Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Genes (Basel) ; 13(11)2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36360184

RESUMEN

The quantitative real-time PCR (qRT-PCR) is an efficient and sensitive method for determining gene expression levels, but the accuracy of the results substantially depends on the stability of the reference gene (RG). Therefore, choosing an appropriate reference gene is a critical step in normalizing qRT-PCR data. Prunella vulgaris L. is a traditional Chinese medicine herb widely used in China. Its main medicinal part is the fruiting spike which is termed Spica Prunellae. However, thus far, few studies have been conducted on the mechanism of Spica Prunellae development. Meanwhile, no reliable RGs have been reported in P. vulgaris. The expression levels of 14 candidate RGs were analyzed in this study in various organs and at different stages of Spica Prunellae development. Four statistical algorithms (Delta Ct, BestKeeper, NormFinder, and geNorm) were utilized to identify the RGs' stability, and an integrated stability rating was generated via the RefFinder website online. The final ranking results revealed that eIF-2 was the most stable RG, whereas VAB2 was the least suitable as an RG. Furthermore, eIF-2 + Histon3.3 was identified as the best RG combination in different periods and the total samples. Finally, the expressions of the PvTAT and Pv4CL2 genes related to the regulation of rosmarinic acid synthesis in different organs were used to verify the stable and unstable RGs. The stable RGs in P. vulgaris were originally identified and verified in this work. This achievement provides strong support for obtaining a reliable qPCR analysis and lays the foundation for in-depth research on the developmental mechanism of Spica Prunellae.


Asunto(s)
Prunella , Prunella/genética , Factor 2 Eucariótico de Iniciación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Frutas , Expresión Génica/genética
2.
Arq. ciências saúde UNIPAR ; 26(2): 159-174, maio-ago. 2022.
Artículo en Portugués | LILACS | ID: biblio-1372969

RESUMEN

A obesidade é definida pelo excesso de gordura corporal acumulada no tecido adiposo quando o indivíduo atinge valores de IMC igual ou superior a 30 Kg/m2. Constitui um dos principais fatores de risco para várias doenças não transmissíveis (DNTs) como por exemplo, diabetes mellitus tipo 2 (DM2), doenças cardiovasculares, hipertensão arterial, acidente vascular cerebral e até mesmo o câncer. Embora a obesidade esteja diretamente relacionada com o consumo calórico excessivo em relação ao gasto energético diário, sua etiologia pode estar associada aos baixos níveis de atividade física, às alterações neuroendócrinas e aos fatores genéticos. Considerando o componente genético, esta pode ser classificada como sindrômicas e estar associada às alterações cromossômicas estruturais ou numéricas, ou como não sindrômica, quando relacionada, principalmente, com os polimorfismos de nucleotídeos simples (SNPs) em alelos que atuam como herança monogênica, ou ainda com a interação vários genes (poligênica multifatorial). Apesar de existirem muitas etiologias diferentes, normalmente a obesidade é tratada a partir da mesma abordagem, desconsiderando a fisiologia que a desencadeou. Dessa forma, o objetivo do presente trabalho foi abordar a obesidade genética não sindrômica por meio a) da descrição breve de perspectiva histórica sobre seu entendimento; b) da exposição dos principais mecanismos moleculares envolvidos com o controle de peso; c) da compilação dos principais genes e SNPs relacionados; d) da definição dos principais genes; e e) da abordagem das principais perspectivas de intervenção.


Obesity is defined as excess body fat accumulated in the adipose tissue when the individual reaches BMI values equal to or greater than 30 kg/m2. It is one of the main risk factors for several non-communicable diseases (NCDs), such as Type 2 Diabetes mellitus (T2D), cardiovascular diseases, high blood pressure, stroke and even cancer. Although obesity is directly related to excessive calorie intake in relation to daily energy expenditure, its etiology may be associated with low levels of physical activity, neuroendocrine changes, and genetic factors. Considering the genetic component, it can be classified as syndromic and be associated with chromosomal or numerical changes, or as non-syndromic and being related mainly to single nucleotide polymorphisms (SNPs) in alleles that act as monogenic inheritance, or with an interaction of several genes (multifactorial polygenic). Although there are many different etiologies, obesity is usually treated using the same approach, disregarding the physiology that triggered it. Thus, the aim of this study was to address non-syndromic genetic obesity through a) a brief description of a historical perspective on its understanding; b) the exposure of the main molecular mechanisms involved in weight control, c) the compilation of the key genes and related SNPs, d) the definition of the key genes and e) the approach of the main intervention representations.


Asunto(s)
Humanos , Masculino , Femenino , Peso Corporal/genética , Epigenómica , Genes/genética , Obesidad/genética , Índice de Masa Corporal , Expresión Génica/genética , Polimorfismo de Nucleótido Simple/genética , Receptor de Melanocortina Tipo 4/genética , Melanocortinas/genética , Receptores de Leptina/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Hipotálamo/fisiopatología , Obesidad/fisiopatología
3.
PLoS Genet ; 18(2): e1010017, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35108269

RESUMEN

Slash pine (Pinus elliottii Engelm.) is an important timber and resin species in the United States, China, Brazil and other countries. Understanding the genetic basis of these traits will accelerate its breeding progress. We carried out a genome-wide association study (GWAS), transcriptome-wide association study (TWAS) and weighted gene co-expression network analysis (WGCNA) for growth, wood quality, and oleoresin traits using 240 unrelated individuals from a Chinese slash pine breeding population. We developed high quality 53,229 single nucleotide polymorphisms (SNPs). Our analysis reveals three main results: (1) the Chinese breeding population can be divided into three genetic groups with a mean inbreeding coefficient of 0.137; (2) 32 SNPs significantly were associated with growth and oleoresin traits, accounting for the phenotypic variance ranging from 12.3% to 21.8% and from 10.6% to 16.7%, respectively; and (3) six genes encoding PeTLP, PeAP2/ERF, PePUP9, PeSLP, PeHSP, and PeOCT1 proteins were identified and validated by quantitative real time polymerase chain reaction for their association with growth and oleoresin traits. These results could be useful for tree breeding and functional studies in advanced slash pine breeding program.


Asunto(s)
Pinus/crecimiento & desarrollo , Pinus/genética , Extractos Vegetales/genética , Brasil , China , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Estudio de Asociación del Genoma Completo/métodos , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple/genética , Transcriptoma/genética , Madera/genética , Madera/crecimiento & desarrollo
4.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163179

RESUMEN

TCH4 is a xyloglucan endotransglucosylase/hydrolase (XTH) family member. Extensive studies have shown that XTHs are very important in cell wall homeostasis for plant growth and development. Boron (B), as an essential micronutrient for plants, plays an essential role in the cross-linking of cell wall pectin. However, the effect of B on cell wall organization is unclear. This study aimed to explore the mechanism of plant adaption to B stress by investigating the role of TCH4 in cell wall homeostasis. We conducted both plate and hydroponic cultures of wild-type Col-0 and overexpression and gene knockout lines of XTH22/TCH4 to analyze the phenotype, components, and characteristics of the cell wall using immunofluorescence, atomic force microscopy (AFM), and transmission electron microscopy (TEM). B deficiency induces the expression of TCH4. The overexpression lines of TCH4 presented more sensitivity to B deficiency than the wild-type Col-0, while the knockout lines of TCH4 were more resistant to low B stress. Up-regulation of TCH4 influenced the ratio of chelator-soluble pectin to alkali-soluble pectin and decreased the degree of methylesterification of pectin under B-deficient conditions. Moreover, we found that B deficiency disturbed the arrangement of cellulose, enlarged the gap between cellulose microfibrils, and decreased the mechanical strength of the cell wall, leading to the formation of a thickened and deformed triangular region of the cell wall. These symptoms were more profound in the TCH4 overexpression lines. Consistently, compared with Col-0, the O2- and MDA contents in the TCH4 overexpression lines increased under B-deficient conditions. This study identified the B-deficiency-induced TCH4 gene, which regulates cell wall homeostasis to influence plant growth under B-deficient conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Boro/metabolismo , Pared Celular/metabolismo , Glicosiltransferasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Boro/deficiencia , Celulosa/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Glicosiltransferasas/genética , Homeostasis , Hidrolasas/metabolismo , Pectinas/metabolismo , Desarrollo de la Planta , Estrés Fisiológico/fisiología
5.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35163217

RESUMEN

Pathogenesis-related 1 (PR-1) proteins, which are defense proteins in plant-pathogen interactions, play an important role in the resistance and defense of plants against diseases. Blister blight disease is caused by Exobasidium vexans Massee and a major leaf disease of tea plants (Camellia sinensis (L.) O. Kuntze). However, the systematic characterization and analysis of the PR-1 gene family in tea plants is still lacking, and the defense mechanism of this family remains unknown. In this study, 17 CsPR-1 genes were identified from the tea plant genome and classified into five groups based on their signal peptide, isoelectric point, and C-terminus extension. Most of the CsPR-1 proteins contained an N-terminal signal peptide and a conserved PR-1 like domain. CsPR-1 genes comprised multiple cis-acting elements and were closely related to the signal-transduction pathways involving TCA, NPR1, EDS16, BGL2, PR4, and HCHIB. These characteristics imply an important role of the genes in the defense of the tea plant. In addition, the RNA-seq data and real-time PCR analysis demonstrated that the CsPR-1-2, -4, -6, -7, -8, -9, -10, -14, -15, and -17 genes were significantly upregulated under tea blister-blight stress. This study could help to increase understanding of CsPR-1 genes and their defense mechanism in response to tea blister blight.


Asunto(s)
Basidiomycota/patogenicidad , Camellia sinensis/genética , Enfermedades de las Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Camellia sinensis/metabolismo , China , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo/métodos , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Transcriptoma/genética
6.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35163219

RESUMEN

Prostate cancer (PCa) is the most frequent malignancy in older men with a high propensity for bone metastases. Characteristically, PCa causes osteosclerotic lesions as a result of disrupted bone remodeling. Extracellular vesicles (EVs) participate in PCa progression by conditioning the pre-metastatic niche. However, how EVs mediate the cross-talk between PCa cells and osteoprogenitors in the bone microenvironment remains poorly understood. We found that EVs derived from murine PCa cell line RM1-BM increased metabolic activity, vitality, and cell proliferation of osteoblast precursors by >60%, while significantly impairing mineral deposition (-37%). The latter was further confirmed in two complementary in vivo models of ossification. Accordingly, gene and protein set enrichments of osteoprogenitors exposed to EVs displayed significant downregulation of osteogenic markers and upregulation of proinflammatory factors. Additionally, transcriptomic profiling of PCa-EVs revealed the abundance of three microRNAs, miR-26a-5p, miR-27a-3p, and miR-30e-5p involved in the suppression of BMP-2-induced osteogenesis in vivo, suggesting the critical role of these EV-derived miRNAs in PCa-mediated suppression of osteoblast activity. Taken together, our results indicate the importance of EV cargo in cancer-bone cross-talk in vitro and in vivo and suggest that exosomal miRNAs may contribute to the onset of osteosclerotic bone lesions in PCa.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Osteoblastos/fisiología , Neoplasias de la Próstata/genética , Animales , Huesos/metabolismo , Huesos/fisiología , Comunicación Celular , Línea Celular Tumoral , Proliferación Celular , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/genética , Vesículas Extracelulares/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Masculino , Células Madre Mesenquimatosas , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Osteogénesis , Transcriptoma/genética , Microambiente Tumoral
7.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163281

RESUMEN

Calycosin, a bioactive isoflavonoid isolated from root extracts of Astragalus membranaceus, has been reported to inhibit melanogenesis, the mechanism of which remains undefined. In this study, we interrogated the mechanistic basis by which calycosin inhibits melanin production in two model systems, i.e., B16F10 melanoma cells and zebrafish embryos. Calycosin was effective in protecting B16F10 cells from α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity. This anti-melanogenic effect was accompanied by decreased expression levels of microphthalmia-associated transcription factor (MITF), a key protein controlling melanin synthesis, and its target genes tyrosinase and tyrosinase-related protein-2 (TRP-2) in calycosin-treated cells. Mechanistically, we obtained the first evidence that calycosin-mediated MITF downregulation was attributable to its ability to block signaling pathways mediated by cAMP response element-binding protein (CREB) and p38 MAP kinase. The protein kinase A (PKA) inhibitor H-89 and p38 inhibitor SB203580 validated the premise that calycosin inhibits melanin synthesis and tyrosinase activity by regulating the PKA/CREB and p38 MAPK signaling pathways. Moreover, the in vivo anti-melanogenic efficacy of calycosin was manifested by its ability to suppress body pigmentation and tyrosinase activity in zebrafish embryos. Together, these data suggested the translational potential of calycosin to be developed as skin-lightening cosmeceuticals.


Asunto(s)
Isoflavonas/farmacología , Melaninas/metabolismo , Animales , Astragalus propinquus/metabolismo , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Isoflavonas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Fosforilación/efectos de los fármacos , Extractos Vegetales/farmacología , Raíces de Plantas , Transducción de Señal/efectos de los fármacos , Pez Cebra/metabolismo , alfa-MSH/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163289

RESUMEN

Sugar beet crown and root rot caused by Rhizoctonia solani is a major yield constraint. Root rot is highly increased when R. solani and Leuconostoc mesenteroides co-infect roots. We hypothesized that the absence of plant cell-wall-degrading enzymes in L. mesenteroides and their supply by R. solani during close contact, causes increased damage. In planta root inoculation with or without cell-wall-degrading enzymes showed greater rot when L. mesenteroides was combined with cellulase (22 mm rot), polygalacturonase (47 mm), and pectin lyase (57 mm) versus these enzymes (0-26 mm), R. solani (20 mm), and L. mesenteroides (13 mm) individually. Carbohydrate analysis revealed increased simpler carbohydrates (namely glucose + galactose, and fructose) in the infected roots versus mock control, possibly due to the degradation of complex cell wall carbohydrates. Expression of R. solani cellulase, polygalacturonase, and pectin lyase genes during root infection corroborated well with the enzyme data. Global mRNAseq analysis identified candidate genes and highly co-expressed gene modules in all three organisms that might be critical in host plant defense and pathogenesis. Targeting R. solani cell-wall-degrading enzymes in the future could be an effective strategy to mitigate root damage during its interaction with L. mesenteroides.


Asunto(s)
Beta vulgaris/microbiología , Leuconostoc mesenteroides/metabolismo , Rhizoctonia/enzimología , Beta vulgaris/crecimiento & desarrollo , Beta vulgaris/metabolismo , Pared Celular/metabolismo , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Leuconostoc mesenteroides/patogenicidad , Defensa de la Planta contra la Herbivoria/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Rhizoctonia/patogenicidad
9.
Molecules ; 27(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163951

RESUMEN

Phosphorus in the form of phosphate (Pi) is an essential element for metabolic processes, including lipid metabolism. In yeast, the inositol polyphosphate kinase vip1 mediated synthesis of inositol heptakisphosphate (IP7) regulates the phosphate-responsive (PHO) signaling pathway, which plays an important role in response to Pi stress. The role of vip1 in Pi stress and lipid metabolism of Candida albicans has not yet been studied. We found that when vip1Δ/Δ was grown in glucose medium, if Pi was supplemented in the medium or mitochondrial Pi transporter was overexpressed in the strain, the lipid droplet (LD) content was reduced and membrane damage was alleviated. However, further studies showed that neither the addition of Pi nor the overexpression of the Pi transporter affected the energy balance of vip1Δ/Δ. In addition, the LD content of vip1Δ/Δ grown in Pi limitation medium PNMC was lower than that grown in SC, and the metabolic activity of vip1Δ/Δ grown in PNMC was also lower than that grown in SC medium. This suggests that the increase in Pi demand by a high energy metabolic rate is the cause of LD accumulation in vip1Δ/Δ. In addition, in the vip1Δ/Δ strains, the core transcription factor PHO4 in the PHO pathway was transported to the vacuole and degraded, which reduced the pathway activity. However, this does not mean that knocking out vip1 completely blocks the activation of the PHO pathway, because the LD content of vip1Δ/Δ grown in the medium with ß-glycerol phosphate as the Pi source was significantly reduced. In summary, the increased Pi demand and the decreased PHO pathway activity in vip1Δ/Δ ultimately lead to LD accumulation and cell membrane damage.


Asunto(s)
Metabolismo Energético/fisiología , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Candida albicans/metabolismo , Membrana Celular/metabolismo , Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/genética , Fosfatos de Inositol , Gotas Lipídicas/metabolismo , Fosfatos/metabolismo , Fosforilación , Fosfotransferasas (Aceptor del Grupo Fosfato)/fisiología , Transducción de Señal , Factores de Transcripción/metabolismo , Vacuolas/metabolismo
10.
Dev Cell ; 57(2): 246-259.e4, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35026163

RESUMEN

N6-methyladenosine (m6A) RNA modification confers an essential layer of gene regulation in living organisms, including plants; yet, the underlying mechanisms of its deposition on specific target mRNAs involved in key plant developmental processes are so far unknown. Here, we show that a core component of the rice m6A methyltransferase complex, OsFIP37, is recruited by an RNA-binding protein, OsFIP37-associated protein 1 (OsFAP1), to mediate m6A RNA modification on an auxin biosynthesis gene, OsYUCCA3, during microsporogenesis. This stabilizes OsYUCCA3 mRNA and promotes local auxin biosynthesis in anthers during male meiosis, which is essential for meiotic division and subsequent pollen development in rice. Loss of function of OsFAP1 causes dissociation of OsFIP37 with OsYUCCA3 and the resulting abolished m6A deposition on OsYUCCA3. Our findings reveal that OsFAP1-dependent m6A deposition on OsYUCCA3 by OsFIP37 constitutes a hitherto unknown link between RNA modification and hormonal control of male meiosis in plant reproductive development.


Asunto(s)
Adenosina/análogos & derivados , Ácidos Indolacéticos/metabolismo , Meiosis/genética , Adenosina/química , Adenosina/metabolismo , Flores/genética , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Oryza/genética , Oryza/metabolismo , Desarrollo de la Planta/genética , Proteínas de Plantas/metabolismo , Polen/genética , ARN/genética , ARN/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo
11.
Sci Rep ; 12(1): 857, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039591

RESUMEN

Sorghum damping-off, caused by Fusarium solani (Mart.) Sacc., is a serious disease which causes economic loss in sorghum production. In this study, antagonistic activity of lavender essential oil (EO) at 0.5, 0.75, 1.0, 1.25, 1.5, and 1.6% against F. solani was studied in vitro. Their effects on regulation of three SbWRKY transcription factors, the response factor JERF3 and eight defense-related genes, which mediate different signaling pathways, in sorghum were investigated. Effects of application under greenhouse conditions were also evaluated. The results showed that lavender EO possesses potent antifungal activity against F. solani. A complete inhibition in the fungal growth was recorded for lavender EO at 1.6%. Gas chromatography-mass spectrometric analysis revealed that EO antifungal activity is most likely attributed to linalyl anthranilate, α-terpineol, eucalyptol, α-Pinene, and limonene. Observations using transmission electron microscopy revealed many abnormalities in the ultrastructures of the fungal mycelium as a response to treating with lavender EO, indicating that multi-mechanisms contributed to their antagonistic behavior. Results obtained from Real-time PCR investigations demonstrated that the genes studied were overexpressed, to varying extents in response to lavender EO. However, SbWRKY1 was the highest differentially expressed gene followed by JERF3, which suggest they play primary role(s) in synchronously organizing the transcription-regulatory-networks enhancing the plant resistance. Under greenhouse conditions, treating of sorghum grains with lavender EO at 1.5% prior to infection significantly reduced disease severity. Moreover, the growth parameters evaluated, the activities of antioxidant enzymes, and total phenolic and flavonoid contents were all enhanced. In contrast, lipid peroxidation was highly reduced. Results obtained from this study support the possibility of using lavender EO for control of sorghum damping-off. However, field evaluation is highly needed prior to any usage recommendation.


Asunto(s)
Antifúngicos , Fusarium/efectos de los fármacos , Fusarium/patogenicidad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Expresión Génica/efectos de los fármacos , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Lavandula/química , Aceites Volátiles/farmacología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Aceites de Plantas/farmacología , Sorghum/genética , Sorghum/microbiología , Factores de Transcripción/genética , Farmacorresistencia Fúngica , Expresión Génica/genética , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Aceites Volátiles/aislamiento & purificación , Aceites de Plantas/aislamiento & purificación , Factores de Transcripción/metabolismo
12.
Dev Cell ; 57(1): 32-46.e8, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35016005

RESUMEN

We test the hypothesis that glioblastoma harbors quiescent cancer stem cells that evade anti-proliferative therapies. Functional characterization of spontaneous glioblastomas from genetically engineered mice reveals essential quiescent stem-like cells that can be directly isolated from tumors. A derived quiescent cancer-stem-cell-specific gene expression signature is enriched in pre-formed patient GBM xenograft single-cell clusters that lack proliferative gene expression. A refined human 118-gene signature is preserved in quiescent single-cell populations from primary and recurrent human glioblastomas. The F3 cell-surface receptor mRNA, expressed in the conserved signature, identifies quiescent tumor cells by antibody immunohistochemistry. F3-antibody-sorted glioblastoma cells exhibit stem cell gene expression, enhance self-renewal in culture, drive tumor initiation and serial transplantation, and reconstitute tumor heterogeneity. Upon chemotherapy, the spared cancer stem cell pool becomes activated and accelerates transition to proliferation. These results help explain conventional treatment failure and lay a conceptual framework for alternative therapies.


Asunto(s)
Supervivencia Celular/fisiología , Glioblastoma/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Ciclo Celular/genética , División Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica/patología , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/patología , Xenoinjertos , Humanos , Ratones , Invasividad Neoplásica/genética , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/patología , Transcriptoma/genética
13.
J Affect Disord ; 298(Pt A): 472-480, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34732337

RESUMEN

Objectives The current study aimed to identify shared and distinct brain structure abnormalities and their relationships with the expression of circadian genes in patients with bipolar or unipolar depression. Method A total of 93 subjects participated in this study, including 32 patients with bipolar depression (BDP), 26 patients with unipolar depression (UDP) and 35 age- and sex-matched healthy controls. Brain structural magnetic resonance imaging scans were obtained, and optimized voxel-based morphometry was used to explore group differences in regional gray matter volume (GMV). The mRNA expression levels of circadian genes in peripheral blood were measured using reverse transcription quantitative real-time polymerase chain reaction. Results Our results showed that the GMV in brain regions in the thalamus-limbic pathways had significantly increased in the BDP patients compared to controls, while the increased GMV in UDP patients compared to controls was limited to the thalamus. The mRNA expression levels of circadian-related genes decreased significantly in patients with BDP, but increased in patients with UDP, compared to controls. In addition, the GMV in the right thalamus in the patients with UDP was positively associated with mRNA levels of CRY2, while the GMV in the right hippocampus in the patients with BDP was negatively associated with mRNA levels of PER3. Conclusion Our study suggested that patients with BDP or MDD shared GMV abnormalities in the right thalamus. The PER3 and CRY2 genes might be critical to right hippocampal dysfunction in BDP and right thalamic dysfunction in UDP, respectively. The result provided potentially important molecular targets for the treatment of mood disorders.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/genética , Encéfalo , Criptocromos , Expresión Génica/genética , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Proteínas Circadianas Period , Tálamo/diagnóstico por imagen
14.
Gene ; 808: 145994, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34626722

RESUMEN

The involvement of store-operated calcium channels (SOCCs) in tumor initiation and metastatic dissemination has been extensively studied, but how its member ORAI3 influences tumor progression is still elusive. The present study aimed to evaluate the prognostic value of ORAI3 expression and examine the correlation between ORAI3 expression and immune cell infiltration within the tumor microenvironment (TME) in human muscle-invasive bladder cancer (MIBC). We examined the expression profile of ORAI3 in MIBC using data from two databases; analyzed the correlation between ORAI3 expression and patient survival; explored cellular pathways related to ORAI3 expression by Gene Set Enrichment Analysis (GSEA); and predicted potential drugs using Connectivity Map (CMap). ORAI3 was significantly lower expressed in tumor mass compared to normal samples in MIBC, with a higher level of methylation at the promoter region in tumor than in normal tissue, indicating that ORAI3 is suppressed during cancer progression. Survival analysis showed that higher expression of ORAI3 correlated with good prognosis in MIBC. GSEA demonstrated that ORAI3 expression inversely correlated with cell differentiation, development and gene silencing, with differential expression of genes involved in epidermal and keratinocyte differentiation pathways and inflammatory responses. RNA sequencing of an ORAI3-silenced human bladder cancer cell line (T24 cells) corroborated enhancement of pro-neoplastic pathways in absence of ORAI3. Western blottingMoreover, ORAI3 facilitated the recruitment of Th17 cells and natural killer cells, whereas hampered Th2 and macrophage infiltration. Our results revealed 4 molecules with potential to be beneficial as adjuvant drugs in MIBC treatment. We concluded that high ORAI3 expression correlates with increased survival in human MIBC.


Asunto(s)
Canales de Calcio/genética , Perfilación de la Expresión Génica/métodos , Neoplasias de la Vejiga Urinaria/genética , Biomarcadores de Tumor/genética , Canales de Calcio/metabolismo , China , Bases de Datos Genéticas , Progresión de la Enfermedad , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Invasividad Neoplásica/genética , Pronóstico , Análisis de Supervivencia , Transcriptoma/genética , Microambiente Tumoral/inmunología , Vejiga Urinaria/patología
15.
Life Sci ; 290: 120266, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34968467

RESUMEN

AIM: Gastric cancer is a prevalent malignant tumor that seriously affects human health. Berberine (BBR), an alkaloid from Chinese herbal medicines, inhibits the proliferation of various cancers. We evaluated the effects and related mechanisms of BBR on gastric cancer. MAIN METHODS: The MTT assay, flow cytometry, scratch assays, transwell experiments and xenograft nude mice models were used to investigate the antineoplastic effects of BBR. RNA-Seq, qRT-PCR, WB and ELISA were used to investigate the underlying mechanisms of BBR on gastric cancer metastasis. KEY FINDINGS: BBR treatment inhibited the proliferation of MKN-45 and HGC-27 cells, induced their apoptosis, G0/G1 cell arrest, and suppressed the migration as well as invasion of GC cells in vitro. Moreover, BBR inhibited in vivo tumor growth in MKN-45 xenograft mice. RNA-seq showed that interactions between cytokines and their receptors was one of the greatest enrichment modulated pathways and IL-6 was a key target. IL-6 knockdown significantly inhibited the activities of MKN-45 cells. Mechanistically, these findings imply that BBR inhibits GC cell proliferation by modulating the signaling pathways related to IL-6/JAK2/STAT3. SIGNIFICANCE: This study provides a theoretical basis for the use of BBR in gastric cancer prevention.


Asunto(s)
Berberina/farmacología , Neoplasias Gástricas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Berberina/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , China , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Interleucina-6/metabolismo , Janus Quinasa 2/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica/prevención & control , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
16.
PLoS One ; 16(12): e0261215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34914734

RESUMEN

Dehydration Responsive Element Binding (DREB) regulates the expression of numerous stress-responsive genes, and hence plays a pivotal role in abiotic stress responses and tolerance in plants. The study aimed to develop a complete overview of the cis-acting regulatory elements (CAREs) present in S. tuberosum DREB gene promoters. A total of one hundred and four (104) cis-regulatory elements (CREs) were identified from 2.5kbp upstream of the start codon (ATG). The in-silico promoter analysis revealed variable sets of cis-elements and functional diversity with the predominance of light-responsive (30%), development-related (20%), abiotic stress-responsive (14%), and hormone-responsive (12%) elements in StDREBs. Among them, two light-responsive elements (Box-4 and G-box) were predicted in 64 and 61 StDREB genes, respectively. Two development-related motifs (AAGAA-motif and as-1) were abundant in StDREB gene promoters. Most of the DREB genes contained one or more Myeloblastosis (MYB) and Myelocytometosis (MYC) elements associated with abiotic stress responses. Hormone-responsive element i.e. ABRE was found in 59 out of 66 StDREB genes, which implied their role in dehydration and salinity stress. Moreover, six proteins were chosen corresponding to A1-A6 StDREB subgroups for secondary structure analysis and three-dimensional protein modeling followed by model validation through PROCHECK server by Ramachandran Plot. The predicted models demonstrated >90% of the residues in the favorable region, which further ensured their reliability. The present study also anticipated pocket binding sites and disordered regions (DRs) to gain insights into the structural flexibility and functional annotation of StDREB proteins. The protein association network determined the interaction of six selected StDREB proteins with potato proteins encoded by other gene families such as MYB and NAC, suggesting their similar functional roles in biological and molecular pathways. Overall, our results provide fundamental information for future functional analysis to understand the precise molecular mechanisms of the DREB gene family in S. tuberosum.


Asunto(s)
Regiones Promotoras Genéticas/genética , Solanum tuberosum/genética , Factores de Transcripción/genética , Arabidopsis/genética , Deshidratación/genética , Sequías , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Estudio de Asociación del Genoma Completo/métodos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética , Estrés Salino/genética , Homología de Secuencia de Ácido Nucleico , Solanum tuberosum/crecimiento & desarrollo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo
17.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34948193

RESUMEN

Jiaocheng kucha is the first reported tea germplasm resource which contains theacrine founded in Fujian Province. Currently, the anabolic mechanism of theacrine within tea leaves is clear, but there are few studies focused on its flowers. In order to further explore the mechanism of theacrine synthesis and related genes in flowers, current study applied Jiaocheng kucha flowers (JC) as test materials and Fuding Dabaicha flowers (FD) as control materials to make transcriptome sequencing, and determination of purine alkaloid content in three different developmental periods (flower bud stage, whitening stage and full opening stage). The results showed that the flower in all stages of JC contained theacrine. The theacrine in the flower bud stage was significantly higher than in the other stages. The differentially expressed genes (DEGs) at three different developmental stages were screened from the transcriptome data, and were in a total of 5642, 8640 and 8465. These DEGs related to the synthesis of theacrine were primarily annotated to the pathways of purine alkaloids. Among them, the number of DEGs in xanthine synthesis pathway was the largest and upregulated in JC, while it was the smallest in caffeine synthesis pathway and downregulated in JC. Further weighted gene co-expression network (WGCNA) indicated that ADSL (CsTGY03G0002327), ADSL (CsTGY09G0001824) and UAZ (CsTGY06G0002694) may be a hub gene for the regulation of theacrine metabolism in JC. Our results will contribute to the identification of candidate genes related to the synthesis of theacrine in tea flowers, and explore the molecular mechanism of theacrine synthesis in JC at different developmental stages.


Asunto(s)
Camellia sinensis/genética , Flores/genética , Ácido Úrico/análogos & derivados , Alcaloides/metabolismo , Vías Biosintéticas , Cafeína/metabolismo , Camellia sinensis/metabolismo , China , Flores/química , Flores/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes , Té/metabolismo , Transcriptoma/genética , Ácido Úrico/metabolismo , Xantinas/metabolismo
18.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34948197

RESUMEN

Asarum sieboldii Miq. is a leading economic crop and a traditional medicinal herb in China. Leaf-blade and petiole are the only aerial tissues of A. sieboldii during the vegetative growth, playing a vital role in the accumulation and transportation of biomass energy. They also act as critical indicators of drought in agricultural management, especially for crops having underground stems. During drought, variations in the morphology and gene expression of the leaves and petioles are used to control agricultural irrigation and production. Besides, such stress can also alter the differential gene expression in these tissues. However, little is known about the drought-tolerant character of the aerial parts of A. sieboldii. In this study, we examined the physiological, biochemical and transcriptomic responses to the drought stress in the leaf blades and petioles of A. sieboldii. The molecular mechanism, involving in drought stress response, was elucidated by constructing the cDNA libraries and performing transcriptomic sequencing. Under drought stress, a total of 2912 and 2887 unigenes were differentially expressed in the leaf blade and petiole, respectively. The detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in drought tolerance. In response to drought, the leaf blade and petiole displayed a general physiological character, a higher SOD and POD activity, a higher MDA content and lower chlorophyll content. Three unigenes encoding POD were up-regulated, which can improve POD activity. Essential oil in petiole was extracted. The relative contents of methyleugenol and safrole in essential oil were increased from 0.01% to 0.05%, and 3.89% to 16.97%, respectively, while myristicin slightly reduced from 24.87% to 21.52%. Additionally, an IGS unigene, involved in eugenol biobiosynthesis, was found up-regulated under drought stress, which was predicated to be responsible for the accumulation of methyleugenol and safrole. Simple sequence repeats (SSRs) were characterized in of A. sieboldii, and a total of 5466 SSRs were identified. Among them, mono-nucleotides were the most abundant repeat units, accounting for 44.09% followed by tri-, tetra-, penta and hexa-nucleotide repeats. Overall, the present work provides a valuable resource for the population genetics studies of A. sieboldii. Besides, it provides much genomic information for the functional dissection of the drought-resistance in A. sieboldii, which will be useful to understand the bio-regulatory mechanisms linked with drought-tolerance to enhance its yield.


Asunto(s)
Asarum/genética , Asarum/metabolismo , Asarum/fisiología , Derivados de Alilbenceno , China , Productos Agrícolas/genética , Dioxolanos , Sequías , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Repeticiones de Microsatélite/genética , Aceites Volátiles/química , Hojas de la Planta/genética , Plantas Medicinales/genética , Estrés Fisiológico/genética , Transcriptoma/genética
19.
J Oleo Sci ; 70(12): 1805-1814, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34866110

RESUMEN

Sterculia tragacantha (ST) Lindl leaf is commonly used locally in the management of diabetes mellitus (DM) and its complications. This study was aimed at assessing the valuable effects of ST leaf on streptozotocin-diabetic cardiomyopathy (DCM). Streptozotocin was administered intraperitoneally to the experimental animals to induce DM, and hence, placed on different doses of ST for 14 days. Thereafter, on the 15th day of the experiment, the animals were euthanized, and a number of cardiomyopathy indices were investigated. The diabetic rats exhibited a momentous increase in hyperlipidemia, lipid peroxidation as well as a significant (p < 0.05) decline in antioxidant enzyme activities. The serum creatine kinase MB (CK-MB), C-reactive protein (CRP), cardiac troponin I, tumour necrosis factor-alpha (TNF-α) and urotensin II expression revealed a significant (p < 0.05) upsurge in diabetic rats. Also, the expression of GLUT4 and fatty acid-binding protein 3 (FABP3) were significantly (p < 0.05) reduced in diabetic rats. However, at the conclusion of the experimental trial ST significantly (p < 0.05) attenuated hyperlipidemia, oxidative stress biomarkers by augmenting the antioxidant enzyme activities and decrease in lipid peroxidation, ameliorated CK-MB, CRP, cardiac troponin I, TNF-α, and urotensin-II levels, and improved GLUT4 and FABP3 expressions. Similarly, the administration of ST prevented histological alterations in the heart of diabetic animals. Therefore, the obtained results suggest that ST could mitigate DCM in streptozotocin-induced diabetic rats.


Asunto(s)
Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/genética , Diabetes Mellitus Experimental/complicaciones , Proteína 3 de Unión a Ácidos Grasos/genética , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Expresión Génica/efectos de los fármacos , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Sterculia/química , Urotensinas/genética , Urotensinas/metabolismo , Animales , Cardiomiopatías/etiología , Expresión Génica/genética , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Masculino , Estrés Oxidativo , Extractos Vegetales/aislamiento & purificación , Ratas Endogámicas , Estreptozocina , Agua
20.
J Immunother Cancer ; 9(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34824160

RESUMEN

BACKGROUND: A number of different immune pathways are involved in the effective killing of cancer cells, collectively named as the 'Cancer Immunity Cycle'. Anti-PD-1 checkpoint blockade (CPB) therapy is active on one of these pathways and reinvigorates anticancer T cell immunity, leading to long-term responses in a limited fraction of patients with cancer. We have previously shown that neoantigens-based adenovirus vectored vaccine in combination with anti-PD-1 further expands pre-existing anticancer immunity and elicits novel neoantigen-specific T cells thereby increasing efficacy to 50% of tumor clearance in mice. Here we added a third component to the CPB plus vaccine combination, which is able to modify the suppressive tumor microenvironment by reducing the number of tumor-infiltrating regulatory T cells (Tregs), as strategy for improving the therapeutic efficacy and overcoming resistance. METHODS: The antitumor efficacy of anti-PD-1, neoantigen vaccine and Treg modulating agents, either Bempegaldesleukin (BEMPEG: NKTR-214) or an anti-CTLA-4 mAb with Treg-depleting activity, was investigated in murine tumor models. We evaluated tumor growth in treated animals, neoantigen-specific T cells in tumors, tumor-infiltrating lymphocytes (TILs) and intratumoral Tregs. RESULTS: The addition of BEMPEG or anti-CTLA-4 to the combination of vaccine and anti-PD-1 led to complete eradication of large tumors in nearby 100% of treated animals, in association with expansion and activation of cancer neoantigen-specific T cells and reduction of tumor-infiltrating Tregs. CONCLUSION: These data support the notion that the integrated regulation of three steps of the cancer immunity cycle, including expansion of neoantigen-specific T cells, reversal of the exhausted T cell phenotype together with the reduction of intratumoral Tregs may represent a novel rationally designed drug combination approach to achieve higher cure rates.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Expresión Génica/genética , Inmunoterapia/métodos , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T Reguladores/inmunología , Animales , Femenino , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA