Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytother Res ; 38(3): 1245-1261, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185885

RESUMEN

Angiogenesis is a key player in the pathogenesis of rheumatoid arthritis. Exocytosis from Weibel-Palade bodies is a prerequisite for angiopoietin-2 (Ang-2) to activate endothelial cells and initiate angiogenesis. Geniposide (GE) was previously reported to exert anti-angiogenic effects. The aim of this study was to shed light on whether and how GE regulates Ang-2 exocytosis. A rat model of adjuvant arthritis (AA) was established to evaluate the therapeutic effect of GE (60 and 120 mg/kg) especially in synovial angiogenesis. In addition, the Matrigel plug assay was used to detect the effect of GE (120 and 240 mg/kg) on angiogenesis in AA mice. In vitro, sphingosine-1-phosphate (S1P)-stimulated human umbilical vein endothelial cells (HUVECs) were used to investigate the effect and mechanism of GE on Ang-2 exocytosis. It was found that GE improved the symptoms of AA rats and inhibited angiogenesis in AA, which may be related to the down-regulation of S1P receptors 1, 3 (S1PR1, S1PR3), phospholipase Cß3 (PLCß3), inositol 1,4,5-trisphosphate receptor (IP3 R) and Ang-2 expression. The results of in vitro experiments showed that S1P induced rapid release of Ang-2 from HUVECs with multigranular exocytosis. Suppression of the S1P/S1PR1/3/PLCß3/Ca2+ signal axis by the S1PR1/3 inhibitor VPC23019 and the IP3 R inhibitor 2-APB blocked Ang-2 exocytosis, accompanied by diminished angiogenesis in vitro. GE dose-dependently weakened S1P/S1PR1/3/PLCß3/Ca2+ signal axis activation, Ang-2 exocytosis and angiogenesis in HUVECs (p < 0.05, p < 0.01). Overall, these findings revealed that angiogenesis inhibition of GE was partly attributed to the intervention of Ang-2 exocytosis through negatively modulating the S1P/S1PR1/3/PLCß3/Ca2+ signal axis, providing a novel strategy for rheumatoid arthritis anti-angiogenic therapy.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Iridoides , Ratas , Humanos , Ratones , Animales , Angiopoyetina 2/farmacología , Angiogénesis , Células Endoteliales de la Vena Umbilical Humana , Exocitosis , Angiopoyetina 1/metabolismo
2.
Photochem Photobiol Sci ; 23(2): 355-364, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38277065

RESUMEN

We have previously established that 670 nm energy induces relaxation of blood vessels via an endothelium derived S-nitrosothiol (RSNO) suggested to be embedded in vesicles. Here, we confirm that red light facilitates the exocytosis of this vasodilator from cultured endothelial cells and increases ex vivo blood vessel diameter. Ex vivo pressurized and pre-constricted facial arteries from C57Bl6/J mice relaxed 14.7% of maximum diameter when immersed in the medium removed from red-light exposed Bovine Aortic Endothelial Cells. In parallel experiments, 0.49 nM RSNO equivalent species was measured in the medium over the irradiated cells vs dark control. Electron microscopy of light exposed endothelium revealed significant increases in the size of the Multi Vesicular Body (MVB), a regulator of exosome trafficking, while RSNO accumulated in the MVBs as detected with immunogold labeling electron microscopy (1.8-fold of control). Moreover, red light enhanced the presence of F-actin related stress fibers (necessary for exocytosis), and the endothelial specific marker VE-cadherin levels suggesting an endothelial origin of the extracellular vesicles. Flow cytometry coupled with DAF staining, an indirect sensor of nitric oxide (NO), indicated significant amounts of NO within the extracellular vesicles (1.4-fold increase relative to dark control). Therefore, we further define the mechanism on the 670 nm light mediated traffic of endothelial vasodilatory vesicles and plan to leverage this insight into the delivery of red-light therapies.


Asunto(s)
Células Endoteliales , Luz Roja , Animales , Bovinos , Ratones , Modelos Animales de Enfermedad , Óxido Nítrico , Células Cultivadas , Exocitosis , Endotelio
3.
Cell Rep ; 42(11): 113319, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37897722

RESUMEN

Pollen germination is an essential step for delivering sperm cells to the embryo sac for double fertilization in flowering plants. The cytosolic Ca2+ concentration ([Ca2+]cyt) and vesicle dynamics are critical for pollen germination, but their potential correlation in pollen grains is not fully understood. Here, we report that [Ca2+]cyt oscillates periodically at the prospective germination sites during pollen germination. The [Ca2+]cyt is mainly from extracellular Ca2+ ([Ca2+]ext) influx, which implicates the Ca2+-permeable ion channel cyclic nucleotide-gated channel 18 (CNGC18). The [Ca2+]cyt oscillations spatiotemporally correlate with the accumulation of secretory vesicles labeled by a formin protein AtFH5, and disruption of vesicle accumulation inhibits the [Ca2+]cyt oscillations. In turn, the [Ca2+]cyt oscillations promote exocytosis, which leads to stepwise cell extension during pollen germination. Together, these data provide a timeline of vesicle dynamics, calcium oscillation, and exocytosis during pollen germination and highlight the importance of the correlation of these events for pollen germination.


Asunto(s)
Arabidopsis , Señalización del Calcio , Arabidopsis/metabolismo , Tubo Polínico/metabolismo , Estudios Prospectivos , Calcio/metabolismo , Semillas/metabolismo , Polen/metabolismo , Vesículas Secretoras/metabolismo , Exocitosis
4.
Nat Commun ; 14(1): 3997, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414766

RESUMEN

Uranium (U) is a well-known nephrotoxicant which forms precipitates in the lysosomes of renal proximal tubular epithelial cells (PTECs) after U-exposure at a cytotoxic dose. However, the roles of lysosomes in U decorporation and detoxification remain to be elucidated. Mucolipin transient receptor potential channel 1 (TRPML1) is a major lysosomal Ca2+ channel regulating lysosomal exocytosis. We herein demonstrate that the delayed administration of the specific TRPML1 agonist ML-SA1 significantly decreases U accumulation in the kidney, mitigates renal proximal tubular injury, increases apical exocytosis of lysosomes and reduces lysosomal membrane permeabilization (LMP) in renal PTECs of male mice with single-dose U poisoning or multiple-dose U exposure. Mechanistic studies reveal that ML-SA1 stimulates intracellular U removal and reduces U-induced LMP and cell death through activating the positive TRPML1-TFEB feedback loop and consequent lysosomal exocytosis and biogenesis in U-loaded PTECs in vitro. Together, our studies demonstrate that TRPML1 activation is an attractive therapeutic strategy for the treatment of U-induced nephrotoxicity.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Uranio , Masculino , Ratones , Animales , Uranio/toxicidad , Uranio/metabolismo , Lisosomas/metabolismo , Exocitosis , Canales de Potencial de Receptor Transitorio/metabolismo , Calcio/metabolismo
5.
Theriogenology ; 210: 169-181, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37517302

RESUMEN

Evaluation of acrosome function in stallion sperm is mostly based on the use of inducers of acrosomal exocytosis (AE), such as the calcium ionophore A23187 or progesterone. Recently, it has been reported that incubation of stallion sperm under presumed capacitating conditions (i.e., medium formulated with calcium, bicarbonate, and bovine serum albumin) using a lactate-only containing medium (Lac-MW) results in a high rate of spontaneous AE in viable sperm (AE/Viable). In the current study, we developed an alternative assay of acrosome function for stallion sperm following the incubation of sperm in a medium formulated only with lactate as an energy substrate (Lac-MW). In Experiment 1, freshly ejaculated stallion sperm was incubated with 10 µM A23187, Lac-MW, or Control, for up to 6 h under capacitating conditions. The percentages of motile sperm, viable sperm, total AE (Total AE), and AE in viable sperm (AE/Viable) were compared among treatment groups. Incubation in Lac-MW, but not with Control or A23187, resulted in a time-dependent increase in the percentage of AE/Viable, as determined by flow cytometry, particularly at 4 and 6 h of incubation (P < 0.05). In Experiment 2, freshly ejaculated sperm was incubated in Lac-MW for up to 6 h, and the occurrence of protein tyrosine phosphorylation and AE/Viable were determined. At 4h and 6h of incubation in Lac-MW, ∼40% of the sperm displayed a protein tyrosine phosphorylation immunofluorescence pattern that coincides with that recently associated with stallion sperm capacitation (i.e., immunofluorescence signal at the acrosome and midpiece). In Experiment 3, the rate of AE/Viable sperm was compared among freshly ejaculated, cool-stored, and frozen/thawed stallion sperm. Except at 2h incubation in Lac-MW, differences in mean AE/Viable among fresh, cool-stored, and frozen/thawed sperm were not observed (P > 0.05). In Experiment 4, the relationship between Total AE (A23187), or AE/Viable (Lac-MW), and in vivo fertility of 5 stallions was determined. A linear relationship was observed between mean AE/Viable and the per-cycle (r = 0.93; P < 0.05) and seasonal (r = 0.66; P < 0.05) pregnancy rates of five stallions used for artificial insemination with cool-stored semen. In Experiment 5, frozen/thawed sperm from subfertile Thoroughbred (TB) stallions, known to carry the susceptibility genotype for Impaired Acrosomal Exocytosis (IAE; FKBP6 A/A-A/A) was evaluated following incubation in Lac-MW. Sperm from subfertile TB stallions with IAE had lower mean AE/Viable, at both 4h and 6h incubation in Lac-MW, when compared to that of fertile control stallions (P < 0.05). Overall, the Lac-MW model validated in the current study may be a useful complementary assay to evaluate the ability of stallion sperm to physiologically undergo AE and to study stallion fertility potential. This acrosome function assay can be used to evaluate fresh, cool-stored, or frozen/thawed stallion sperm, and describes a strong linear relationship with in vivo-fertility of stallions used in artificial insemination programs.


Asunto(s)
Acrosoma , Semen , Embarazo , Femenino , Masculino , Caballos , Animales , Ácido Láctico , Calcimicina/farmacología , Espermatozoides/fisiología , Exocitosis , Tirosina , Motilidad Espermática
6.
Plant Sci ; 330: 111633, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36775070

RESUMEN

Pollen tube polar growth is a key cellular process during plant fertilization and is regulated by tip-focused exocytosis and endocytosis. However, the spatiotemporal dynamics and localizations of apical exocytosis and endocytosis in the tip region are still a matter of debate. Here, we use a refined spinning-disk confocal microscope coupled with fluorescence recovery after photobleaching for sustained live imaging and quantitative analysis of rapid vesicular activities in growing pollen tube tips. We traced and analyzed the occurrence site of exocytic plasma membrane-targeting of Arabidopsis secretory carrier membrane protein 4 and its subsequent endocytosis in tobacco pollen tube tips. We demonstrated that the pollen tube apex is the site for both vesicle polar exocytic fusion and endocytosis to take place. In addition, we disrupted either tip-focused exocytosis or endocytosis and found that their dynamic activities are closely correlated with one another basing on the spatial organization of actin fringe. Collectively, our findings attempt to propose a new exocytosis and endocytosis-coordinated yin-yang working model underlying the apical membrane organization and dynamics during pollen tube tip growth.


Asunto(s)
Arabidopsis , Tubo Polínico , Endocitosis/fisiología , Actinas/metabolismo , Membrana Celular/metabolismo , Arabidopsis/metabolismo , Exocitosis/fisiología
7.
Cell Rep ; 42(2): 112036, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36701234

RESUMEN

Phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) is an important signaling phospholipid that is required for regulated exocytosis and some forms of endocytosis. The two processes share a topologically similar pore structure that connects the vesicle lumen with the outside. Widening of the fusion pore during exocytosis leads to cargo release, while its closure initiates kiss&run or cavicapture endocytosis. We show here, using live-cell total internal reflection fluorescence (TIRF) microscopy of insulin granule exocytosis, that transient accumulation of PI(4,5)P2 at the release site recruits components of the endocytic fission machinery and stalls the late fusion pore expansion that is required for peptide release. The absence of clathrin differentiates this mechanism from clathrin-mediated endocytosis. Knockdown of phosphatidylinositol-phosphate-5-kinase-1c or optogenetic recruitment of 5-phosphatase reduces PI(4,5)P2 transients and accelerates fusion pore expansion, suggesting that acute PI(4,5)P2 synthesis is involved. Thus, local phospholipid signaling inhibits fusion pore expansion and peptide release through an unconventional endocytic mechanism.


Asunto(s)
Endocitosis , Exocitosis , Membrana Celular , Insulina , Clatrina , Fosfatidilinositoles , Fusión de Membrana
8.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36362193

RESUMEN

The inhibition of synaptic glutamate release to maintain glutamate homeostasis contributes to the alleviation of neuronal cell injury, and accumulating evidence suggests that natural products can repress glutamate levels and associated excitotoxicity. In this study, we investigated whether eupatilin, a constituent of Artemisia argyi, affected glutamate release in rat cortical nerve terminals (synaptosomes). Additionally, we evaluated the effect of eupatilin in an animal model of kainic acid (KA) excitotoxicity, particularly on the levels of glutamate and N-methyl-D-aspartate (NMDA) receptor subunits (GluN2A and GluN2B). We found that eupatilin decreased depolarization-evoked glutamate release from rat cortical synaptosomes and that this effect was accompanied by a reduction in cytosolic Ca2+ elevation, inhibition of P/Q-type Ca2+ channels, decreased synapsin I Ca2+-dependent phosphorylation and no detectable effect on the membrane potential. In a KA-induced glutamate excitotoxicity rat model, the administration of eupatilin before KA administration prevented neuronal cell degeneration, glutamate elevation, glutamate-generating enzyme glutaminase increase, excitatory amino acid transporter (EAAT) decrease, GluN2A protein decrease and GluN2B protein increase in the rat cortex. Taken together, the results suggest that eupatilin depresses glutamate exocytosis from cerebrocortical synaptosomes by decreasing P/Q-type Ca2+ channels and synapsin I phosphorylation and alleviates glutamate excitotoxicity caused by KA by preventing glutamatergic alterations in the rat cortex. Thus, this study suggests that eupatilin can be considered a potential therapeutic agent in the treatment of brain impairment associated with glutamate excitotoxicity.


Asunto(s)
Artemisia , Síndromes de Neurotoxicidad , Ratas , Animales , Ácido Glutámico/metabolismo , Sinapsinas/metabolismo , Artemisia/metabolismo , 4-Aminopiridina/farmacología , Ratas Sprague-Dawley , Corteza Cerebral/metabolismo , Calcio/metabolismo , Sinaptosomas/metabolismo , Exocitosis , Ácido Kaínico/farmacología , Síndromes de Neurotoxicidad/metabolismo
9.
Plant Cell ; 34(10): 3961-3982, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35766888

RESUMEN

AP-1 and AP-2 adaptor protein (AP) complexes mediate clathrin-dependent trafficking at the trans-Golgi network (TGN) and the plasma membrane, respectively. Whereas AP-1 is required for trafficking to plasma membrane and vacuoles, AP-2 mediates endocytosis. These AP complexes consist of four subunits (adaptins): two large subunits (ß1 and γ for AP-1 and ß2 and α for AP-2), a medium subunit µ, and a small subunit σ. In general, adaptins are unique to each AP complex, with the exception of ß subunits that are shared by AP-1 and AP-2 in some invertebrates. Here, we show that the two putative Arabidopsis thaliana AP1/2ß adaptins co-assemble with both AP-1 and AP-2 subunits and regulate exocytosis and endocytosis in root cells, consistent with their dual localization at the TGN and plasma membrane. Deletion of both ß adaptins is lethal in plants. We identified a critical role of ß adaptins in pollen wall formation and reproduction, involving the regulation of membrane trafficking in the tapetum and pollen germination. In tapetal cells, ß adaptins localize almost exclusively to the TGN and mediate exocytosis of the plasma membrane transporters such as ATP-binding cassette (ABC)G9 and ABCG16. This study highlights the essential role of AP1/2ß adaptins in plants and their specialized roles in specific cell types.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Adenosina Trifosfato/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clatrina/genética , Clatrina/metabolismo , Exocitosis/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Polen/genética , Polen/metabolismo , Factor de Transcripción AP-1/metabolismo
10.
J Comp Neurol ; 530(4): 705-728, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34468021

RESUMEN

Synaptotagmins belong to a large family of proteins. Although various synaptotagmins have been implicated as Ca2+ sensors for vesicle replenishment and release at conventional synapses, their roles at retinal ribbon synapses remain incompletely understood. Zebrafish is a widely used experimental model for retinal research. We therefore investigated the homology between human, rat, mouse, and zebrafish synaptotagmins 1-10 using a bioinformatics approach. We also characterized the expression and distribution of various synaptotagmin (syt) genes in the zebrafish retina using RT-PCR, qPCR, and in situhybridization, focusing on the family members whose products likely underlie Ca2+ -dependent exocytosis in the central nervous system (synaptotagmins 1, 2, 5, and 7). Most zebrafish synaptotagmins are well conserved and can be grouped in the same classes as mammalian synaptotagmins, based on crucial amino acid residues needed for coordinating Ca2+ binding and determining phospholipid binding affinity. The only exception is synaptotagmin 1b, which lacks 34 amino acid residues in the C2B domain and is therefore unlikely to bind Ca2+ there. Additionally, the products of zebrafish syt5a and syt5b genes share identity with mammalian class 1 and 5 synaptotagmins. Zebrafish syt1, syt2, syt5, and syt7 paralogues are found in the zebrafish brain, eye, and retina, excepting syt1b, which is only present in the brain. The complementary expression pattern of the remaining paralogues in the retina suggests that syt1a and syt5a may underlie synchronous release and syt7a and syt7b may mediate asynchronous release or other Ca2+ -dependent processes in different retinal neurons.


Asunto(s)
Calcio , Retina , Pez Cebra , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Exocitosis/fisiología , Retina/metabolismo , Sinapsis/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Pez Cebra/metabolismo
11.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203249

RESUMEN

By providing ~70% of the eye's refractive power, the preocular tear film is essential for optimal vision. However, its integrity is often jeopardized by environmental and pathologic conditions that accelerate evaporation and cause sight-impairing dry eye. A key adaptive response to evaporation-induced tear film hyperosmolarity is the reflex-triggered release of tear-stabilizing mucin from conjunctival goblet cells. Here, we review progress in elucidating the roles of ion channels in mediating this important exocytotic response. Much is now known about the modulatory impact of ATP-sensitive potassium channels, nonspecific cation channels and voltage-gated calcium channels. Recently, we discovered that during unremitting extracellular hyperosmolarity, P2X7 receptor/channels also become activated and markedly impair goblet cell viability. However, our understanding of possible adaptive benefits of this P2X7 activation remains limited. In the present study, we utilized high-temporal resolution membrane capacitance measurements to monitor the exocytotic activity of single goblet cells located in freshly excised rat conjunctiva. We now report that activation of P2X7 purinoceptors boosts neural-evoked exocytosis and accelerates replenishment of mucin-filled granules after exocytotic depletion. Thus, P2X7 activation exerts a yin-yang effect on conjunctival goblet cells: the high-gain benefit of enhancing the supply of tear-stabilizing mucin is implemented at the high-risk of endangering goblet cell survival.


Asunto(s)
Células Caliciformes/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X/metabolismo , Animales , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Exocitosis/genética , Exocitosis/fisiología , Humanos , Receptores Purinérgicos P2X/genética
12.
Bioelectrochemistry ; 140: 107830, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33965669

RESUMEN

Previously we reported that adrenal chromaffin cells exposed to a 5 ns, 5 MV/m pulse release the catecholamines norepinephrine (NE) and epinephrine (EPI) in a Ca2+-dependent manner. Here we determined that NE and EPI release increased with pulse number (one versus five and ten pulses at 1 Hz), established that release occurs by exocytosis, and characterized the exocytotic response in real-time. Evidence of an exocytotic mechanism was the appearance of dopamine-ß-hydroxylase on the plasma membrane, and the demonstration by total internal reflection fluorescence microscopy studies that a train of five or ten pulses at 1 Hz triggered the release of the fluorescent dye acridine orange from secretory granules. Release events were Ca2+-dependent, longer-lived relative to those evoked by nicotinic receptor stimulation, and occurred with a delay of several seconds despite an immediate rise in Ca2+. In complementary studies, cells labeled with the plasma membrane fluorescent dye FM 1-43 and exposed to a train of ten pulses at 1 Hz underwent Ca2+-dependent increases in FM 1-43 fluorescence indicative of granule fusion with the plasma membrane due to exocytosis. These results demonstrate the effectiveness of ultrashort electric pulses for stimulating catecholamine release, signifying their promise as a novel electrostimulation modality for neurosecretion.


Asunto(s)
Glándulas Suprarrenales/citología , Calcio/metabolismo , Catecolaminas/metabolismo , Células Cromafines/metabolismo , Electricidad , Exocitosis
13.
J Neurosci ; 41(20): 4524-4535, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33846232

RESUMEN

Ca2+-dependent activator protein for secretion 2 (CAPS2) regulates dense-core vesicle (DCV) exocytosis to facilitate peptidergic and catecholaminergic transmitter release. CAPS2 deficiency in mice has mild neuronal effects but markedly impairs social behavior. Rare de novo Caps2 alterations also occur in autism spectrum disorder, although whether CAPS2-mediated release influences social behavior remains unclear. Here, we demonstrate that CAPS2 is associated with DCV exocytosis-mediated release of the social interaction modulatory peptide oxytocin (OXT). CAPS2 is expressed in hypothalamic OXT neurons and localizes to OXT nerve projection and OXT release sites, such as the pituitary. Caps2 KO mice exhibited reduced plasma albeit increased hypothalamic and pituitary OXT levels, indicating insufficient release. OXT neuron-specific Caps2 conditional KO supported CAPS2 function in pituitary OXT release, also affording impaired social interaction and recognition behavior that could be ameliorated by exogenous OXT administered intranasally. Thus, CAPS2 appears critical for OXT release, thereby being associated with social behavior.SIGNIFICANCE STATEMENT The role of the neuropeptide oxytocin in enhancing social interaction and social bonding behavior has attracted considerable public and neuroscientific attention. A central issue in oxytocin biology concerns how oxytocin release is regulated. Our study provides an important insight into the understanding of oxytocin-dependent social behavior from the perspective of the CAPS2-regulated release mechanism.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Unión al Calcio/metabolismo , Exocitosis/fisiología , Proteínas del Tejido Nervioso/metabolismo , Oxitocina/metabolismo , Conducta Social , Animales , Hipotálamo/metabolismo , Ratones , Ratones Noqueados , Vesículas Secretoras/metabolismo
14.
Nat Commun ; 12(1): 431, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462204

RESUMEN

Neuronal exocytosis facilitates the propagation of information through the nervous system pertaining to bodily function, memory, and emotions. Using amperometry, the sub-millisecond dynamics of exocytosis can be monitored and the modulation of exocytosis due to drug treatment or neurodegenerative diseases can be studied. Traditional single-cell amperometry is a powerful technique for studying the molecular mechanisms of exocytosis, but it is both costly and labor-intensive to accumulate statistically significant data. To surmount these limitations, we have developed a silicon-based electrode array with 1024 on-chip electrodes that measures oxidative signal in 0.1 millisecond intervals. Using the developed device, we are able to capture the modulation of exocytosis due to Parkinson's disease treatment (L-Dopa), with statistical significance, within 30 total minutes of recording. The validation study proves our device's capability to accelerate the study of many pharmaceutical treatments for various neurodegenerative disorders that affect neurotransmitter secretion to a matter of minutes.


Asunto(s)
Técnicas Biosensibles/instrumentación , Exocitosis/fisiología , Vesículas Extracelulares/metabolismo , Neurotransmisores/metabolismo , Línea Celular Tumoral , Humanos , Microelectrodos , Semiconductores
15.
Curr Biol ; 31(1): 103-114.e5, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33125871

RESUMEN

Oxytocinergic neurons in the paraventricular nucleus of the hypothalamus that project to extrahypothalamic brain areas and the lumbar spinal cord play an important role in the control of erectile function and male sexual behavior in mammals. The gastrin-releasing peptide (GRP) system in the lumbosacral spinal cord is an important component of the neural circuits that control penile reflexes in rats, circuits that are commonly referred to as the "spinal ejaculation generator (SEG)." We have examined the functional interaction between the SEG neurons and the hypothalamo-spinal oxytocin system in rats. Here, we show that SEG/GRP neurons express oxytocin receptors and are activated by oxytocin during male sexual behavior. Intrathecal injection of oxytocin receptor antagonist not only attenuates ejaculation but also affects pre-ejaculatory behavior during normal sexual activity. Electron microscopy of potassium-stimulated acute slices of the lumbar cord showed that oxytocin-neurophysin-immunoreactivity was detected in large numbers of neurosecretory dense-cored vesicles, many of which are located close to the plasmalemma of axonal varicosities in which no electron-lucent microvesicles or synaptic membrane thickenings were visible. These results suggested that, in rats, release of oxytocin in the lumbar spinal cord is not limited to conventional synapses but occurs by exocytosis of the dense-cored vesicles from axonal varicosities and acts by diffusion-a localized volume transmission-to reach oxytocin receptors on GRP neurons and facilitate male sexual function.


Asunto(s)
Axones/metabolismo , Eyaculación/fisiología , Hipotálamo/fisiología , Oxitocina/metabolismo , Médula Espinal/metabolismo , Animales , Difusión , Eyaculación/efectos de los fármacos , Exocitosis , Femenino , Péptido Liberador de Gastrina/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Inyecciones Espinales , Vértebras Lumbares , Masculino , Erección Peniana/efectos de los fármacos , Erección Peniana/fisiología , Pene/inervación , Pene/fisiología , Ratas , Ratas Transgénicas , Receptores de Oxitocina/antagonistas & inhibidores , Receptores de Oxitocina/metabolismo , Médula Espinal/citología
16.
Molecules ; 25(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899132

RESUMEN

In the context of the cancer-inflammation relationship and the use of natural products as potential antitumor and anti-inflammatory agents, the alkaloid-enriched fraction of Boehmeriacaudata (BcAEF) aerial parts was evaluated. In vitro antiproliferative studies with human tumor cell lines showed high activity at low concentrations. Further investigation on NCI-H460 cells showed an irreversible effect on cell proliferation, with cell cycle arrest at G2/M phase and programmed cell death induction. Molecular docking studies of four alkaloids identified in BcAEF with colchicine's binding site on ß-tubulin were performed, suggesting (-)-C (15R)-hydroxycryptopleurine as the main inductor of the observed mitotic death. In vivo studies showed that BcAEF was able to reduce Ehrlich tumor volume progression by 30 to 40%. Checking myeloperoxidase activity, BcAEF reduced neutrophils migration towards the tumor. The in vivo anti-inflammatory activity was evaluated by chemically induced edema models. In croton oil-induced ear edema and carrageenan (CG)-induced paw edema models, BcAEF reduced edema around 70 to 80% together with inhibition of activation and/or migration of neutrophils to the inflammatory area. All together the results presented herein show BcAEF as a potent antitumor agent combining antiproliferative and anti-inflammatory properties, which could be further explored in (pre)clinical studies.


Asunto(s)
Alcaloides/química , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Boehmeria/química , Simulación por Computador , Extractos Vegetales/farmacología , Animales , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Clonales , Modelos Animales de Enfermedad , Oído/patología , Edema/patología , Activación Enzimática/efectos de los fármacos , Exocitosis , Humanos , Simulación del Acoplamiento Molecular , Paclitaxel/farmacología , Peroxidasa/metabolismo , Fosfatidilserinas/metabolismo , Estándares de Referencia , Pruebas de Toxicidad Aguda
17.
Neuroreport ; 31(10): 697-701, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32427802

RESUMEN

Besides degradation, lysosomes can also carry molecules for secretion out of the cell, such as ATP and cytokines, during unconventional secretion. Phosphatidylinositols and their metabolizing enzymes play important roles in the sorting and trafficking of lysosomal materials through the trans-Golgi network. The present study reveals a new function of phosphatidylinositol kinase-III alpha in the 'kiss-and-run' fusion of lysosomes at the plasma membrane to release ATP from microglia.


Asunto(s)
Exocitosis , Lisosomas/fisiología , Microglía/fisiología , Fosfatidilinositol 3-Quinasa/fisiología , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Ratones Endogámicos C57BL
18.
Molecules ; 25(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316426

RESUMEN

Ginkgo biloba leaf (GBL) is known as a potential source of bioactive flavonoids, such as quercetin, arresting the neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-zippering. Here, the GBL flavonoids were isolated in two different manners and then examined for their bioactivity, physicochemical stability, and biocompatibility. The majority of flavonoids in the non-hydrolyzed and acidolyzed isolates, termed non-hydrolyzed isolate (NI) and acidolyzed isolate (AI) hereafter, were rich in flavonol glycosides and aglycones, respectively. Glycosidic/aglyconic quercetin and kaempferol were abundant in both NI and AI, whereas a little of apigenin, luteolin, and isorhamnetin were found in AI. NI was more thermostable in all pH ranges than quercetin, kaempferol, and AI. NI and AI both inhibited neurotransmitter release from differentiated neuronal PC-12 cells. NI and AI showed 1/2-1/3 lower EC50/CC50 values than quercetin and kaempferol. The NI and AI exhibited no toxicity assessed by the tests on chorioallantoic membranes of hen's eggs, removing toxicological concerns of irritation potential. Moreover, GBL isolates, particularly AI, showed antioxidant and anti-inflammatory activities in the use below the CC50 levels. Taken together, these results suggest that GBL isolates that are rich in antioxidant flavonoids are effective anti-neuroexocytotic agents with high stability and low toxicity.


Asunto(s)
Exocitosis/efectos de los fármacos , Flavonoides/química , Flavonoides/farmacología , Ginkgo biloba/química , Neuronas/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Supervivencia Celular , Cromatografía Líquida de Alta Presión , Flavonoides/aislamiento & purificación , Concentración de Iones de Hidrógeno , Ratones , Extractos Vegetales/aislamiento & purificación , Relación Estructura-Actividad , Transmisión Sináptica/efectos de los fármacos , Espectrometría de Masas en Tándem
19.
J Neurosci ; 40(22): 4309-4322, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32317389

RESUMEN

Classical studies suggest that growth hormone (GH) secretion is controlled by negative-feedback loops mediated by GH-releasing hormone (GHRH)- or somatostatin-expressing neurons. Catecholamines are known to alter GH secretion and neurons expressing TH are located in several brain areas containing GH-responsive cells. However, whether TH-expressing neurons are required to regulate GH secretion via negative-feedback mechanisms is unknown. In the present study, we showed that between 50% and 90% of TH-expressing neurons in the periventricular, paraventricular, and arcuate hypothalamic nuclei and locus ceruleus of mice exhibited STAT5 phosphorylation (pSTAT5) after an acute GH injection. Ablation of GH receptor (GHR) from TH cells or in the entire brain markedly increased GH pulse secretion and body growth in both male and female mice. In contrast, GHR ablation in cells that express the dopamine transporter (DAT) or dopamine ß-hydroxylase (DBH; marker of noradrenergic/adrenergic cells) did not affect body growth. Nevertheless, less than 50% of TH-expressing neurons in the hypothalamus were found to express DAT. Ablation of GHR in TH cells increased the hypothalamic expression of Ghrh mRNA, although very few GHRH neurons were found to coexpress TH- and GH-induced pSTAT5. In summary, TH neurons that do not express DAT or DBH are required for the autoregulation of GH secretion via a negative-feedback loop. Our findings revealed a critical and previously unidentified group of catecholaminergic interneurons that are apt to sense changes in GH levels and regulate the somatotropic axis in mice.SIGNIFICANCE STATEMENT Textbooks indicate until now that the pulsatile pattern of growth hormone (GH) secretion is primarily controlled by GH-releasing hormone and somatostatin neurons. The regulation of GH secretion relies on the ability of these cells to sense changes in circulating GH levels to adjust pituitary GH secretion within a narrow physiological range. However, our study identifies a specific population of tyrosine hydroxylase-expressing neurons that is critical to autoregulate GH secretion via a negative-feedback loop. The lack of this mechanism in transgenic mice results in aberrant GH secretion and body growth. Since GH plays a key role in cell proliferation, body growth, and metabolism, our findings provide a major advance to understand how the brain regulates the somatotropic axis.


Asunto(s)
Exocitosis , Retroalimentación Fisiológica , Hormona del Crecimiento/metabolismo , Neuronas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Femenino , Hormona Liberadora de Hormona del Crecimiento/genética , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hipotálamo/metabolismo , Locus Coeruleus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Somatotropina/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Tirosina 3-Monooxigenasa/genética
20.
J Exp Bot ; 71(8): 2428-2438, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32173729

RESUMEN

Pollen tubes rapidly elongate, penetrate, and navigate through multiple female tissues to reach ovules for sperm delivery by utilizing a specialized form of polar growth known as tip growth. This process requires a battery of cellular activities differentially occurring at the apical growing region of the plasma membrane (PM), such as the differential cellular signaling involving calcium (Ca2+), phospholipids, and ROP-type Rho GTPases, fluctuation of ions and pH, exocytosis and endocytosis, and cell wall construction and remodeling. There is an emerging understanding of how at least some of these activities are coordinated and/or interconnected. The apical active ROP modulates exocytosis to the cell apex for PM and cell wall expansion differentially occurring at the tip. The differentiation of the cell wall involves at least the preferential distribution of deformable pectin polymers to the apex and non-deformable pectin polymers to the shank of pollen tubes, facilitating the apical cell expansion driven by high internal turgor pressure. Recent studies have generated inroads into how the ROP GTPase-based intracellular signaling is coordinated spatiotemporally with the external wall mechanics to maintain the tubular cell shape and how the apical cell wall mechanics are regulated to allow rapid tip growth while maintaining the cell wall integrity under the turgor pressure. Evidence suggests that exocytosis and endocytosis play crucial but distinct roles in this spatiotemporal coordination. In this review, we summarize recent advances in the regulation and coordination of the differential pectin distribution and the apical domain of active ROP by exocytosis and endocytosis in pollen tubes.


Asunto(s)
Exocitosis , Tubo Polínico , Endocitosis , Pectinas , Plantas , Tubo Polínico/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA