those of other large genome species. From these results, a highly heterochromatic and less euchromatic state of large onion chromosomes were demonstrated at an epigenetic level.


Asunto(s)
Metilación de ADN/genética , Histonas/genética , Cebollas/genética , 5-Metilcitosina/química , Cromosomas/genética , Cromosomas de las Plantas/genética , Epigenómica , Eucromatina/genética , Genoma , Heterocromatina/química , Heterocromatina/genética , Histonas/química , Hibridación Fluorescente in Situ , Cebollas/metabolismo , Procesamiento Proteico-Postraduccional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA