Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 1211, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619262

RESUMEN

Primary production in the Southern Ocean (SO) is limited by iron availability. Hydrothermal vents have been identified as a potentially important source of iron to SO surface waters. Here we identify a recurring phytoplankton bloom in the high-nutrient, low-chlorophyll waters of the Antarctic Circumpolar Current in the Pacific sector of the SO, that we argue is fed by iron of hydrothermal origin. In January 2014 the bloom covered an area of ~266,000 km2 with depth-integrated chlorophyll a > 300 mg m-2, primary production rates >1 g C m-2 d-1, and a mean CO2 flux of -0.38 g C m-2 d-1. The elevated iron supporting this bloom is likely of hydrothermal origin based on the recurrent position of the bloom relative to two active hydrothermal vent fields along the Australian Antarctic Ridge and the association of the elevated iron with a distinct water mass characteristic of a nonbuoyant hydrothermal vent plume.


Asunto(s)
Eutrofización/fisiología , Respiraderos Hidrotermales/química , Hierro/farmacología , Océanos y Mares , Fitoplancton/crecimiento & desarrollo , Regiones Antárticas , Biomasa , Carbono/análisis , Clorofila/análisis , Eutrofización/efectos de los fármacos , Cinética , Nitrógeno/análisis , Fósforo/análisis , Fitoplancton/efectos de los fármacos , Agua/química
2.
Nat Commun ; 12(1): 570, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495440

RESUMEN

Melting of the Greenland Ice Sheet is a leading cause of land-ice mass loss and cryosphere-attributed sea level rise. Blooms of pigmented glacier ice algae lower ice albedo and accelerate surface melting in the ice sheet's southwest sector. Although glacier ice algae cause up to 13% of the surface melting in this region, the controls on bloom development remain poorly understood. Here we show a direct link between mineral phosphorus in surface ice and glacier ice algae biomass through the quantification of solid and fluid phase phosphorus reservoirs in surface habitats across the southwest ablation zone of the ice sheet. We demonstrate that nutrients from mineral dust likely drive glacier ice algal growth, and thereby identify mineral dust as a secondary control on ice sheet melting.


Asunto(s)
Eutrofización/fisiología , Cubierta de Hielo , Microalgas/crecimiento & desarrollo , Minerales/metabolismo , Fósforo/metabolismo , Biomasa , Ecosistema , Congelación , Geografía , Calentamiento Global , Groenlandia , Hielo , Microalgas/citología , Microalgas/ultraestructura , Microscopía Electrónica de Rastreo , Estaciones del Año
3.
Proc Natl Acad Sci U S A ; 117(45): 28175-28182, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33106397

RESUMEN

Excessive nitrogen (N) and phosphorus (P) loading is one of the greatest threats to aquatic ecosystems in the Anthropocene, causing eutrophication of rivers, lakes, and marine coastlines worldwide. For lakes across the United States, eutrophication is driven largely by nonpoint nutrient sources from tributaries that drain surrounding watersheds. Decades of monitoring and regulatory efforts have paid little attention to small tributaries of large water bodies, despite their ubiquity and potential local importance. We used a snapshot of nutrient inputs from nearly all tributaries of Lake Michigan-the world's fifth largest freshwater lake by volume-to determine how land cover and dams alter nutrient inputs across watershed sizes. Loads, concentrations, stoichiometry (N:P), and bioavailability (percentage dissolved inorganic nutrients) varied by orders of magnitude among tributaries, creating a mosaic of coastal nutrient inputs. The 6 largest of 235 tributaries accounted for ∼70% of the daily N and P delivered to Lake Michigan. However, small tributaries exhibited nutrient loads that were high for their size and biased toward dissolved inorganic forms. Higher bioavailability of nutrients from small watersheds suggests greater potential to fuel algal blooms in coastal areas, especially given the likelihood that their plumes become trapped and then overlap in the nearshore zone. Our findings reveal an underappreciated role that small streams may play in driving coastal eutrophication in large water bodies. Although they represent only a modest proportion of lake-wide loads, expanding nutrient management efforts to address smaller watersheds could reduce the ecological impacts of nutrient loading on valuable nearshore ecosystems.


Asunto(s)
Ecosistema , Lagos/química , Ríos/química , Disponibilidad Biológica , Monitoreo del Ambiente , Eutrofización/fisiología , Michigan , Nitrógeno/análisis , Fósforo/análisis
4.
Environ Sci Pollut Res Int ; 26(35): 35779-35786, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31705409

RESUMEN

The effects of eutrophication on the growth and phenotypic performance of macrophytes have been widely studied. Experimental evidence suggests that an increase in the water nutrient level would promote the performance of several invasive free-floating macrophytes. However, few studies have focused on how a shift in water nutrient (nitrogen and phosphorus) stoichiometric regimes may influence the performance of invasive free-floating macrophytes. In the present study, two exotic invasive plant species, free-floating Eichhornia crassipes and Pistia stratiotes, were subjected to different water nutrient stoichiometric regimes, and their phenotypic performance was studied. We found that the two species converged in several resource use traits and diverged in lateral root length. This implied that their similarities in fitness-correlated traits and their underwater niche differentiation probably contribute to their stable coexistence in the field. Additionally, the eutrophic conditions in the different N:P regimes scarcely altered the performance of both species compared to their performance in the oligotrophic condition. Based on previous studies, we predicted that moderate eutrophication with slight overloading of nitrogen and phosphorus would not improve the performance of several invasive free-floating plants and thus would scarcely alter the invasive status of these species. However, moderate eutrophication may cause other problems, such as the growth of phytoplankton and algae and increased pollution in the water.


Asunto(s)
Araceae/química , Eichhornia/crecimiento & desarrollo , Eutrofización/fisiología , Nitrógeno/análisis , Fósforo/análisis , Fitoplancton/química , Contaminantes Químicos del Agua/análisis , China , Eichhornia/química , Especies Introducidas , Nitrógeno/química , Nutrientes , Fósforo/química , Agua
5.
Environ Monit Assess ; 191(9): 586, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31440835

RESUMEN

Lakes and reservoirs around the world are facing a substantial water quality degradation problem that poses significant environmental, social, and economic impacts. Reservoir productivity is influenced primarily by the climatic, morphometric, and hydro-edaphic features. High nutrient loadings in the reservoir from agriculture runoff often provide ideal conditions for algal blooms, leading to eutrophication. Reservoir and lake management to prevent or reduce eutrophication, therefore, has become the need of the hour. The traditional approach of trophic state monitoring by rigorous field surveys and eutrophication modeling has been revised in the present study by developing a new trophic state index (TSI)-based model for tropical shallow freshwater reservoirs. The new model has been constructed based on Carlson's Limnology and Oceanography, 22, 361-369, (1977) guidelines by establishing an empirical relationship between trophic parameters including total phosphorus (TP), Secchi disk depth (SDD), and chlorophyll (Chl-a). After comparing the new model with various earlier models for its applicability and validation with actual field conditions, it was found to be most precise over previous TSI models. Temporal and spatial fluctuations in the water quality of the Tiru reservoir were primarily attributed to the changing climatic conditions during the study period. Seasonal monsoon with less frequency, heavy nutrient loading from agriculture runoff, and increased turbidity due to a high level of sediment inflow during monsoon raised the TSI (SDD) values of the Tiru reservoir to place it in the hyper-eutrophic class. Average TSI values during winter for SDD, Chl-a, and TP were indicative of the meso-eutrophic to eutrophic state. Saturation of nutrients due to low water level during summer season caused the poly-eutrophic condition for TSI (SDD)- and TSI (TP)-based estimates and eutrophic condition as per TSI (Chl-a) estimates. However, seasonal deviations of the TSI values based on the relationship between TSI (Chl-a) and TSI (SD) indicated a predominance of smaller particles (non-algal turbidity) during all seasons. Even though TP present in the Tiru reservoir is controlling the algal production, it is also affected by low-light conditions due to non-algal turbidity. The recommendation from this study is that the TSI method for estimating the health of the water bodies is the efficient, cost-effective, and time-saving approach. The model developed during the study would help managers and policy makers to take necessary steps to reduce eutrophication levels in the reservoir and would be helpful for researchers in developing new concepts and protocols, mainly focusing on shallow freshwater reservoirs.


Asunto(s)
Clorofila/análisis , Monitoreo del Ambiente/métodos , Eutrofización/fisiología , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Agricultura , Clima , Lagos/química , Modelos Teóricos , Estaciones del Año , Calidad del Agua , Abastecimiento de Agua
6.
Artículo en Inglés | MEDLINE | ID: mdl-31159184

RESUMEN

To study the microbial community structure in sediments and its relation to eutrophication environment factors, the sediments and the overlying water of Sancha Lake were collected in the four seasons. MiSeq high-throughput sequencing was conducted for the V3-V4 hypervariable regions of the 16S rRNA gene and was used to analyze the microbial community structure in sediments. Pearson correlation and redundancy analysis (RDA) were conducted to determine the relation between microbial populations and eutrophic factors. The results demonstrated four main patterns: (1) in the 36 samples that were collected, the classification annotation suggested 64 phyla, 259 classes, 476 orders, 759 families, and 9325 OTUs; (2) The diversity indices were ordered according to their values as with summer > winter > autumn > spring; (3) The microbial populations in the four seasons belonged to two distinct characteristic groups; (4) pH, dissolved oxygen (DO), total phosphorus (TP), and total nitrogen (TN) had significant effects on the community composition and structure, which further affected the dissolved total phosphorus (DTP) significantly. The present study demonstrates that the microbial communities in Sancha Lake sediments are highly diverse, their compositions and distributions are significantly different between spring and non-spring, and Actinobacteria and Cyanobacteria may be the key populations or indicator organisms for eutrophication.


Asunto(s)
Eutrofización/fisiología , Sedimentos Geológicos/química , Lagos/microbiología , Microbiota , Actinobacteria/crecimiento & desarrollo , China , Cianobacterias/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Nitrógeno/análisis , Oxígeno/análisis , Fósforo/análisis , ARN Ribosómico 16S , Estaciones del Año
7.
Environ Pollut ; 248: 36-47, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30771746

RESUMEN

Applications of aluminium (Al) salt or lanthanum (La) modified bentonite (LMB) have become popular methodologies for immobilizing phosphorus (P) in eutrophic lakes. The presence of humic substances, has been shown to inhibit this form of treatment due to the complexation with La/Al. However, the effects of other dissolved organic matter (DOM), especially that derived from phytoplankton (the dominant source in eutrophic lakes) are unknown. In this study, the interaction with La/Al of Suwannee River Standard Humic Acid Standard II (SRHA) and algae-derived DOM (ADOM) were investigated and compared. Differed to SRHA which was dominated by polyphenol-like component (76.8%, C1-SRHA), majority in ADOM were protein-like substance, including 41.9% tryptophan-like component (C2-ADOM) and 21.0% tyrosine-like component (C3-ADOM). Two reactions of complexation and coprecipitation were observed between SRHA/ADOM and La/Al. Complexation dominated at low metal inputs less than 10 µM and coprecipitation was the main reaction at higher metal inputs. For ADOM, the tryptophan-like component (C2-ADOM) was the important component to react with metal. The reaction rate for C2-ADOM with La were about two-third of that for C1-SRHA, indicating that the influence of C2-ADOM was significant during the P immobilization by La/Al-based treatment in eutrophic lakes. The P removal data in the presence of ADOM confirmed the significant inhibition of ADOM. In addition, based on the composition of coprecipitates and relatively biodegradable character of tryptophan-like substances (C2-ADOM), the coprecipitation of ADOM was assumed to reduce the stability of precipitated P in eutrophic lakes. The release of P from the potential biodegradation of the coprecipitates and thus the possible decline of the performance of P immobilization by La/Al-based treatments is an important work in the future.


Asunto(s)
Aluminio/química , Bentonita/química , Eutrofización/fisiología , Lagos/química , Lantano/química , Fósforo/química , Ríos/química , Sedimentos Geológicos/química , Sustancias Húmicas/análisis , Iones , Fitoplancton , Espectrometría de Fluorescencia/métodos
8.
Artículo en Inglés | MEDLINE | ID: mdl-30577417

RESUMEN

Quinoprotein glucose dehydrogenase (GDH) is the most important enzyme of inorganic phosphorus-dissolving metabolism, catalyzing the oxidation of glucose to gluconic acid. The insoluble phosphate in the sediment is converted into soluble phosphate, facilitating mass reproduction of algae. Therefore, studying the diversity of gcd genes which encode GDH is beneficial to reveal the microbial group that has a significant influence on the eutrophication of water. Taking the eutrophic Sancha Lake sediments as the research object, we acquired samples from six sites in the spring and autumn. A total of 219,778 high-quality sequences were obtained by DNA extraction of microbial groups in sediments, PCR amplification of the gcd gene, and high-throughput sequencing. Six phyla, nine classes, 15 orders, 29 families, 46 genera, and 610 operational taxonomic units (OTUs) were determined, suggesting the high genetic diversity of gcd. Gcd genes came mainly from the genera of Rhizobium (1.63⁻77.99%), Ensifer (0.13⁻56.95%), Shinella (0.32⁻25.49%), and Sinorhizobium (0.16⁻11.88%) in the phylum of Proteobacteria (25.10⁻98.85%). The abundance of these dominant gcd-harboring bacteria was higher in the spring than in autumn, suggesting that they have an important effect on the eutrophication of the Sancha Lake. The alpha and beta diversity of gcd genes presented spatial and temporal differences due to different sampling site types and sampling seasons. Pearson correlation analysis and canonical correlation analysis (CCA) showed that the diversity and abundance of gcd genes were significantly correlated with environmental factors such as dissolved oxygen (DO), phosphorus hydrochloride (HCl⁻P), and dissolved total phosphorus (DTP). OTU composition was significantly correlated with DO, total organic carbon (TOC), and DTP. GDH encoded by gcd genes transformed insoluble phosphate into dissolved phosphate, resulting in the eutrophication of Sancha Lake. The results suggest that gcd genes encoding GDH may play an important role in lake eutrophication.


Asunto(s)
Sedimentos Geológicos/microbiología , Glucosa Deshidrogenasas/genética , Lagos/microbiología , Fósforo/metabolismo , Proteobacteria/genética , China , Eutrofización/fisiología , Variación Genética , Estaciones del Año
9.
PLoS One ; 13(10): e0205684, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30335857

RESUMEN

Assessing algal nutrient limitation is critical for understanding the interaction of primary production and nutrient cycling in streams, and nutrient diffusing substrate (NDS) experiments are often used to determine limiting nutrients such as nitrogen (N) and phosphorus (P). Unexpectedly, many experiments have also shown decreased algal biomass on NDS P treatments compared to controls. To address whether inhibition of algal growth results from direct P toxicity, NDS preparation artifacts, or environmental covariates, we first quantified the frequency of nutrient inhibition in published experiments. We also conducted a meta-analysis to determine whether heterotrophic microbial competition or selective grazing could explain decreases in algal biomass with P additions. We then deployed field experiments to determine whether P-inhibition of algal growth could be explained by P toxicity, differences in phosphate cation (K vs. Na), differences in phosphate form (monobasic vs. dibasic), or production of H2O2 during NDS preparation. We found significant inhibition of algal growth in 12.9% of published NDS P experiments as compared to 4.7% and 3.6% of N and NP experiments. The meta-analysis linear models did not show enhanced heterotrophy on NDS P treatments or selective grazing of P-rich algae. Our field experiments did not show inhibition of autotrophic growth with P additions, but we found significantly lower gross primary productivity (GPP) and biomass-specific GPP of benthic algae on monobasic phosphate salts as compared to dibasic phosphate salts, likely because of reduced pH levels. Additionally, we note that past field experiments and meta-analyses support the plausibility of direct P toxicity or phosphate form (monobasic vs. dibasic) leading to inhibition of algal growth, particularly when other resources such as N or light are limiting. Given that multiple mechanisms may be acting simultaneously, we recommend practical, cost-effective steps to minimize the potential for P- inhibition of algal growth as an artifact of NDS experimental design.


Asunto(s)
Procesos Autotróficos/fisiología , Microalgas/fisiología , Nitrógeno/metabolismo , Fenómenos Fisiológicos de la Nutrición , Fósforo/metabolismo , Biomasa , Eutrofización/efectos de los fármacos , Eutrofización/fisiología , Peróxido de Hidrógeno/metabolismo , Fósforo/toxicidad , Ríos
10.
FEMS Microbiol Ecol ; 94(12)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30289447

RESUMEN

Cyanobacterial blooms are characterized by intense growth of one or few species that will dominate the phytoplankton community for periods of few months to an entire year or more. However, even during persistent blooms, important seasonal changes among dominant species can be observed. Pampulha reservoir is a tropical eutrophic reservoir presenting permanent blooms. To identify the main species in this environment, a closer analysis performed by microscopy and 16S-rRNA DGGE revealed Cylindrospermopsis raciborskii as highly dominant throughout the year. The second most abundant group comprised species belonging to the Microcystis genus. They followed a well-defined seasonal pattern described by interesting species-specific ecological trends. During thermal stratification in the rainy/warmer season, C. raciborskii dominated in the water column, while Microcystis spp. were abundant at the end of the dry season, a period characterized by higher total phosphorus concentrations. Phylogenetic analyses confirmed the two dominant taxa and their seasonal trends. The results showed that cyanobacteria major controlling factors were strongly species dependent, shifting from physical/climate related (stratification) to more chemical driven (nutrients/eutrophication). Identifying these drivers is therefore essential for the understanding of the bloom dynamics and the real risks associated with each species, and to eventually adopt the most appropriate and effective management strategies.


Asunto(s)
Cylindrospermopsis/clasificación , Cylindrospermopsis/crecimiento & desarrollo , Eutrofización/fisiología , Microcystis/clasificación , Microcystis/crecimiento & desarrollo , Cylindrospermopsis/genética , Microcystis/genética , Fósforo/análisis , Filogenia , Fitoplancton/clasificación , ARN Ribosómico 16S/genética , Estaciones del Año
11.
Sci Rep ; 7(1): 13770, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29062037

RESUMEN

After strong fertilization in the 20th century, many deep lakes in Central Europe are again nutrient poor due to long-lasting restoration (re-oligotrophication). In line with reduced phosphorus and nitrogen loadings, total organismic productivity decreased and lakes have now historically low nutrient and biomass concentrations. This caused speculations that restoration was overdone and intended fertilizations are needed to ensure ecological functionality. Here we show that recent re-oligotrophication processes indeed accelerated, however caused by lake warming. Rising air temperatures strengthen thermal stabilization of water columns which prevents thorough turnover (holomixis). Reduced mixis impedes down-welling of oxygen rich epilimnetic (surface) and up-welling of phosphorus and nitrogen rich hypolimnetic (deep) water. However, nutrient inputs are essential for algal spring blooms acting as boost for annual food web successions. We show that repeated lack (since 1977) and complete stop (since 2013) of holomixis caused drastic epilimnetic phosphorus depletions and an absence of phytoplankton spring blooms in Lake Zurich (Switzerland). By simulating holomixis in experiments, we could induce significant vernal algal blooms, confirming that there would be sufficient hypolimnetic phosphorus which presently accumulates due to reduced export. Thus, intended fertilizations are highly questionable, as hypolimnetic nutrients will become available during future natural or artificial turnovers.


Asunto(s)
Biomasa , Eutrofización/fisiología , Lagos/química , Estaciones del Año , Movimientos del Agua , Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis
12.
Environ Microbiol ; 19(7): 2873-2892, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28585365

RESUMEN

High-throughput sequencing of sedimentary DNA (sed-DNA) was utilized to reconstruct the temporal dynamics of microbial eukaryotic communities (MECs) at a centennial scale in two re-oligotrophicated lakes that were exposed to different levels of phosphorus enrichment. The temporal changes within the MECs were expressed in terms of richness, composition and community structure to investigate their relationships with two key forcing factors (i.e., nutrient enrichment and climate warming). Various groups, including Apicomplexa, Cercozoa, Chrysophyceae, Ciliophora, Chlorophyceae and Dinophyceae, responded to phosphorus enrichment levels with either positive or negative impacts on their richness and relative abundance. For both lakes, statistical modelling demonstrated that phosphorus concentration ([P]) was a dominant contributor to MECs modifications before the 1980s; after the mid-80s, the contribution of air temperature changes increased and potentially surpassed the contribution of [P]. Co-occurrence network analysis revealed that some clusters of taxa (i.e., modules) composed mainly of Dinophyceae and unclassified Alveolata were strongly correlated to air temperature in both lakes. Overall, our data showed that sed-DNA constitutes a precious archive of information on past biodiversity changes, allowing the study of the dynamics of numerous eukaryotic groups that were not traditionally considered in paleo-reconstructions.


Asunto(s)
Chrysophyta/metabolismo , Cilióforos/metabolismo , Eutrofización/fisiología , Lagos/parasitología , Biodiversidad , Chrysophyta/genética , Chrysophyta/aislamiento & purificación , Cilióforos/genética , Cilióforos/aislamiento & purificación , Clima , ADN Protozoario/genética , Lagos/química , Fósforo
13.
Artículo en Inglés | MEDLINE | ID: mdl-27483293

RESUMEN

Lake Pamvotis (Greece) is a shallow hypereutrophic lake with a natural tendency to eutrophication. Several restoration measures were applied, but with no long-term success. To examine the causes for this an Artificial Neural Network (ANN) was created in order to simulate the chlorophyll-a (Chl-a) levels and to investigate the role of the associated environmental parameters. The ANN managed to simulate with good correlation the simulated Chl-a and can be considered as a reliable predictor. The relative importance of the environmental parameters to the simulated Chl-a was calculated with the use of the "Partial Derivatives" ("PaD") sensitivity method. The water temperature (WT) and soluble reactive phosphorus (SRP) had the highest relative importance, with values of 50% and 17%, respectively. The synergistic effect of the paired parameters was calculated with the use of the "PaD2" algorithm. The SRP-WT paired parameter was the most influential, with a relative contribution of 22%. The ANN showed that Lake Pamvotis is prone to suffer the effects of climatic change, because of the major contribution of WT. The ANN also revealed that combined nutrients reduction would improve water quality status. The ANN findings can act as an advisory tool regarding any restoration efforts.


Asunto(s)
Monitoreo del Ambiente/métodos , Eutrofización/fisiología , Lagos/análisis , Calidad del Agua/normas , Algoritmos , Clorofila/análogos & derivados , Clorofila A , Monitoreo del Ambiente/instrumentación , Grecia , Lagos/química , Fósforo/análisis
14.
Biofizika ; 60(4): 769-76, 2015.
Artículo en Ruso | MEDLINE | ID: mdl-26394477

RESUMEN

We present results of the analysis of long-term chlorophyll a dynamics in the Naroch lakes. It has been shown that an increase in nutrient load in the 1970s resulted in progressive eutrophication of Naroch lakes. Then, starting in the mid-1980s, the increase in water transparency and decreases in concentrations of phosphorus and nitrogen have been occurring due to the environmental improvement program. In the 1980s, the Naroch lakes experienced a strong factor as an invasion by zebra mussel (Dreissena polymorpha Pallas). Our analysis shows that responses of all three lakes to the intensive nutrient load and further decrease in the nutrient concentration as a result of the environmental protection measures have been correlated. At the same time, different degrees of the influence of the zebra mussel invasion on the lakes are shown to lead to divergence in chlorophyll dynamics. This divergence was observed as a drastic decline in correlations between variations in chlorophyll concentrations in every Naroch lakes.


Asunto(s)
Clorofila/análisis , Dreissena/fisiología , Eutrofización/fisiología , Lagos/química , Animales , Clorofila A , Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis , Dinámica Poblacional , República de Belarús
15.
FEMS Microbiol Ecol ; 91(5)2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25873463

RESUMEN

The current paradigm that stream producers are under exclusive macronutrient control was recently challenged by continental studies, demonstrating that iron supply constrained diatom biodiversity and energy flows. Using algal abundance and water chemistry data from the National Water-Quality Assessment Program, we determined for the first time community thresholds along iron gradients in non-acidic running waters, i.e. 30-79.5 µg L(-1) and 70-120 µg L(-1) in oligotrophic and eutrophic streams, respectively. Given that Fe concentrations fell below both thresholds in 50% of US streams, and below the eutrophic threshold in 75% of US streams, we suggest that Fe limitation is potentially widespread and attribute it to the restricted distribution of wetlands. We also report results from the first laboratory experiments on algal-iron interactions in streams, revealing that iron supplementation leads to significant biovolume and biodiversity increase in both nitrogen fixing and non-nitrogen fixing algae. Therefore, the progressive brownification of freshwaters due to rising dissolved organic carbon and iron levels can have a stimulating influence on microbial producers with cascading effects along the trophic hierarchy. Future research in running waters should focus on the role of iron in algal physiology and biofilm functions, including accumulation of biomass, fixing atmospheric nitrogen and improving water quality.


Asunto(s)
Cianobacterias/clasificación , Cianobacterias/metabolismo , Hierro/análisis , Hierro/metabolismo , Fijación del Nitrógeno/fisiología , Biodiversidad , Biopelículas/crecimiento & desarrollo , Biomasa , Diatomeas/metabolismo , Ecosistema , Eutrofización/fisiología , Agua Dulce/análisis , Nitrógeno/metabolismo , Ríos/química , Humedales
16.
Environ Sci Pollut Res Int ; 22(11): 8480-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25548018

RESUMEN

To reveal the mechanism of submerged plants decline in progressively eutrophicated freshwaters, physiological responses of Vallisneria natans to epiphytic algae were studied in simulation lab by measuring plant physiological indexes of chlorophyll content, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity based on a 2 × 4 factorial design with two epiphytic conditions (with epiphytic algae and without) and four levels of N and P concentrations in water (N-P[mg.L(-1)]: 0.5, 0.05; 2.5, 0.25; 4.5, 0.45; 12.5, 1.25). Compared with control (non-presence of epiphytic algae), chlorophyll contents of V. natans were significantly decreased (p < 0.01) for the presence of epiphytic algae under any concentrations of N and P in water bodies. While the presence of epiphytic algae induced peroxidation of membrane lipids, MDA contents of V. natans had significantly increased (p < 0.05) by comparing with control. SOD activity significantly enhanced (p < 0.05) with the presence of epiphytic algae in the treatments of T2 and T3 in the whole culture process by comparing with control, sometimes reaching an extremely significant level (p < 0.01). However, in the treatments of T1 and T4, SOD activity had no obvious change with the presence of epiphytic algae (p < 0.05) by comparing with control. At the end of the experiment, the effects of epiphytic algae on chlorophyll content and SOD activity in the leaves of V. natans were increased at first and then decreased with the concentrations of N and P in water, and MDA content became higher with the increase of N and P. concentrations. Repeated measurement data testing showed that the effects of epiphytic algae on the chlorophyll content and MDA content and SOD activity were significant, respectively (p < 0.001), the effects of epiphytic algae were combining with effects of concentrations of N and P (p < 0.001), respectively, and their interaction (p < 0.001). Our observations confirmed that this prediction: the growth of epiphytic algae directly produced adverse effects on physiology of V. natans and epiphytic algal biomass were positively correlated with nutrient available in the water column.


Asunto(s)
Eutrofización/fisiología , Agua Dulce/química , Hydrocharitaceae/microbiología , Hydrocharitaceae/fisiología , Nitrógeno/análisis , Fósforo/análisis , Análisis de Varianza , Biomasa , China , Clorofila/análisis , Hydrocharitaceae/efectos de los fármacos , Malondialdehído/metabolismo , Hojas de la Planta/metabolismo , Superóxido Dismutasa/metabolismo
17.
Environ Sci Pollut Res Int ; 22(5): 3606-19, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25253056

RESUMEN

Adding sorbents to sediments has been suggested as an effective technology for contaminated sediment remediation. In this study, a zirconium-modified zeolite (ZrMZ) was prepared, characterized, and used as a sediment amendment to control phosphorus (P) release from eutrophic lake sediments. The efficiency of ZrMZ in immobilizing P from water and sediments was investigated through a series of experiments. The phosphate adsorption capacity for ZrMZ decreased with increasing water pH. The adsorption of phosphate on ZrMZ followed a pseudo-second-order kinetic model. The equilibrium adsorption data of phosphate on ZrMZ could be well described by the Langmuir isotherm model with a maximum monolayer adsorption capacity of 10.2 mg P/g at pH 7 and 25 °C. Sequential extraction of P from the phosphate-adsorbed ZrMZ suggested that most of P bound by ZrMZ existed as the NaOH extractable P (NaOH-P) and residual P (Res-P) and was unlikely to be released under natural pH and reducing conditions. The addition of ZrMZ into sediments reduced the inorganic P activity in the sediments by transforming bicarbonate-dithionite extractable P (BD-P) to NaOH-P and Res-P. The contents of bioavailable P such as water-soluble P (WS-P), NaHCO3 extractable P (Olsen-P), and algal available P (AAP) in sediments reduced after the sediments were mixed with ZrMZ, making P in the sediments more stable. The addition of ZrMZ into sediments significantly reduced the releasing flux of P from the sediments to the water column under different conditions. Results of this study indicate that the ZrMZ is a promising sediment amendment for controlling the internal P loading of lake sediments.


Asunto(s)
Sedimentos Geológicos/química , Lagos/química , Fósforo/aislamiento & purificación , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Zeolitas/química , Adsorción , Disponibilidad Biológica , Fraccionamiento Químico , China , Eutrofización/fisiología , Fosfatos , Fósforo/análisis , Fósforo/farmacocinética , Circonio/química
18.
PLoS One ; 9(3): e93130, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24682039

RESUMEN

Cyanobacterial blooms frequently occur in freshwater lakes, subsequently, substantial amounts of decaying cyanobacterial bloom biomass (CBB) settles onto the lake sediments where anaerobic mineralization reactions prevail. Coupled Fe/S cycling processes can influence the mobilization of phosphorus (P) in sediments, with high releases often resulting in eutrophication. To better understand eutrophication in Lake Taihu (PRC), we investigated the effects of CBB and temperature on phosphorus cycling in lake sediments. Results indicated that added CBB not only enhanced sedimentary iron reduction, but also resulted in a change from net sulfur oxidation to sulfate reduction, which jointly resulted in a spike of soluble Fe(II) and the formation of FeS/FeS2. Phosphate release was also enhanced with CBB amendment along with increases in reduced sulfur. Further release of phosphate was associated with increases in incubation temperature. In addition, CBB amendment resulted in a shift in P from the Fe-adsorbed P and the relatively unreactive Residual-P pools to the more reactive Al-adsorbed P, Ca-bound P and organic-P pools. Phosphorus cycling rates increased on addition of CBB and were higher at elevated temperatures, resulting in increased phosphorus release from sediments. These findings suggest that settling of CBB into sediments will likely increase the extent of eutrophication in aquatic environments and these processes will be magnified at higher temperatures.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Eutrofización/fisiología , Sedimentos Geológicos/química , Lagos/química , Lagos/microbiología , Fósforo/química , Biomasa , Monitoreo del Ambiente/métodos , Agua Dulce/análisis , Agua Dulce/química , Agua Dulce/microbiología , Sedimentos Geológicos/análisis , Sedimentos Geológicos/microbiología , Lagos/análisis , Fosfatos/química , Azufre/química , Temperatura , Contaminantes Químicos del Agua/química
19.
Glob Chang Biol ; 20(9): 2741-51, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24677531

RESUMEN

The eutrophication of lowland lakes in Europe by excess nitrogen (N) and phosphorus (P) is severe because of the long history of land-cover change and agricultural intensification. The ecological and socio-economic effects of eutrophication are well understood but its effect on organic carbon (OC) sequestration by lakes and its change overtime has not been determined. Here, we compile data from ~90 culturally impacted European lakes [~60% are eutrophic, Total P (TP) >30 µg P l(-1) ] and determine the extent to which OC burial rates have increased over the past 100-150 years. The average focussing corrected, OC accumulation rate (C ARFC ) for the period 1950-1990 was ~60 g C m(-2) yr(-1) , and for lakes with >100 µg TP l(-1) the average was ~100 g C m(-2) yr(-1) . The ratio of post-1950 to 1900-1950 C AR is low (~1.5) indicating that C accumulation rates have been high throughout the 20th century. Compared to background estimates of OC burial (~5-10 g C m(-2) yr(-1) ), contemporary rates have increased by at least four to fivefold. The statistical relationship between C ARFC and TP derived from this study (r(2) = 0.5) can be used to estimate OC burial at sites lacking estimates of sediment C-burial. The implications of eutrophication, diagenesis, lake morphometry and sediment focussing as controls of OC burial rates are considered. A conservative interpretation of the results of the this study suggests that lowland European meso- to eutrophic lakes with >30 µg TP l(-1) had OC burial rates in excess of 50 g C m(-2) yr(-1) over the past century, indicating that previous estimates of regional lake OC burial have seriously underestimated their contribution to European carbon sequestration. Enhanced OC burial by lakes is one positive side-effect of the otherwise negative impact of the anthropogenic disruption of nutrient cycles.


Asunto(s)
Agroquímicos/efectos adversos , Secuestro de Carbono/fisiología , Carbono/análisis , Eutrofización/fisiología , Lagos/química , Modelos Teóricos , Europa (Continente) , Eutrofización/efectos de los fármacos , Sedimentos Geológicos/análisis , Nitrógeno/análisis , Fósforo/análisis
20.
Proc Natl Acad Sci U S A ; 110(16): 6448-52, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23576718

RESUMEN

In 2011, Lake Erie experienced the largest harmful algal bloom in its recorded history, with a peak intensity over three times greater than any previously observed bloom. Here we show that long-term trends in agricultural practices are consistent with increasing phosphorus loading to the western basin of the lake, and that these trends, coupled with meteorological conditions in spring 2011, produced record-breaking nutrient loads. An extended period of weak lake circulation then led to abnormally long residence times that incubated the bloom, and warm and quiescent conditions after bloom onset allowed algae to remain near the top of the water column and prevented flushing of nutrients from the system. We further find that all of these factors are consistent with expected future conditions. If a scientifically guided management plan to mitigate these impacts is not implemented, we can therefore expect this bloom to be a harbinger of future blooms in Lake Erie.


Asunto(s)
Cambio Climático , Eutrofización/fisiología , Lagos/microbiología , Modelos Biológicos , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Agricultura/métodos , Conservación de los Recursos Naturales/métodos , Great Lakes Region , Lagos/análisis , Lluvia , Temperatura , Movimientos del Agua , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA