Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Dis Colon Rectum ; 65(2): 284-294, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34990427

RESUMEN

BACKGROUND: Changes in anorectal sensation have been reported in patients with fecal incontinence, and there is limited evidence that sacral nerve stimulation can restore normal sensation. OBJECTIVE: The aims of the present study were to investigate changes in the transmission of sensory anorectal stimuli in a rodent model of fecal incontinence and to study the effects of sacral nerve stimulation on defecation behavior. DESIGN: An established model of fecal incontinence was utilized for this study. INTERVENTION: Pudendal nerve stretch and compression were used in 16 adult female Wistar rats and were monitored for 3 weeks: 6 rats received sacral nerve stimulation for 1 week by using an implantable neurostimulator and 10 rats had nonfunctioning "dummy" devices inserted. Five additional rats were sham operated. Anorectal cortical evoked potentials were used as a surrogate marker for anorectal sensory function. MAIN OUTCOME MEASURES: The primary outcomes measured were fecal incontinence index, evoked potential amplitude, and latency. RESULTS: Fifty percent of rats showed behavioral signs of fecal incontinence measured by the Fecal Incontinence Index (>0.20), calculated by using the pellet distribution outside the cage's latrine area. Anorectal evoked potential amplitude was reduced in rats with a Fecal Incontinence Index >0.20 (p = 0.019). The amplitude of forepaw evoked potentials recorded as a control was not different between groups. Chronic sacral nerve stimulation using the fully implantable device and custom rodent lead was safe and stable during this chronic prospective study. Incontinent rats (n = 3) that received sacral nerve stimulation showed an improvement of Fecal Incontinence Index and an increase of evoked potential amplitude to anorectal stimulation compared with the dummy implant controls (n = 5). LIMITATIONS: The main limitation is the small number of animals that received sacral nerve stimulation. CONCLUSIONS: Chronic sacral nerve stimulation is feasible in rats when miniature telemetric devices are used. Behavioral signs of fecal incontinence were positively correlated with the latency of anorectal evoked potentials. See Video Abstract at http://links.lww.com/DCR/B712.RELACIÓN ENTRE LA ACTIVACIÓN CORTICAL EN RESPUESTA A LOS ESTÍMULOS ANORRECTALES Y EL COMPORTAMIENTO DE CONTINENCIA EN RATAS QUE SE COMPORTAN LIBREMENTE ANTES Y DESPUÉS DE LA APLICACIÓN DE ESTIMULACIÓN DEL NERVIO SACRO. ANTECEDENTES: Se han informado cambios en la sensación anorrectal en pacientes con incontinencia fecal y hay evidencia limitada de que la estimulación del nervio sacro puede restaurar la sensación normal. OBJETIVO: Los objetivos del presente estudio fueron investigar los cambios en la transmisión de estímulos anorrectales sensoriales en un modelo de roedor de incontinencia fecal y estudiar los efectos de la estimulación del nervio sacro en la conducta de defecación. DISEO: Un modelo establecido de incontinencia fecal. INTERVENCIN: Se utilizó estiramiento y compresión del nervio pudendo en 16 ratas Wistar hembras adultas y se les realizó un seguimiento durante 3 semanas: seis ratas recibieron estimulación del nervio sacro durante 1 semana utilizando un neuroestimulador implantable y diez ratas tuvieron insertados dispositivos "ficticios" no funcionantes. Se operaron simuladamente cinco ratas adicionales. Los potenciales evocados corticales anorrectales se utilizaron como marcador subrogado de la función sensorial anorrectal. PRINCIPALES MEDIDAS DE RESULTADO: Índice de incontinencia fecal, amplitud de potenciales evocados y latencia. RESULTADOS: El cincuenta por ciento de las ratas mostró signos de comportamiento de incontinencia fecal medidos por el Índice de incontinencia fecal (> 0.20), calculado utilizando la distribución de heces fuera del área de la letrina de la jaula. La amplitud del potencial evocado anorrectal se redujo en ratas con un índice de incontinencia fecal >0.20 (p = 0.019). La amplitud de los potenciales evocados de la pata delantera registrados como control no fue diferente entre los grupos. La estimulación crónica del nervio sacro utilizando un dispositivo totalmente implantable y un cable de roedor personalizado fue segura y estable durante este estudio prospectivo crónico. Las ratas con incontinencia (N = 3) que recibieron estimulación del nervio sacro mostraron una mejora del índice de incontinencia fecal y un aumento de la amplitud del potencial evocado a la estimulación anorrectal en comparación con los controles de implante ficticio (N = 5). LIMITACIONES: La principal limitación es el pequeño número de animales que recibieron estimulación del nervio sacro. CONCLUSIONES: La estimulación crónica del nervio sacro es factible en ratas cuando se utilizan dispositivos telemétricos en miniatura. Los signos conductuales de incontinencia fecal se correlacionaron positivamente con la latencia de los potenciales evocados anorrectales. Consulte Video Resumen en http://links.lww.com/DCR/B712. (Traducción-Dr. Jorge Silva Velazco).


Asunto(s)
Excitabilidad Cortical/fisiología , Terapia por Estimulación Eléctrica/instrumentación , Conducta Excretoria Animal/fisiología , Incontinencia Fecal/fisiopatología , Incontinencia Fecal/terapia , Nervios Espinales , Animales , Modelos Animales de Enfermedad , Incontinencia Fecal/psicología , Femenino , Neuroestimuladores Implantables , Ratas , Ratas Wistar
2.
PLoS One ; 16(9): e0256723, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34473788

RESUMEN

INTRODUCTION: Motor Imagery (MI) is a powerful tool to stimulate sensorimotor brain areas and is currently used in motor rehabilitation after a stroke. The aim of our study was to evaluate whether an illusion of movement induced by visuo-proprioceptive immersion (VPI) including tendon vibration (TV) and Virtual moving hand (VR) combined with MI tasks could be more efficient than VPI alone or MI alone on cortical excitability assessed using Electroencephalography (EEG). METHODS: We recorded EEG signals in 20 healthy participants in 3 different conditions: MI tasks involving their non-dominant wrist (MI condition); VPI condition; and VPI with MI tasks (combined condition). Each condition lasted 3 minutes, and was repeated 3 times in randomized order. Our main judgment criterion was the Event-Related De-synchronization (ERD) threshold in sensori-motor areas in each condition in the brain motor area. RESULTS: The combined condition induced a greater change in the ERD percentage than the MI condition alone, but no significant difference was found between the combined and the VPI condition (p = 0.07) and between the VPI and MI condition (p = 0.20). CONCLUSION: This study demonstrated the interest of using a visuo-proprioceptive immersion with MI rather than MI alone in order to increase excitability in motor areas of the brain. Further studies could test this hypothesis among patients with stroke to provide new perspectives for motor rehabilitation in this population.


Asunto(s)
Excitabilidad Cortical/fisiología , Retroalimentación Sensorial/fisiología , Movimiento/fisiología , Propiocepción/fisiología , Corteza Sensoriomotora/fisiología , Adulto , Interfaces Cerebro-Computador , Electroencefalografía , Femenino , Mano/inervación , Mano/fisiología , Voluntarios Sanos , Humanos , Imágenes en Psicoterapia/métodos , Imaginación/fisiología , Masculino , Persona de Mediana Edad , Corteza Sensoriomotora/diagnóstico por imagen , Articulación de la Muñeca/inervación , Articulación de la Muñeca/fisiología
3.
Neuroimage ; 243: 118498, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34428572

RESUMEN

Despite significant interest in the neural underpinnings of behavioral variability, little light has been shed on the cortical mechanism underlying the failure to respond to perceptual-level stimuli. We hypothesized that cortical activity resulting from perceptual-level stimuli is sensitive to the moment-to-moment fluctuations in cortical excitability, and thus may not suffice to produce a behavioral response. We tested this hypothesis using electrocorticographic recordings to follow the propagation of cortical activity in six human subjects that responded to perceptual-level auditory stimuli. Here we show that for presentations that did not result in a behavioral response, the likelihood of cortical activity decreased from auditory cortex to motor cortex, and was related to reduced local cortical excitability. Cortical excitability was quantified using instantaneous voltage during a short window prior to cortical activity onset. Therefore, when humans are presented with an auditory stimulus close to perceptual-level threshold, moment-by-moment fluctuations in cortical excitability determine whether cortical responses to sensory stimulation successfully connect auditory input to a resultant behavioral response.


Asunto(s)
Excitabilidad Cortical/fisiología , Estimulación Acústica , Adulto , Anciano , Ritmo alfa/fisiología , Corteza Auditiva/fisiología , Mapeo Encefálico/métodos , Electrocorticografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad
4.
PLoS One ; 16(2): e0239349, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33539443

RESUMEN

Neuromodulation of the primary visual cortex using anodal transcranial direct current stimulation (a-tDCS) can alter visual perception and enhance neuroplasticity. However, the mechanisms that underpin these effects are currently unknown. When applied to the motor cortex, a-tDCS reduces the concentration of the inhibitory neurotransmitter gamma aminobutyric acid (GABA), an effect that has been linked to increased neuroplasticity. The aim of this study was to assess whether a-tDCS also reduces GABA-mediated inhibition when applied to the human visual cortex. Changes in visual cortex inhibition were measured using the mixed percept duration in binocular rivalry. Binocular rivalry mixed percept duration has recently been advocated as a direct and sensitive measure of visual cortex inhibition whereby GABA agonists decrease mixed percept durations and agonists of the excitatory neurotransmitter acetylcholine (ACH) increase them. Our hypothesis was that visual cortex a-tDCS would increase mixed percept duration by reducing GABA-mediated inhibition and increasing cortical excitation. In addition, we measured the effect of continuous theta-burst transcranial magnetic stimulation (cTBS) of the visual cortex on binocular rivalry dynamics. When applied to the motor or visual cortex, cTBS increases GABA concentration and we therefore hypothesized that visual cortex cTBS would decrease the mixed percept duration. Binocular rivalry dynamics were recorded before and after active and sham a-tDCS (N = 15) or cTBS (N = 15). Contrary to our hypotheses, a-tDCS had no effect, whereas cTBS increased mixed percepts during rivalry. These results suggest that the neurochemical mechanisms of a-tDCS may differ between the motor and visual cortices.


Asunto(s)
Visión Binocular/fisiología , Corteza Visual/fisiología , Adulto , Excitabilidad Cortical/fisiología , Femenino , Humanos , Masculino , Corteza Motora/metabolismo , Corteza Motora/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos , Disparidad Visual/fisiología , Corteza Visual/metabolismo , Percepción Visual/fisiología , Adulto Joven , Ácido gamma-Aminobutírico/metabolismo
5.
Curr Biol ; 30(23): R1442-R1454, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33290716

RESUMEN

The brain mechanism for controlling continuous behavior in dynamic contexts must mediate action selection and learning across many timescales, responding differentially to the level of environmental uncertainty and volatility. In this review, we argue that a part of the frontal cortex known as the anterior cingulate cortex (ACC) is particularly well suited for this function. First, the ACC is interconnected with prefrontal, parietal, and subcortical regions involved in valuation and action selection. Second, the ACC integrates diverse, behaviorally relevant information across multiple timescales, producing output signals that temporally encapsulate decision and learning processes and encode high-dimensional information about the value and uncertainty of future outcomes and subsequent behaviors. Third, the ACC signals behaviorally relevant information flexibly, displaying the capacity to represent information about current and future states in a valence-, context-, task- and action-specific manner. Fourth, the ACC dynamically controls instrumental- and non-instrumental information seeking behaviors to resolve uncertainty about future outcomes. We review electrophysiological and circuit disruption studies in primates to develop this point, discuss its relationship to novel therapeutics for neuropsychiatric disorders in humans, and conclude by relating ongoing research in primates to studies of medial frontal cortical regions in rodents.


Asunto(s)
Conducta Animal/fisiología , Lóbulo Frontal/fisiología , Giro del Cíngulo/fisiología , Animales , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Conducta de Elección/fisiología , Excitabilidad Cortical/fisiología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Lóbulo Frontal/citología , Giro del Cíngulo/citología , Humanos , Conducta en la Búsqueda de Información/fisiología , Aprendizaje/fisiología , Macaca mulatta , Neuronas/fisiología , Recompensa , Incertidumbre
6.
Elife ; 92020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32369016

RESUMEN

Mental imagery provides an essential simulation tool for remembering the past and planning the future, with its strength affecting both cognition and mental health. Research suggests that neural activity spanning prefrontal, parietal, temporal, and visual areas supports the generation of mental images. Exactly how this network controls the strength of visual imagery remains unknown. Here, brain imaging and transcranial magnetic phosphene data show that lower resting activity and excitability levels in early visual cortex (V1-V3) predict stronger sensory imagery. Further, electrically decreasing visual cortex excitability using tDCS increases imagery strength, demonstrating a causative role of visual cortex excitability in controlling visual imagery. Together, these data suggest a neurophysiological mechanism of cortical excitability involved in controlling the strength of mental images.


Asunto(s)
Excitabilidad Cortical/fisiología , Imaginación , Corteza Visual/diagnóstico por imagen , Adolescente , Adulto , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Femenino , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/fisiología , Neuroimagen Funcional , Humanos , Imaginación/fisiología , Imagen por Resonancia Magnética , Masculino , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Estimulación Transcraneal de Corriente Directa , Corteza Visual/fisiología , Adulto Joven
7.
J Int Med Res ; 48(5): 300060519888401, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31774013

RESUMEN

OBJECTIVE: Variations in hormone levels are a direct effect of epileptic discharges in both animals and humans, and seizure can affect the hypothalamus-pituitary-thyroid axis. The purpose of this study was to determine which parameters could affect the alternation of thyroid hormones in children experiencing seizure. METHODS: We retrospectively reviewed the medical records of 181 pediatric patients with seizure and compared three thyroid hormones (serum thyroid-stimulating hormone [TSH], free thyroxine [fT4], and triiodothyronine [T3]) between initial (admission to hospital) and follow-up (2 weeks later) testing. RESULTS: Multivariable logistic regression models were used to determine which six parameters (gender, age, seizure accompanying with fever, seizure type, seizure duration, and anti-epileptic drug medication) could help to explain the higher initial TSH levels in pediatric seizure. Only seizure duration in patients with an increase in TSH levels was significantly longer compared with patients with normal TSH at the time of initial testing. CONCLUSION: Neuronal excitability by seizure can cause thyroid hormonal changes, which likely reflects changes in hypothalamic function.


Asunto(s)
Excitabilidad Cortical/fisiología , Epilepsia/fisiopatología , Glándula Tiroides/metabolismo , Tirotropina/sangre , Adolescente , Anticonvulsivantes/uso terapéutico , Niño , Preescolar , Epilepsia/sangre , Epilepsia/tratamiento farmacológico , Femenino , Estudios de Seguimiento , Humanos , Hipotálamo/fisiopatología , Lactante , Masculino , Estudios Retrospectivos , Pruebas de Función de la Tiroides , Glándula Tiroides/inervación , Tirotropina/metabolismo , Tiroxina/sangre , Tiroxina/metabolismo , Factores de Tiempo , Triyodotironina/sangre , Triyodotironina/metabolismo
8.
Methods Mol Biol ; 1994: 219-226, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31124119

RESUMEN

FLIPR-based calcium assay enables the detection and characterization of neuronal excitability by using electrical field stimulation to evoke and record action potential-driven calcium transients in induced pluripotent stem cell (iPSC)-derived cortical forebrain neurons. Here we describe high throughput measurement of neuronal excitability with a defined electrostimulation paradigm in a 384-well plate format using FLIPR.


Asunto(s)
Excitabilidad Cortical/fisiología , Fluorometría/métodos , Neuronas/fisiología , Calcio/análisis , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/citología
9.
Behav Brain Res ; 359: 719-722, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30248365

RESUMEN

Taurine (TAU) is one of the most abundant amino acids in the brain. It has many important physiological functions. The effects of TAU supplementation on brain function need to be further characterized in humans. The purpose of this study was to investigate whether a single dose of Taurine (TAU) intake would modulate corticospinal excitability and post-exercise facilitation (PEF) of the motor evoked potentials (MEP).


Asunto(s)
Excitabilidad Cortical/efectos de los fármacos , Excitabilidad Cortical/fisiología , Ejercicio Físico/fisiología , Taurina/farmacología , Estimulación Magnética Transcraneal , Adulto , Análisis de Varianza , Estudios Cruzados , Electromiografía , Potenciales Evocados Motores/efectos de los fármacos , Humanos
10.
PLoS One ; 13(8): e0198053, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30157179

RESUMEN

Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation that may modulate cortical excitability, metabolite concentration, and human behaviour. The supplementary motor area (SMA) has been largely ignored as a potential target for tDCS neurorehabilitation but is an important region in motor compensation after brain injury with strong efferent connections to the primary motor cortex (M1). The objective of this work was to measure tissue metabolite changes in the human motor cortex immediately following tDCS. We hypothesized that bihemispheric tDCS would change levels of metabolites involved in neuromodulation including N-acetylaspartate (NAA), glutamate (Glu), and creatine (tCr). In this single-blind, randomized, cross-over study, fifteen healthy adults aged 21-60 participated in two 7T MRI sessions, to identify changes in metabolite concentrations by magnetic resonance spectroscopy. Immediately after 20 minutes of tDCS, there were no significant changes in metabolite levels or metabolite ratios comparing tDCS to sham. However there was a trend toward increased NAA/tCr concentration (p = 0.08) in M1 under the stimulating cathode. There was a strong, positive correlation between the change in the absolute concentration of NAA and the change in the absolute concentration of tCr (p<0.001) suggesting an effect of tDCS. Both NAA and creatine are important markers of neurometabolism. Our findings provide novel insight into the modulation of neural metabolites in the motor cortex immediately following application of bihemispheric tDCS.


Asunto(s)
Excitabilidad Cortical/fisiología , Potenciales Evocados Motores/fisiología , Espectroscopía de Resonancia Magnética/métodos , Corteza Motora , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos , Adulto , Terapia Combinada , Estudios Cruzados , Femenino , Ácido Glutámico/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/efectos de la radiación , Método Simple Ciego , Adulto Joven
11.
Clin Neurophysiol ; 129(5): 990-1000, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29558675

RESUMEN

OBJECTIVE: To evaluate the changes in glutamate/GABA balance of intracortical excitability produced by ketamine, delivered at subanaesthetic dose to treat patients with complex regional pain syndrome (CRPS). METHODS: In 19 patients with CRPS, we assessed the effect of a 5-day ketamine protocol on various clinical aspects, including pain and depression, and on cortical excitability parameters provided by transcranial magnetic stimulation testing. RESULTS: The rest motor threshold (RMT) and the amplitude of the motor evoked potentials at 120% of RMT were not modified after ketamine therapy. In contrast, ketamine reduced intracortical facilitation (ICF) in both hemispheres and increased short-interval intracortical inhibition (SICI), which was defective at baseline only in the hemisphere corresponding to the painful side. These changes positively correlated with pain relief. CONCLUSION: This study shows for the first time that the remarkable analgesic effects produced by ketamine in CRPS patients is associated with cortical excitability changes in favour of an enhanced GABAergic transmission in the hemisphere corresponding to the painful side and an overall reduction of excitability in the contralateral hemisphere. SIGNIFICANCE: Analgesic effects of ketamine cannot be resumed to its classical antigutamatergic action related to N-methyl-d-aspartate receptor blockade.


Asunto(s)
Analgésicos/uso terapéutico , Corteza Cerebral/efectos de los fármacos , Síndromes de Dolor Regional Complejo/tratamiento farmacológico , Excitabilidad Cortical/efectos de los fármacos , Ácido Glutámico/metabolismo , Ketamina/uso terapéutico , Ácido gamma-Aminobutírico/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Analgésicos/farmacología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Síndromes de Dolor Regional Complejo/metabolismo , Síndromes de Dolor Regional Complejo/fisiopatología , Excitabilidad Cortical/fisiología , Potenciales Evocados Motores/efectos de los fármacos , Femenino , Humanos , Ketamina/farmacología , Masculino , Persona de Mediana Edad , Corteza Motora/efectos de los fármacos , Corteza Motora/fisiopatología , Adulto Joven
12.
Neurobiol Aging ; 65: 168-177, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29494863

RESUMEN

Edited magnetic resonance spectroscopy (MRS) and transcranial magnetic stimulation (TMS) have often been used to study the integrity of the GABAergic neurotransmission system in healthy aging. To investigate whether the measurement outcomes obtained with these 2 techniques are associated with each other in older human adults, gamma-aminobutyric acid (GABA) levels in the left sensorimotor cortex were assessed with edited MRS in 28 older (63-74 years) and 28 young adults (19-34 years). TMS at rest was then used to measure intracortical inhibition (short-interval intracortical inhibition/long-interval intracortical inhibition), intracortical facilitation, interhemispheric inhibition from left to right primary motor cortex (M1) and recruitment curves of left and right M1. Our observations showed that short-interval intracortical inhibition and long-interval intracortical inhibition in the left M1 were reduced in older adults, while GABA levels did not significantly differ between age groups. Furthermore, MRS-assessed GABA within left sensorimotor cortex was not correlated with TMS-assessed cortical excitability or inhibition. These observations suggest that healthy aging gives rise to altered inhibition at the postsynaptic receptor level, which does not seem to be associated with MRS-assessed GABA+ levels.


Asunto(s)
Excitabilidad Cortical/fisiología , Envejecimiento Saludable/metabolismo , Envejecimiento Saludable/fisiología , Voluntarios Sanos , Corteza Sensoriomotora/metabolismo , Corteza Sensoriomotora/fisiología , Ácido gamma-Aminobutírico/metabolismo , Adulto , Anciano , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Corteza Motora/fisiología , Inhibición Neural/fisiología , Descanso/fisiología , Transmisión Sináptica , Estimulación Magnética Transcraneal , Adulto Joven , Ácido gamma-Aminobutírico/fisiología
13.
Cortex ; 101: 234-248, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29455948

RESUMEN

According to the Two-Factor theory of delusional belief (see e.g. Coltheart at al., 2011), there exists a cognitive system dedicated to the generation, evaluation, and acceptance or rejection of beliefs. Studies of the neuropsychology of delusion provide evidence that this system is neurally realized in right dorsolateral prefrontal cortex (rDLPFC). Furthermore, we have shown that convincing analogues of many specific delusional beliefs can be created in nonclinical subjects by hypnotic suggestion and we think of hypnosis as having the effect of temporarily interfering with the operation of the belief system, which allows acceptance of the delusional suggestions. If the belief system does depend on rDLPFC, then disrupting the activity of that region of the brain by the application of repetitive transcranial magnetic stimulation (rTMS) will increase hypnotizability. Dienes and Hutton (2013) have reported such an experiment except that it was left DLPFC to which rTMS was applied. An effect on a subjective measure of hypnotizability was observed, but whether there was an effect on an objective measure could not be determined. We report two experiments. The first was an exact replication of the Dienes and Hutton experiment; here we found no effect of rTMS to lDLPFC on any hypnotic measure. Our second experiment used rTMS applied to right rather then left DLPFC. This right-sided stimulation enhanced hypnotizability (when hypnotic response was measured objectively), as predicted by our hypothesis. These results imply a role for rDLPFC in the cognitive process of belief evaluation, as is proposed in our two-factor theory of delusion. They are also consistent with a conception of the acceptance of a hypnotic suggestion as involving suspension of disbelief.


Asunto(s)
Cognición/fisiología , Deluciones/psicología , Corteza Prefrontal/fisiología , Sugestión , Estimulación Magnética Transcraneal/métodos , Confianza/psicología , Adolescente , Adulto , Teorema de Bayes , Excitabilidad Cortical/fisiología , Femenino , Lateralidad Funcional , Alucinaciones , Humanos , Masculino , Movimiento , Adulto Joven
14.
Pain Med ; 19(6): 1227-1236, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29016867

RESUMEN

Objective: Neuromodulation is increasingly investigated for the treatment of low back pain (LBP). However, the neurophysiological effects of common neuromodulatory techniques (anodal transcranial direct current stimulation [tDCS] and peripheral electrical stimulation [PES]) have not been investigated in people with chronic LBP. Here we aimed to compare the effect of three neuromodulatory protocols (anodal tDCS, high intensity PES, and a priming protocol of combined tDCS/PES) on primary motor cortex (M1) excitability in people with and without chronic LBP. Design: Cross-sectional. Setting: University laboratory. Participants: Ten individuals with chronic LBP and 10 pain-free controls. Methods: Participants received four interventions in random order across separate sessions: 1) anodal tDCS to M1 + PES to the back muscles; 2) tDCS + sham PES; 3) sham tDCS + PES; or 4) sham tDCS + sham PES. Motor cortical excitability (map volume, discrete map peaks, and cortical silent period [CSP]) was measured before and after each intervention. Results: Anodal tDCS increased M1 excitability (increased map volume and reduced CSP) in controls but had no effect in the LBP group. PES reduced M1 excitability in both groups. The combined tDCS + PES treatment increased M1 excitability in the LBP group but had no effect in controls. Conclusions: The neurophysiological response to common neuromodulatory treatments differs between people with and without LBP. This has relevance for the design and tailoring of neuromodulation in pain. Further, if the goal of treatment is to increase M1 excitability, a priming protocol (e.g., combined tDCS + PES) may be more effective than tDCS alone.


Asunto(s)
Excitabilidad Cortical/fisiología , Terapia por Estimulación Eléctrica , Dolor de la Región Lumbar/fisiopatología , Corteza Motora/fisiopatología , Estimulación Transcraneal de Corriente Directa , Adulto , Dolor Crónico/fisiopatología , Dolor Crónico/terapia , Femenino , Humanos , Dolor de la Región Lumbar/terapia , Masculino
15.
Sci Rep ; 7(1): 7608, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28790376

RESUMEN

The cortico-striatal-thalamo-cortical (CSTC) pathway is a brain circuit that controls movement execution, habit formation and reward. Hyperactivity in the CSTC pathway is involved in obsessive compulsive disorder (OCD), a neuropsychiatric disorder characterized by the execution of repetitive involuntary movements. The striatum shapes the activity of the CSTC pathway through the coordinated activation of two classes of medium spiny neurons (MSNs) expressing D1 or D2 dopamine receptors. The exact mechanisms by which balanced excitation/inhibition (E/I) of these cells controls the network dynamics of the CSTC pathway remain unclear. Here we use non-linear modeling of neuronal activity and bifurcation theory to investigate how global and local changes in E/I of MSNs regulate the activity of the CSTC pathway. Our findings indicate that a global and proportionate increase in E/I pushes the system to states of generalized hyper-activity throughout the entire CSTC pathway. Certain disproportionate changes in global E/I trigger network oscillations. Local changes in the E/I of MSNs generate specific oscillatory behaviors in MSNs and in the CSTC pathway. These findings indicate that subtle changes in the relative strength of E/I of MSNs can powerfully control the network dynamics of the CSTC pathway in ways that are not easily predicted by its synaptic connections.


Asunto(s)
Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Excitabilidad Cortical/fisiología , Inhibición Neural/fisiología , Redes Neurales de la Computación , Transmisión Sináptica/fisiología , Tálamo/fisiología , Animales , Corteza Cerebral/anatomía & histología , Corteza Cerebral/citología , Conectoma , Cuerpo Estriado/anatomía & histología , Cuerpo Estriado/citología , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Humanos , Receptores Dopaminérgicos/metabolismo , Recompensa , Roedores , Especificidad de la Especie , Sinapsis/fisiología , Tálamo/anatomía & histología , Tálamo/citología , Ácido gamma-Aminobutírico/metabolismo
16.
Behav Brain Res ; 335: 185-190, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28827129

RESUMEN

OBJECTIVE: To investigate real-time excitability changes in corticospinal pathways related to motor imagery in a changing force control task, using transcranial magnetic stimulation (TMS). METHODS: Ten healthy volunteers learnt to control the contractile force of isometric right wrist dorsiflexion in order to track an on-screen sine wave form. Participants performed the trained task 40 times with actual muscle contraction in order to construct the motor image. They were then instructed to execute the task without actual muscle contraction, but by imagining contraction of the right wrist in dorsiflexion. Motor evoked potentials (MEPs), induced by TMS in the right extensor carpi radialis muscle (ECR) and flexor carpi radialis muscle (FCR), were measured during motor imagery. MEPs were induced at five time points: prior to imagery, during the gradual generation of the imaged wrist dorsiflexion (Increasing phase), the peak value of the sine wave, during the gradual reduction (Decreasing phase), and after completion of the task. The MEP ratio, as the ratio of imaged MEPs to resting-state, was compared between pre- and post-training at each time point. RESULTS: In the ECR muscle, the MEP ratio significantly increased during the Increasing phase and at the peak force of dorsiflexion imagery after training. Moreover, the MEP ratio was significantly greater in the Increasing phase than in the Decreasing phase. In the FCR, there were no significant consistent changes. CONCLUSION: Corticospinal excitability during motor imagery in an isometric contraction task was modulated in relation to the phase of force control after image construction.


Asunto(s)
Excitabilidad Cortical/fisiología , Potenciales Evocados Motores/fisiología , Imaginación/fisiología , Adulto , Electromiografía/métodos , Femenino , Voluntarios Sanos , Humanos , Masculino , Corteza Motora/fisiología , Movimiento/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Neurorretroalimentación/métodos , Tractos Piramidales/fisiología , Estimulación Magnética Transcraneal/métodos , Muñeca/fisiología
17.
J Neurosci ; 37(10): 2686-2696, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28179557

RESUMEN

Individuals differ in the intrinsic excitability of their corticospinal pathways and, perhaps more generally, their entire nervous system. At present, we have little understanding of the mechanisms underlying these differences and how variation in intrinsic excitability relates to behavior. Here, we examined the relationship between individual differences in intrinsic corticospinal excitability, local cortical GABA levels, and reaction time (RT) in a group of 20 healthy human adults. We measured corticospinal excitability at rest with transcranial magnetic stimulation, local concentrations of basal GABA with magnetic resonance spectroscopy, and RT with a behavioral task. All measurements were repeated in two separate sessions, and tests of reliability confirmed the presence of stable individual differences. There was a negative correlation between corticospinal excitability and RT, such that larger motor-evoked potentials (MEPs) measured at rest were associated with faster RTs. Interestingly, larger MEPs were associated with higher levels of GABA in M1, but not in three other cortical regions. Together, these results suggest that individuals with more excitable corticospinal pathways are faster to initiate planned responses and have higher levels of GABA within M1, possibly to compensate for a more excitable motor system.SIGNIFICANCE STATEMENT This study brings together physiological, behavioral, and neurochemical evidence to examine variability in the excitability of the human motor system. Previous work has focused on state-based factors (e.g., preparedness, uncertainty), with little attention given to the influence of inherent stable characteristics. Here, we examined how the excitability of the motor system relates to reaction time and the regional content of the inhibitory neurotransmitter GABA. Importantly, motor pathway excitability and GABA concentrations were measured at rest, outside a task context, providing assays of intrinsic properties of the individuals. Individuals with more excitable motor pathways had faster reaction times and, paradoxically, higher concentrations of GABA. We propose that greater GABA capacity in the motor cortex counteracts an intrinsically more excitable motor system.


Asunto(s)
Excitabilidad Cortical/fisiología , Corteza Motora/fisiología , Neurotransmisores/metabolismo , Tractos Piramidales/fisiología , Tiempo de Reacción/fisiología , Ácido gamma-Aminobutírico/metabolismo , Adulto , Potenciales Evocados Motores/fisiología , Humanos , Masculino , Descanso/fisiología , Estadística como Asunto , Distribución Tisular
18.
Front Neural Circuits ; 10: 37, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242445

RESUMEN

Neurons in the primary visual cortex are known for responding vigorously but with high variability to classical stimuli such as drifting bars or gratings. By contrast, natural scenes are encoded more efficiently by sparse and temporal precise spiking responses. We used a conductance-based model of the visual system in higher mammals to investigate how two specific features of the thalamo-cortical pathway, namely push-pull receptive field organization and fast synaptic depression, can contribute to this contextual reshaping of V1 responses. By comparing cortical dynamics evoked respectively by natural vs. artificial stimuli in a comprehensive parametric space analysis, we demonstrate that the reliability and sparseness of the spiking responses during natural vision is not a mere consequence of the increased bandwidth in the sensory input spectrum. Rather, it results from the combined impacts of fast synaptic depression and push-pull inhibition, the later acting for natural scenes as a form of "effective" feed-forward inhibition as demonstrated in other sensory systems. Thus, the combination of feedforward-like inhibition with fast thalamo-cortical synaptic depression by simple cells receiving a direct structured input from thalamus composes a generic computational mechanism for generating a sparse and reliable encoding of natural sensory events.


Asunto(s)
Excitabilidad Cortical/fisiología , Inhibición Neural/fisiología , Tálamo/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Percepción Visual/fisiología , Animales , Gatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA