RESUMEN
Vascular endothelial growth factor (VEGF) exerts both neuroprotective and proinflammatory effects in the brain, depending on the VEGF (A-E) and VEGF receptor (VEGFR1-3) types involved. Neonatal monosodium glutamate (MSG) treatment triggers an excitotoxic degenerative process associated with several neuropathological conditions, and VEGF messenger RNA (mRNA) expression is increased at postnatal day (PD) 14 in rat hippocampus (Hp) following the treatment. The aim of this work was to establish the changes in immunoreactivity to VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 proteins induced by neonatal MSG treatment (4 g/kg, subcutaneous, at PD1, 3, 5 and 7) in the cerebral motor cortex (CMC) and Hp. Samples collected from PD2 to PD60 from control and MSG-treated male Wistar rats were assessed by western blotting for each protein. Considering that immunoreactivity measured by western blotting is related to the protein expression level, we found that each protein in each cerebral region has a specific expression profile throughout the studied ages, and all profiles were differentially modified by MSG. Specifically, neonatal MSG treatment significantly increased the immunoreactivity to the following: (1) VEGF-A at PD8-PD10 in the CMC and at PD6-PD8 in the Hp; (2) VEGF-B at PD2, PD6 and PD10 in the CMC and at PD8-PD9 in the Hp; and (3) VEGFR-2 at PD6-PD8 in the CMC and at PD21-PD60 in the Hp. Also, MSG significantly reduced the immunoreactivity to the following: (1) VEGF-B at PD8-PD9 and PD45-PD60 in the CMC; and (2) VEGFR-1 at PD4-PD6 and PD14-PD21 in the CMC and at PD4, PD9-PD10 and PD60 in the Hp. Our results indicate that VEGF-mediated signalling is involved in the excitotoxic process triggered by neonatal MSG treatment and should be further characterized.
Asunto(s)
Ácido Glutámico/toxicidad , Hipocampo/efectos de los fármacos , Corteza Motora/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Masculino , Corteza Motora/crecimiento & desarrollo , Corteza Motora/metabolismo , Ratas , Ratas Wistar , Factor A de Crecimiento Endotelial Vascular/genética , Factor B de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genéticaRESUMEN
PURPOSE: We have investigated the epigenetic regulation by dietary fatty acids of Vegfb levels in rats' white adipose tissue and 3T3-L1 cells. METHODS: A group of rats were assigned to three diets, each one with a different composition of saturated, monounsaturated and polyunsaturated fatty acids. Samples of white adipose tissues were taken for the methylation and expression studies. Additionally, 3T3-L1 cells were treated with palmitic, oleic, and linoleic fatty acids. After treatment, cells were harvested and genetic material was extracted for the analysis of Vegfb levels. RESULTS: We report evidence of changes in the methylation levels of the CpG island at the Vegfb promoter and in the Vegfb expression levels in vivo and in vitro by dietary fatty acid, with the main contribution of the linoleic fatty acid. Vegfb promoter methylation levels were closely related to the Vegfb gene expression. CONCLUSION: According to our results, the regulation of Vegfb gene expression by dietary fatty acids may be mediated, at least in part, by epigenetic modifications on Vegfb promoter methylation. Considering the deep association between angiogenesis and tissue growth, we suggest the nutriepigenetic regulation of Vegfb as a key target in the control of the adipose tissue expansion.
Asunto(s)
Adipocitos Blancos/metabolismo , Metilación de ADN , Grasas de la Dieta/administración & dosificación , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Factor B de Crecimiento Endotelial Vascular/metabolismo , Células 3T3-L1 , Animales , Aceite de Coco , Islas de CpG , Grasas de la Dieta/metabolismo , Epigénesis Genética , Grasa Intraabdominal/metabolismo , Ácido Linoleico/administración & dosificación , Ácido Linoleico/metabolismo , Masculino , Ratones , Ácido Oléico/administración & dosificación , Ácido Oléico/metabolismo , Aceite de Oliva/administración & dosificación , Aceite de Oliva/metabolismo , Ácido Palmítico/administración & dosificación , Ácido Palmítico/metabolismo , Aceites de Plantas/administración & dosificación , Aceites de Plantas/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Grasa Subcutánea Abdominal/metabolismo , Aceite de Girasol , Factor B de Crecimiento Endotelial Vascular/genéticaRESUMEN
INTRODUCTION: The main prognostic variables in early breast cancer are tumor size, histological grade, estrogen receptor/progesterone receptor (ER/PgR) status, number of positive nodes and human epidermal growth factor receptor 2 (HER2) status. The present study evaluated the prognostic and/or predictive value of vascular endothelial growth factor (VEGF) family members in high-risk early breast cancer patients treated with adjuvant chemo-hormonotherapy. METHODS: RNA was isolated from 308 formalin-fixed paraffin-embedded primary tumor samples from breast cancer patients enrolled in the HE10/97 trial, evaluating adjuvant dose-dense sequential chemotherapy with epirubicin followed by cyclophosphamide, methotrexate, fluorouracil (CMF) with or without paclitaxel (E-T-CMF versus E-CMF). A fully automated method based on magnetic beads was applied for RNA extraction, followed by one-step quantitative RT-PCR for mRNA analysis of VEGF-A, -B, -C and vascular endothelial growth factor receptor (VEGFR) 1, 2, 3. RESULTS: With a median follow-up of 8 years, 109 patients (35%) developed a relapse and 80 patients (26%) died. In high VEGF-C and VEGFR1 mRNA expressing tumors, ER/PgR-negative tumors (Fisher's exact test, P = 0.001 and P = 0.021, respectively) and HER2-positive tumors (P <0.001 and P = 0.028, respectively) were more frequent than in low VEGF-C and VEGFR1 expressing tumors, respectively. From the VEGF family members evaluated, high VEGFR1 mRNA expression (above the 75th percentile) emerged as a significant negative prognostic factor for overall survival (OS; hazard ratio (HR) = 1.60, 95% confidence interval (CI): 1.01 to 2.55, Wald's P = 0.047) and disease-free survival (DFS; HR = 1.67, 95% CI: 1.13 to 2.48, P = 0.010), when adjusting for treatment group. High VEGF-C mRNA expression was predictive for benefit from adjuvant treatment with paclitaxel (E-T-CMF arm) for OS (test for interaction, Wald's P = 0.038), while in multivariate analysis the interaction of VEGF-C with taxane treatment was significant for both OS (Wald's P = 0.019) and DFS (P = 0.041) and continuous VEGF-B mRNA expression values for OS (P = 0.019). CONCLUSIONS: The present study reports, for the first time, that VEGF-C mRNA overexpression, as assessed by qRT-PCR, has a strong predictive value in high-risk early breast cancer patients undergoing adjuvant paclitaxel-containing treatment. Further studies are warranted to validate the prognostic and/or predictive value of VEGF-B, VEGF-C and VEGFR1 in patients treated with adjuvant therapies and to reveal which members of the VEGF family could possibly be useful markers in identifying patients who will benefit most from anti-VEGF strategies. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12611000506998.