Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155377, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503154

RESUMEN

BACKGROUND: The existence of pancreatic cancer stem cells (PCSCs) results in limited survival benefits from current treatment options. There is a scarcity of effective agents for treating pancreatic cancer patients. Dehydroevodiamine (DeHE), a quinazoline alkaloid isolated from the traditional Chinese herb Evodiae fructus, exhibited potent inhibition of pancreatic ductal adenocarcinoma (PDAC) cell proliferation and tumor growth both in vitro and in vivo. METHODS: The cytotoxic effect of DeHE on PDAC cells was assessed using CCK-8 and colony formation assays. The antitumor efficacy of DeHE were appraised in human PANC-1 xenograft mouse model. Sphere formation assay and flow cytometry were employed to quantify the tumor stemness. RNA-Seq analysis, drug affinity responsive target stability assay (DARTS), and RNA interference transfection were conducted to elucidate potential signaling pathways. Western blotting and immunohistochemistry were utilized to assess protein expression levels. RESULTS: DeHE effectively inhibited PDAC cell proliferation and tumor growth in vitro and in vivo, and exhibited a better safety profile compared to the clinical drug gemcitabine (GEM). DeHE inhibited PCSCs, as evidenced by its suppression of self-renewal capabilities of PCSCs, reduced the proportion of ALDH+ cells and downregulated stemness-associated proteins (Nanog, Sox-2, and Oct-4) both in vitro and in vivo. Furthermore, there is potential involvement of DDIT3 and its downstream DDIT3/TRIB3/AKT/mTOR pathway in the suppression of stemness characteristics within DeHE-treated PDAC cells. Additionally, results from the DARTS assay indicated that DeHE interacts with DDIT3, safeguarding it against degradation mediated by pronase. Notably, the inhibitory capabilities of DeHE on PDAC cell proliferation and tumor stemness were partially restored by siDDIT3 or the AKT activator SC-79. CONCLUSION: In summary, our study has identified DeHE, a novel antitumor natural product, as an activator of DDIT3 with the ability to suppress the AKT/mTOR pathway. This pathway is intricately linked to tumor cell proliferation and stemness characteristics in PDAC. These findings suggest that DeHE holds potential as a promising candidate for the development of innovative anticancer therapeutics.


Asunto(s)
Proliferación Celular , Células Madre Neoplásicas , Neoplasias Pancreáticas , Factor de Transcripción CHOP , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Neoplasias Pancreáticas/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Factor de Transcripción CHOP/metabolismo , Ratones , Quinazolinas/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Ratones Desnudos , Evodia/química , Transducción de Señal/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Ratones Endogámicos BALB C , Gemcitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
2.
Molecules ; 29(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474571

RESUMEN

The Euodia genus comprises numerous untapped medicinal plants that warrant thorough evaluation for their potential as valuable natural sources of herbal medicine or food flavorings. In this study, untargeted metabolomics and in vitro functional methods were employed to analyze fruit extracts from 11 significant species of the Euodia genus. An investigation of the distribution of metabolites (quinolone and indole quinazoline alkaloids) in these species indicated that E. rutaecarpa (Euodia rutaecarpa) was the most widely distributed species, followed by E. compacta (Euodia compacta), E. glabrifolia (Euodia glabrifolia), E. austrosinensis (Euodia austrosinensis), and E. fargesii (Euodia fargesii). There have been reports on the close correlation between indole quinazoline alkaloids and their anti-tumor activity, especially in E. rutaecarpa fruits which exhibit effectiveness against various types of cancer, such as SGC-7901, Hela, A549, and other cancer cell lines. Additionally, the E. rutaecarpa plant contains indole quinazoline alkaloids, which possess remarkable antibacterial properties. Our results offer novel insights into the utilization of Euodia resources in the pharmaceutical industry.


Asunto(s)
Alcaloides , Evodia , Plantas Medicinales , Quinolonas , Rutaceae , Humanos , Extractos Vegetales , Alcaloides Indólicos , Células HeLa , Quinazolinas
3.
Fitoterapia ; 174: 105843, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38301937

RESUMEN

In this research, five new indolequinazoline alkaloids (1-5), along with six known indolequinazoline alkaloids (6-11) were obtained from the fruits of Tetradium ruticarpum. Their structures were elucidated through comprehensive spectroscopic data of 1D and 2D NMR, HRESIMS and ECD spectra. Additionally, all isolates were assayed for their SIRT1 inhibitory activities in vitro and compounds 2, 7, 10 and 11 exhibited activities with IC50 values ranged from 43.16 to 118.35 µM.


Asunto(s)
Alcaloides , Evodia , Evodia/química , Frutas/química , Estructura Molecular , Alcaloides/análisis , Espectroscopía de Resonancia Magnética
4.
Aging (Albany NY) ; 16(3): 2385-2397, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38284892

RESUMEN

Evodia lepta Merr. (Evodia lepta) is a well-known traditional Chinese medicine, which has been widely used in herbal tea. We previously reported that the coumarin compounds from the root of Evodia lepta exhibited neuroprotective effects. However, whether Evodia lepta could inhibit NLRP3 inflammasome in dementia was still unknown. In this study, the components of the Evodia lepta extract were identified by HPLC-Q-TOF HRMS. We employed a scopolamine-treated mouse model. Evodia lepta extract (10 or 20 mg/kg) and donepezil were treated by gavage once a day for 14 consecutive days. Following the behavioral tests, oxidative stress levels were measured. Then, Western blot and immunofluorescence analysis were used to evaluate the expressions of NLRP3 inflammasome. 14 major components of the Evodia lepta extract were identified by HPLC-Q-TOF HRMS. The results of Morris water maze, object recognition task and open field test indicated that Evodia lepta extract could ameliorate cognitive impairment in scopolamine-treated mice. Evodia lepta extract improved cholinergic system. Moreover, Evodia lepta extract improved the expressions of PSD95 and BDNF. Evodia lepta extract suppressed neuronal oxidative stress and apoptosis. In addition, Evodia lepta extract inhibited NLRP3 inflammasome in the hippocampus of scopolamine-treated mice. Evodia lepta extract could protect against cognitive impairment by inhibiting NLRP3 inflammasome in scopolamine-treated mice.


Asunto(s)
Disfunción Cognitiva , Evodia , Ratones , Animales , Inflamasomas , Evodia/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Escopolamina/toxicidad , Etanol/toxicidad , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo
5.
Sci Rep ; 14(1): 472, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172219

RESUMEN

This study was conducted to assess the effect of Evodiae Fructus 70% ethanol extract (EFE) on the pathology of atopic dermatitis using in vitro and in vivo models. The major compounds in EFE were identified by ultra-performance liquid chromatography with tandem mass spectrometry as rutaecarpine, evodiamine, evodol, dehydroevodiamine, limonin, synephrine, evocarpine, dihydroevocarpine, and hydroxyevodiamine. EFE significantly decreased chemokine levels in tumor necrosis factor-α/interferon-γ-stimulated HaCaT cells. In house dust mite-treated NC/Nga mice, topical application of EFE significantly decreased the dermatitis score, epidermal hyperplasia and thickening, mast cell infiltration, and plasma levels of histamine and corticosterone. Thymic stromal lymphopoietin, CD4+ T cells, interleukin-4, and intercellular adhesion molecule-1 expression in the lesioned skin was reduced in the treated mice. The mechanism of EFE was elucidated using transcriptome analysis, followed by experimental validation using Western blotting in HaCaT cells. EFE down-regulated the activation of Janus kinase (JAK)-signal transducers and activators of transcription (STAT) and mitogen-activated protein kinases (MAPK) signaling pathways in HaCaT cells. EFE improves atopic dermatitis-like symptoms by suppressing inflammatory mediators, cytokines, and chemokines by regulating the JAK-STAT and MAPK signaling pathways, suggesting its use as a potential agent for the treatment of atopic dermatitis.


Asunto(s)
Dermatitis Atópica , Evodia , Ratones , Animales , Humanos , Dermatitis Atópica/patología , Pyroglyphidae , Evodia/metabolismo , Células HaCaT , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Quimiocinas/metabolismo , Dermatophagoides pteronyssinus , Etanol/farmacología , Piel/metabolismo
6.
Anal Bioanal Chem ; 416(6): 1457-1468, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38231254

RESUMEN

Gastrointestinal mesenchymal tumors, as the most common mesenchymal tumors in the gastrointestinal tract, are adjuvantly treated with multi-targeted tyrosine kinase inhibitors, such as imatinib and sunitinib, but there are problems of drug resistance and complex methods of monitoring therapeutic agents. The pathogenesis of this disease is related to mutations in tyrosine kinase (KIT) or platelet-derived growth factor receptor α, an important target for drug therapy. In recent years, the screening of relevant tyrosine kinase inhibitors from traditional Chinese medicine has become a hotspot in antitumor drug research. In the current study, the KIT-SNAP-tag cell membrane chromatography (KIT-SNAP-tag/CMC) column was prepared with satisfying specificity, selectivity, and reproducibility by chemically bonding high KIT expression cell membranes to the silica gel surface using the SNAP-tag technology. The KIT-SNAP-tag/CMC-HPLC-MS two-dimensional coupling system was investigated using the positive drug imatinib, and the results showed that the system was a reliable model for screening potential antitumor compounds from complex systems. This system screened and identified three potential active compounds of evodiamine (EVO), rutaecarpin (RUT), and dehydroevodiamine (DEVO), which possibly target the KIT receptor, from the alcoholic extract of the traditional Chinese medicine Evodia rutaecarpa. Then, the KD values of the interaction of EVO, RUT, and DEVO with KIT receptors measured using nonlinear chromatography were 7.75 (±4.93) × 10-6, 1.42 (±0.71) × 10-6, and 2.34 (±1.86) × 10-6 mol/L, respectively. In addition, the methyl thiazolyl tetrazolium assay validated the active effects of EVO and RUT in inhibiting the proliferation of high KIT-expressing cells in the ranges of 0.1-10 µmol/L and 0.1-50 µmol/L, respectively. In conclusion, the KIT-SNAP-tag/CMC could be a reliable model for screening antitumor components from complex systems.


Asunto(s)
Evodia , Neoplasias Gastrointestinales , Humanos , Mesilato de Imatinib/farmacología , Evodia/química , Cromatografía Líquida con Espectrometría de Masas , Reproducibilidad de los Resultados , Proteínas Tirosina Quinasas Receptoras , Neoplasias Gastrointestinales/tratamiento farmacológico , Membrana Celular
7.
J Ethnopharmacol ; 319(Pt 3): 117340, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37879508

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tetradium ruticarpum (A.Juss.) T.G.Hartley, a traditional Chinese medicine with thousands of years of medicinal history, has been employed to address issues such as indigestion, abdominal pain, and vomiting. Dehydroevodiamine (DHE) is a quinazoline alkaloid extracted from traditional Chinese medicine Tetradium ruticarpum (A.Juss.) T.G.Hartley. Previous studies have shown that DHE has anti-inflammatory, analgesic, and antioxidant activities. However, it is still unclear whether DHE has an effect on ethanol-induced gastric ulcers. AIM OF THE STUDY: The objective of this study is to investigate the therapeutic efficacy and underlying mechanisms of action of DHE on ethanol-induced gastric ulcers using network pharmacology and metabolomics strategies. METHODS: In this study, we used ethanol-induced rats as a model to assess the efficacy of DHE by biochemical indicator assays and pathological tissue detection. The integration of network pharmacology and metabolomics was used to explore possible mechanisms and was validated by western blot experiments. Finally, molecular docking was used to analyze the binding energy between DHE and the targets of PIK3CG and PLA2G2A. RESULTS: DHE was able to reverse ethanol-induced abnormalities in biochemical indicators and improve pathological tissue. Network pharmacology results indicated that DHE may be involved in the regulation of gastric ulcers by modulating 79 targets, and metabolomics results showed that a total of 13 metabolites were changed before and after DHE administration. Integrating network pharmacology and metabolomics, PIK3CG and PLA2G2A were identified as possible targets to exert therapeutic effects. In addition, the MAPKs pathway may also be involved in the regulation of ethanol-induced gastric ulcers. Finally, molecular docking results showed that DHE had low binding energies with both PIK3CG and PLA2G2A. CONCLUSIONS: These findings suggest that DHE was able to exert a protective effect against ethanol-induced gastric ulcers by modulating multiple metabolites with multiple targets. This study provides a valuable reference for the development of antiulcer drugs.


Asunto(s)
Evodia , Úlcera Gástrica , Animales , Ratas , Simulación del Acoplamiento Molecular , Farmacología en Red , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Antiinflamatorios no Esteroideos , Etanol/toxicidad
8.
BMC Complement Med Ther ; 23(1): 433, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041080

RESUMEN

BACKGROUND: Evodia rutaecarpa, a traditional herbal drug, is widely used as an analgesic and antiemetic. Many studies have confirmed that Evodia rutaecarpa has an anticancer effect. Here, our study explored the bioactive ingredients in Evodia rutaecarpa acting on colorectal cancer (CRC) by utilizing network pharmacology. METHODS: We clarified the effective ingredients and corresponding targets of Evodia rutaecarpa. CRC-related genes were obtained from several public databases to extract candidate targets. Candidate targets were used to construct a protein-protein interaction (PPI) network for screening out core targets with topological analysis, and then we selected the core targets and corresponding ingredients for molecular docking. Cell proliferation experiments and enzyme-linked immunosorbent assays (ELISAs) verified the anticancer effect of the bioactive ingredients and the results of molecular docking. RESULTS: Our study obtained a total of 24 bioactive ingredients and 100 candidate targets after intersecting ingredient-related targets and CRC-related genes, and finally, 10 genes-TNF, MAPK1, TP53, AKT1, RELA, RB1, ESR1, JUN, CCND1 and MYC-were screened out as core targets. In vitro experiments suggested that rutaecarpine excelled isorhamnetin, evodiamine and quercetin in the inhibition of CRC cells and the release of TNF-α was altered with the concentrations of rutaecarpine. Molecular docking showed that rutaecarpine could effectively bind with TNF-α. CONCLUSION: The pairs of ingredients-targets in Evodia rutaecarpa acted on CRC were excavated. Rutaecarpine as a bioactive ingredient of Evodia rutaecarpamight effectively inhibit the proliferation of CRC cells by suppressing TNF-α.


Asunto(s)
Neoplasias Colorrectales , Evodia , Extractos Vegetales/farmacología , Extractos Vegetales/análisis , Factor de Necrosis Tumoral alfa , Simulación del Acoplamiento Molecular , Farmacología en Red , Neoplasias Colorrectales/tratamiento farmacológico
9.
Exp Biol Med (Maywood) ; 248(20): 1877-1886, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37787050

RESUMEN

Schisandra chinensis and Evodia rutaecarpa are traditional Chinese herbs that have been used for many years to treat neurodegenerative diseases. In Chinese medicine, multiple herbs are often used in combination to enhance their efficacy, and different combination ratios can produce different therapeutic effects, thus flexibly responding to the needs of various patients. This study aimed to investigate the effects of different ratios of Schisandra and Evodia herbs on learning and memory impairment in rats with Alzheimer's disease (AD) and their specific mechanisms of action. Morris water maze and hematoxylin and eosin (HE) staining experiments were performed to evaluate the effects of different ratios of Schisandra-Evodia on learning memory in AD model rats. Immunohistochemical experiments were performed to investigate the effects of Schisandra-Evodia on the Aß1-42 and P-Tau proteins, and protein immunoblotting (WB) was performed to determine the expression of key proteins in two pathways, BDNF/TrkB/CREB and GSK-3ß/Tau. Our experimental results show that all Schisandra-Evodia groups showed significant neuroprotective effects, improved learning memory impairment, and reduced levels of Aß1-42 and P-Tau proteins in AD model rats. Schisandra-Evodia upregulated BDNF, P-TrkB/TrkB, and P-CREB/CREB protein expression and downregulated GSK-3ß and P-Tau/Tau protein expression. Among the different Schisandra-Evodia ratio groups, the 2:1 group showed the strongest therapeutic effect on AD. Our research results indicate that Schisandra-Evodia can reduce Aß1-42 and P-Tau protein content by modulating the activity of two pathways, BDNF/TrkB/CREB and GSK-3ß/Tau, thus improving neuronal cell damage and cognitive deficits caused by AD. In addition, we found that a Schisandra-Evodia ratio of 2:1 had the most profound therapeutic effect on AD.


Asunto(s)
Enfermedad de Alzheimer , Evodia , Schisandra , Ratas , Humanos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Proteínas tau , Schisandra/química , Schisandra/metabolismo , Evodia/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Péptidos beta-Amiloides/metabolismo , Aprendizaje por Laberinto
10.
Phytomedicine ; 121: 155115, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37801896

RESUMEN

BACKGROUND: Evodia Rutaecarpa-processed Coptidis Rhizoma (ECR) is a traditional Chinese medicine for the treatment of ulcerative colitis (UC) in China. However, the mechanisms underlying the ECR processing are not elucidated. PURPOSE: Coptidis Rhizoma (CR) regulates the gut microbiota in the treatment of gastrointestinal diseases. This study explored the mechanism of action of ECR before and after processing in UC in view of the regulation of gut microecology. STUDY DESIGN: A preclinical experimental investigation was performed using a mouse model of UC to examine the regulatory effect of ECR and its mechanisms through gut microbiota analysis and metabolomic assays. METHODS: Mice received 4% dextran sulfate sodium to establish a UC model and treated with ECR and CR. Colonic histopathology and inflammatory changes were observed. Gut microbiota was analyzed using 16 s rRNA sequencing. Transplants of Lactobacillus reuteri were used to explore the correlation between ECR processing and the gut microbiota. The expression of mucin-2, Lgr5, and PCNA in colonic epithelial cells was measured using immunofluorescence. Wnt3a and ß-catenin levels were detected by western blotting. The metabolites in the colon tissue were analyzed using a targeted energy metabolomic assay. The effect of energy metabolite α-ketoglutarate (α-KG) on L. reuteri growth and UC were verified in mice. RESULTS: ECR improved the effects on UC in mice compared to CR, including alleviating colonic injury and inflammation, and modulating gut microbiota by increasing L. reuteri level. L. reuteri dose-dependently alleviated colonic injury, increased mucin-2 level, and promoted colonic epithelial regeneration by increasing Lgr5 and PCNA expression. This was consistent with the results before and after ECR processing. L. reuteri promoted epithelial regeneration by upregulating Wnt/ß-catenin pathway. Moreover, ECR increased metabolites levels (especially α-KG) to promote energy metabolism in the colon tissue compared to CR. α-KG treatment increased L. reuteri level and alleviated mucosal damage in UC mice. It promoted L. reuteri growth by increasing the energy metabolic status by enhancing α-KG dehydrogenase activity. CONCLUSION: ECR processing improves the therapeutic effects of UC via the α-KG-L. reuteri-epithelial regeneration axis.


Asunto(s)
Colitis Ulcerosa , Colitis , Medicamentos Herbarios Chinos , Evodia , Limosilactobacillus reuteri , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Ácidos Cetoglutáricos , Medicamentos Herbarios Chinos/farmacología , Mucina 2 , beta Catenina , Antígeno Nuclear de Célula en Proliferación , Colon , Modelos Animales de Enfermedad , Sulfato de Dextran , Ratones Endogámicos C57BL
11.
Biomed Pharmacother ; 167: 115495, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37741256

RESUMEN

Evodia rutaecarpa, the near-ripe fruit of Euodia rutaecarpa (Juss.) Benth, Euodia rutaecarpa (Juss.) Benth. var. officinalis (Dode) Huang, or Euodia rutaecarpa (Juss.) Benth. var. bodinieri (Dode) Huang, is a famous herbal medicine with several biological activities and therapeutic values, which has been applied for abdominalgia, abdominal distension, vomiting, and diarrhea as a complementary and alternative therapy in clinic. Indole alkaloids, particularly evodiamine (EVO), rutaecarpine (RUT), and dedhydroevodiamine (DHE), are received rising attention as the major bioactivity compounds in Evodia rutaecarpa. Therefore, this review summarizes the physicochemical properties, pharmacological activities, pharmacokinetics, and therapeutic effects on gastrointestinal diseases of these three indole alkaloids with original literature collected by PubMed, Web of Science Core Collection, and CNKI up to June 2023. Despite sharing the same parent nucleus, EVO, RUT, and DHE have different structural and chemical properties, which result in different advantages of biological effects. In their wide range of pharmacological activities, the anti-migratory activity of RUT is less effective than that of EVO, and the neuroprotection of DHE is significant. Additionally, although DHE has a higher bioavailability, EVO and RUT display better permeabilities within blood-brain barrier. These three indole alkaloids can alleviate gastrointestinal inflammatory in particular, and EVO also has outstanding anti-cancer effect, although clinical trials are still required to further support their therapeutic potential.


Asunto(s)
Evodia , Enfermedades Gastrointestinales , Plantas Medicinales , Humanos , Evodia/química , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/uso terapéutico , Plantas Medicinales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/análisis , Enfermedades Gastrointestinales/tratamiento farmacológico , Frutas/química
12.
Molecules ; 28(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570816

RESUMEN

Alzheimer's disease (AD) is a brain disease with a peculiarity of multiformity and an insidious onset. Multiple-target drugs, especially Chinese traditional medicine, have achieved a measure of success in AD treatment. Evodia rutaecarpa (Juss.) Benth. (Wuzhuyu, WZY, i.e., E. rutaecarpa), a traditional Chinese herb, has been identified as an effective drug to cure migraines. To our surprise, our in silico study showed that rather than migraines, Alzheimer's disease was the primary disease to which the E. rutaecarpa active compounds were targeted. Correspondingly, a behavioral experiment showed that E. rutaecarpa extract could improve impairments in learning and memory in AD model mice. However, the mechanism underlying the way that E. rutaecarpa compounds target AD is still not clear. For this purpose, we employed methods of pharmacology networking and molecular docking to explore this mechanism. We found that E. rutaecarpa showed significant AD-targeting characteristics, and alkaloids of E. rutaecarpa played the main role in binding to the key nodes of AD. Our research detected that E. rutaecarpa affects the pathologic development of AD through the serotonergic synapse signaling pathway (SLC6A4), hormones (PTGS2, ESR1, AR), anti-neuroinflammation (SRC, TNF, NOS3), transcription regulation (NR3C1), and molecular chaperones (HSP90AA1), especially in the key nodes of PTGS2, AR, SLCA64, and SRC. Graveoline, 5-methoxy-N, N-dimethyltryptamine, dehydroevodiamine, and goshuyuamide II in E. rutaecarpa show stronger binding affinities to these key proteins than currently known preclinical and clinical drugs, showing a great potential to be developed as lead molecules for treating AD.


Asunto(s)
Alcaloides , Evodia , Animales , Ratones , Evodia/química , Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , Alcaloides/farmacología , Alcaloides/uso terapéutico , Alcaloides/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
13.
Chem Biol Drug Des ; 102(4): 828-842, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37460115

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. NAFLD has become one of the major factors contributing to hepatocellular carcinoma (HCC) development. However, there are no clear targets and therapeutic drugs for NAFLD-related liver cancer. This study explored the active compounds, target and mechanism of coptidis rhizoma and evodiae fructus in the treatment of NAFLD-related liver cancer based on the network pharmacology and experimental verification. There were 455 intersection targets of NAFLD-related liver cancer, and 65 drug-disease common targets. AKT1 has the highest degree, indicating that it may be a key target of coptidis rhizoma and evodiae fructus in the treatment of NAFLD-related liver cancer. The expression level of AKT1 was high in high-risk group, and the overall survival rate was lower than that in low-risk group. After oleic acid induction, p-AKT expression and lipid droplet deposition were promoted in HepG2 cells. Quercetin and resveratrol reduced lipid droplet deposition in vivo. Moreover, quercetin inhibited p-AKT expression, resveratrol both reduced the expression of p-AKT and AKT. The overall findings suggested that quercetin inhibited AKT in the treatment of NAFLD-related liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Evodia , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Quercetina , Carcinoma Hepatocelular/tratamiento farmacológico , Resveratrol , Gotas Lipídicas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico
14.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37047626

RESUMEN

Evodia rutaecarpa (Juss.) Benth is a traditional Chinese medicine. The active ingredient, evodiamine, is a quinolone alkaloid and is found in Evodiae fructus. We investigated the effect of evodiamine on atherosclerosis using LDLR-/- mice fed on a high-fat diet and ox-LDL-induced MOVAS cell lines to construct mouse models and cell-line models. We report a significant reduction in atherosclerotic plaque formation in mice exposed to evodiamine. Our mechanistic studies have revealled that evodiamine can regulate the proliferation, migration, and inflammatory response of and oxidative stress in vascular smooth muscle cells by inhibiting the activation of the PI3K/Akt axis, thus inhibiting the occurrence and development of atherosclerosis. In conclusion, our findings reveal a role for evodiamine in the regulation of vascular smooth muscle cells in atherosclerosis, highlighting a potential future role for the compound as an anti-atherosclerotic agent.


Asunto(s)
Aterosclerosis , Evodia , Placa Aterosclerótica , Ratones , Animales , Músculo Liso Vascular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Placa Aterosclerótica/metabolismo , Proliferación Celular , Miocitos del Músculo Liso/metabolismo
15.
Drug Metab Rev ; 55(1-2): 75-93, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36803497

RESUMEN

Evodiae Fructus (EF) is a common herbal medicine with thousands of years of medicinal history in China, which has been demonstrated with many promising pharmacological effects on cancer, cardiovascular diseases and Alzheimer's disease. However, there have been increasing reports of hepatotoxicity associated with EF consumption. Unfortunately, in a long term, many implicit constituents of EF as well as their toxic mechanisms remain poorly understood. Recently, metabolic activation of hepatotoxic compounds of EF to generate reactive metabolites (RMs) has been implicated. Herein, we capture metabolic reactions relevant to hepatotoxicity of these compounds. Initially, catalyzed by the hepatic cytochrome P450 enzymes (CYP450s), the hepatotoxic compounds of EF are oxidized to generate RMs. Subsequently, the highly electrophilic RMs could react with nucleophilic groups contained in biomolecules, such as hepatic proteins, enzymes, and nucleic acids to form conjugates and/or adducts, leading to a sequence of toxicological consequences. In addition, currently proposed biological pathogenesis, including oxidative stress, mitochondrial damage and dysfunction, endoplasmic reticulum (ER) stress, hepatic metabolism disorder, and cell apoptosis are represented. In short, this review updates the knowledge on the pathways of metabolic activation of seven hepatotoxic compounds of EF and provides considerable insights into the relevance of proposed molecular hepatotoxicity mechanisms from a biochemical standpoint, for the purpose of providing a theoretical guideline for the rational application of EF in clinics.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Evodia , Humanos , Evodia/química
16.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614206

RESUMEN

COVID-19, derived from SARS-CoV-2, has resulted in millions of deaths and caused unprecedented socioeconomic damage since its outbreak in 2019. Although the vaccines developed against SARS-CoV-2 provide some protection, they have unexpected side effects in some people. Furthermore, new viral mutations reduce the effectiveness of the current vaccines. Thus, there is still an urgent need to develop potent non-vaccine therapeutics against this infectious disease. We recently established a series of detecting platforms to screen a large library of Chinese medicinal herbs and phytochemicals. Here, we reveal that the ethanolic extract of Evodiae Fructus and one of its components, rutaecarpine, showed promising potency in inhibiting the activity of 3C-like (3CL) protease, blocking the entry of the pseudo-typed SARS-CoV-2 (including wild-type and omicron) into cultured cells. In addition, inflammatory responses induced by pseudo-typed SARS-CoV-2 were markedly reduced by Evodiae Fructus extract and rutaecarpine. Together our data indicate that the herbal extract of Evodiae Fructus and rutaecarpine are potent anti-SARS-CoV-2 agents, which might be considered as a treatment against COVID-19 in clinical applications.


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Evodia , Humanos , SARS-CoV-2 , Medicamentos Herbarios Chinos/farmacología , Extractos Vegetales/farmacología
17.
Phytochem Anal ; 34(1): 5-29, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36442477

RESUMEN

INTRODUCTION: Euodiae fructus, also known as Evodiae fructus, is a popular Chinese herbal medicine derived from the dried, nearly ripe fruits of Tetradium ruticarpum (A. Juss.) T. G. Hartley. The main bioactive constituents of Euodiae fructus are alkaloids, limonoids, flavonoids, and anthraquinones. The contents of these compounds vary greatly between different plant species, geographic locations, and harvest times, which thus affect the therapeutic effects. OBJECTIVES: We aimed to summarize the chromatographic and mass spectrometric technologies applied for chemical analysis and quality evaluation of Euodiae fructus. Moreover, we aimed to emphasize the diverse soft ionization techniques and mass analyzers of LC-MS methods for assessment of Euodiae fructus. METHODOLOGY: A literature study was carried out by retrieving articles published between January 1988 and December 2021 from well-known databases, including PubMed, ASC, Elsevier, ScienceDirect, J·STAGE, Thieme, Taylor & Francis, Springer Link, Wiley Online Library, and CNKI. The chemical analysis methods were described in several categories in accordance with the used analytical techniques, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), high-performance liquid chromatography-mass spectrometry (HPLC-MS), gas chromatography-mass spectrometry (GC-MS), capillary electrophoresis (CE), and counter-current chromatography (CCC). RESULTS: This review systematically summarizes the achievements in chemical analysis and quality evaluation of Euodiae fructus published in over three decades, covering the various chromatographic and mass spectrometric technologies applied for identification and quantification of phytochemical constituents. CONCLUSION: The summary serves as an important basis for future phytochemical research and implementation of quality control methods in order to ensure the efficacy and safety of Euodiae fructus.


Asunto(s)
Medicamentos Herbarios Chinos , Evodia , Medicamentos Herbarios Chinos/química , Frutas/química , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos , Evodia/química
18.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232809

RESUMEN

Evodiamine (EVO) and rutaecarpine (RUT) are the main active compounds of the traditional Chinese medicinal herb Evodia rutaecarpa. Here, we fully optimized the molecular geometries of EVO and RUT at the B3LYP/6-311++G (d, p) level of density functional theory. The natural population analysis (NPA) charges, frontier molecular orbitals, molecular electrostatic potentials, and the chemical reactivity descriptors for EVO and RUT were also investigated. Furthermore, molecular docking, molecular dynamics simulations, and the analysis of the binding free energies of EVO and RUT were carried out against the anticancer target topoisomerase 1 (TOP1) to clarify their anticancer mechanisms. The docking results indicated that they could inhibit TOP1 by intercalating into the cleaved DNA-binding site to form a TOP1−DNA−ligand ternary complex, suggesting that they may be potential TOP1 inhibitors. Molecular dynamics (MD) simulations evaluated the binding stability of the TOP1−DNA−ligand ternary complex. The calculation of binding free energy showed that the binding ability of EVO with TOP1 was stronger than that of RUT. These results elucidated the structure−activity relationship and the antitumor mechanism of EVO and RUT at the molecular level. It is suggested that EVO and RUT may be potential compounds for the development of new anticancer drugs.


Asunto(s)
Antineoplásicos , Evodia , Antineoplásicos/farmacología , Evodia/química , Alcaloides Indólicos , Ligandos , Simulación del Acoplamiento Molecular , Quinazolinas , Quinazolinonas
19.
Medicine (Baltimore) ; 101(39): e30853, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36181021

RESUMEN

BACKGROUND: Evodiae fructus has been shown to have anti-glioblastoma multiforme (GBM) effects. However, its anti-GBM active components and mechanism remain unclear. In this study, the active components of evodiae fructus were screened by network pharmacology to explore the possible molecular mechanism of resistance to GBM. MATERIALS AND METHODS: The main active ingredients of evodiae fructus were derived from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and Batch-traditional Chinese medicine (TCM). TCMSP and Swiss absorption, distribution, metabolism and elimination (ADME) predict genetic targets for ingredients that meet pharmacological criteria. GBM-related targets were obtained from DisGeNet, GeneCards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), and TCGA. A Venn diagram was used to obtain the common targets of evodiae fructus and GBM. Protein-protein interaction (PPI) networks and component-disease target networks were constructed using Cytoscape 3.8.1 software for visualization. GBM gene differential expression was visualized by VolcaNoseR, and potential targets were enriched by Gene Ontology (GO) function and annotated by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway by SRplot. Molecular docking verification was conducted using AutoDock Vina software. RESULTS: According to the screening conditions, 24 active components and 80 drug targets were obtained. The PPI network contains 80 proteins. The molecular docking verification showed the molecular docking affinity of the core active compounds in evodiae fructus with CASP3, JUN, EGFR, and AKT1. CONCLUSIONS: This study preliminarily identified the various molecular targets and multiple pathways of evodiae fructus against GBM.


Asunto(s)
Medicamentos Herbarios Chinos , Evodia , Caspasa 3 , Medicamentos Herbarios Chinos/farmacología , Receptores ErbB , Humanos , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Farmacología en Red
20.
Molecules ; 27(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35889335

RESUMEN

The fruit of Tetradium ruticarpum (TR) is commonly used in Chinese herbal medicine and it has known antiproliferative and antitumor activities, which can serve as a good source of functional ingredients. Although some antiproliferative compounds are reported to be present in TR fruit, most studies only focused on a limited range of metabolites. Therefore, in this study, the antiproliferative activity of different extracts of TR fruit was examined, and the potentially antiproliferative compounds were highlighted by applying an untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based multi-informative molecular networking strategy. The results showed that among different extracts of TR fruit, the EtOAc fraction F2-3 possessed the most potent antiproliferative activity against HL-60, T24, and LX-2 human cell lines. Through computational tool-aided structure prediction and integrating various data (sample taxonomy, antiproliferative activity, and compound identity) into a molecular network, a total of 11 indole alkaloids and 47 types of quinolone alkaloids were successfully annotated and visualized into three targeted bioactive molecular families. Within these families, up to 25 types of quinolone alkaloids were found that were previously unreported in TR fruit. Four indole alkaloids and five types of quinolone alkaloids were targeted as potentially antiproliferative compounds in the EtOAc fraction F2-3, and three (evodiamine, dehydroevodiamine, and schinifoline) of these targeted alkaloids can serve as marker compounds of F2-3. Evodiamine was verified to be one of the major antiproliferative compounds, and its structural analogues discovered in the molecular network were found to be promising antitumor agents. These results exemplify the application of an LC-MS/MS-based multi-informative molecular networking strategy in the discovery and annotation of bioactive compounds from complex mixtures of potential functional food ingredients.


Asunto(s)
Alcaloides , Evodia , Quinolonas , Alcaloides/análisis , Alcaloides/farmacología , Cromatografía Liquida , Evodia/química , Frutas/química , Humanos , Alcaloides Indólicos/análisis , Alcaloides Indólicos/farmacología , Extractos Vegetales/química , Quinolonas/análisis , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA