Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Metab ; 66: 101636, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36375792

RESUMEN

OBJECTIVE: Thyroid transcription factor-1 (TTF-1), a homeodomain-containing transcription factor, is predominantly expressed in discrete areas of the hypothalamus, which acts as the central unit for the regulation of whole-body energy homeostasis. Current study designed to identify the roles of TTF-1 on the responsiveness of the hypothalamic circuit activity to circulating leptin and the development of obesity linked to the insensitivity of leptin. METHODS: We generated conditional knock-out mice by crossing TTF-1flox/flox mice with leptin receptor (ObRb)Cre or proopiomelanocortin (POMC)Cre transgenic mice to interrogate the contributions of TTF-1 in leptin signaling and activity. Changes of food intake, body weight and energy expenditure were evaluated in standard or high fat diet-treated transgenic mice by using an indirect calorimetry instrument. Molecular mechanism was elucidated with immunohistochemistry, immunoblotting, quantitative PCR, and promoter assays. RESULTS: The selective deletion of TTF-1 gene expression in cells expressing the ObRb or POMC enhanced the anorexigenic effects of leptin as well as the leptin-induced phosphorylation of STAT3. We further determined that TTF-1 inhibited the transcriptional activity of the ObRb gene. In line with these findings, the selective deletion of the TTF-1 gene in ObRb-positive cells led to protective effects against diet-induced obesity via the amelioration of leptin resistance. CONCLUSIONS: Collectively, these results suggest that hypothalamic TTF-1 participates in the development of obesity as a molecular component involved in the regulation of cellular leptin signaling and activity. Thus, TTF-1 may represent a therapeutic target for the treatment, prevention, and control of obesity.


Asunto(s)
Leptina , Proopiomelanocortina , Factor Nuclear Tiroideo 1 , Animales , Ratones , Hipotálamo/metabolismo , Leptina/genética , Leptina/metabolismo , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , Proopiomelanocortina/metabolismo , Factor Nuclear Tiroideo 1/genética , Factor Nuclear Tiroideo 1/metabolismo
2.
Reprod Biol Endocrinol ; 19(1): 30, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622350

RESUMEN

BACKGROUND: TTF1 is a transcription factor that is expressed in the hypothalamus after birth and plays crucial roles in pubertal development. TTF1 may regulate the expression of the Kiss1 gene, which may drive puberty onset in the hypothalamic arcuate (ARC) and anterior ventral paraventricular (AVPV) nuclei. METHODS: A dual-luciferase reporter assay was used to detect binding between TTF1 and the Kiss1 gene promoter. To investigate the effects of TTF1, we modified TTF1 expression in cell lines and in the ARC or AVPV nucleus of 21-day-old female rats via lentivirus infection. TTF1 and other puberty onset-related genes were detected by qRT-PCR and western blot analyses. RESULTS: The in vitro data indicated that TTF1 knockdown (KD) significantly reduced Kiss1 and GnRH expression. Overexpression (OE) of TTF1 promoted Kiss1 expression. In vivo, the expression of Kiss1 and GnRH decreased significantly in the rats with hypothalamic ARC- or AVPV-specific TTF1 KD. The TTF1-KD rats showed vaginal opening delay. H&E staining revealed that the corpus luteum was obviously reduced at the early puberty and adult stages in the rats with ARC- or AVPV-specific TTF1 KD. CONCLUSION: TTF1 bound to the promoter of the Kiss1 gene and enhanced its expression. For 21-day-old female rats, decreased TTF1 in the hypothalamic ARC or AVPV nucleus resulted in delayed vaginal opening and ovarian abnormalities. These observations suggested that TTF1 regulates puberty onset by promoting the expression of Kiss1 and plays an important role in gonad development.


Asunto(s)
Hipotálamo/metabolismo , Maduración Sexual/genética , Factor Nuclear Tiroideo 1/genética , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Células Cultivadas , Regulación hacia Abajo , Femenino , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Células HEK293 , Humanos , Hipotálamo Anterior/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Ratas , Ratas Sprague-Dawley , Factor Nuclear Tiroideo 1/metabolismo , Factores de Tiempo
3.
Nat Commun ; 11(1): 4360, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32868762

RESUMEN

The hypothalamus is a central regulator of many innate behaviors essential for survival, but the molecular mechanisms controlling hypothalamic patterning and cell fate specification are poorly understood. To identify genes that control hypothalamic development, we have used single-cell RNA sequencing (scRNA-Seq) to profile mouse hypothalamic gene expression across 12 developmental time points between embryonic day 10 and postnatal day 45. This identified genes that delineated clear developmental trajectories for all major hypothalamic cell types, and readily distinguished major regional subdivisions of the developing hypothalamus. By using our developmental dataset, we were able to rapidly annotate previously unidentified clusters from existing scRNA-Seq datasets collected during development and to identify the developmental origins of major neuronal populations of the ventromedial hypothalamus. We further show that our approach can rapidly and comprehensively characterize mutants that have altered hypothalamic patterning, identifying Nkx2.1 as a negative regulator of prethalamic identity. These data serve as a resource for further studies of hypothalamic development, physiology, and dysfunction.


Asunto(s)
Diferenciación Celular , Hipotálamo , Neuronas/metabolismo , Factor Nuclear Tiroideo 1/metabolismo , Animales , Secuencia de Bases , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Hipotálamo/citología , Hipotálamo/embriología , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Ratones , Mutación , Análisis de la Célula Individual , Factor Nuclear Tiroideo 1/genética
4.
J Neurosci ; 39(21): 4023-4035, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30886014

RESUMEN

Food intake is tightly regulated by a group of neurons present in the arcuate nucleus of the hypothalamus, which release Pomc-encoded melanocortins, the absence of which induces marked hyperphagia and early-onset obesity. Although the relevance of hypothalamic POMC neurons in the regulation of body weight and energy balance is well appreciated, little is known about the transcription factors that establish the melanocortin neuron identity during brain development and its phenotypic maintenance in postnatal life. Here, we report that the transcription factor NKX2.1 is present in mouse hypothalamic POMC neurons from early development to adulthood. Electromobility shift assays showed that NKX2.1 binds in vitro to NKX binding motifs present in the neuronal Pomc enhancers nPE1 and nPE2 and chromatin immunoprecipitation assays detected in vivo binding of NKX2.1 to nPE1 and nPE2 in mouse hypothalamic extracts. Transgenic and mutant studies performed in mouse embryos of either sex and adult males showed that the NKX motifs present in nPE1 and nPE2 are essential for their transcriptional enhancer activity. The conditional early inactivation of Nkx2.1 in the ventral hypothalamus prevented the onset of Pomc expression. Selective Nkx2.1 ablation from POMC neurons decreased Pomc expression in adult males and mildly increased their body weight and adiposity. Our results demonstrate that NKX2.1 is necessary to activate Pomc expression by binding to conserved canonical NKX motifs present in nPE1 and nPE2. Therefore, NKX2.1 plays a critical role in the early establishment of hypothalamic melanocortin neuron identity and participates in the maintenance of Pomc expression levels during adulthood.SIGNIFICANCE STATEMENT Food intake and body weight regulation depend on hypothalamic neurons that release satiety-inducing neuropeptides, known as melanocortins. Central melanocortins are encoded byPomc, and Pomc mutations may lead to hyperphagia and severe obesity. Although the importance of central melanocortins is well appreciated, the genetic program that establishes and maintains fully functional POMC neurons remains to be explored. Here, we combined molecular, genetic, developmental, and functional studies that led to the discovery of NKX2.1, a transcription factor that participates in the early morphogenesis of the developing hypothalamus, as a key player in establishing the early identity of melanocortin neurons by activating Pomc expression. Thus, Nkx2.1 adds to the growing list of genes that participate in body weight regulation and adiposity.


Asunto(s)
Melanocortinas/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Factor Nuclear Tiroideo 1/metabolismo , Animales , Peso Corporal/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipotálamo/embriología , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
5.
Biochem Biophys Res Commun ; 496(1): 147-152, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29305861

RESUMEN

Here, we report thyroid transcription factor 1 (TTF-1) as an important transcription factor for the expression of heme oxygenase-1 (HO-1). HO-1 is a well-known cytoprotective enzyme against inflammation. We observed that HO-1 co-expressed with TTF-1 in mouse hypothalamic cells. Results from luciferase and chromatin immunoprecipitation assays revealed that TTF-1 directly activated HO-1 transcription by binding to binding domains in the 5'-flanking region of the HO-1 gene. A proinflammatory cytokine, tumor necrosis factor-alpha (TNF-α), induced nuclear translocation of TTF-1 and increased binding affinity of TTF-1 to its binding sites on the HO-1 gene. HO-1 mRNA increased with TTF-1 overexpression but decreased with RNA interference of TTF-1 expression in rat astroglial C6 cells. Together with results showing involvement of TTF-1 in the TNF-α-induced increase in interleukin 1 beta and monocyte chemotactic protein 1 production, this study suggests that TTF-1 plays an important role in the mouse hypothalamus TNF-α-induced inflammatory response for regulating HO-1 gene expression.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hemo-Oxigenasa 1/metabolismo , Hipotálamo/metabolismo , Proteínas de la Membrana/metabolismo , Factor Nuclear Tiroideo 1/metabolismo , Activación Transcripcional/fisiología , Animales , Línea Celular , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas
6.
J Comp Neurol ; 526(3): 397-411, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28921616

RESUMEN

In mammals, thalamic axons are guided internally toward their neocortical target by corridor (Co) neurons that act as axonal guideposts. The existence of Co-like neurons in non-mammalian species, in which thalamic axons do not grow internally, raised the possibility that Co cells might have an ancestral role. Here, we investigated the contribution of corridor (Co) cells to mature brain circuits using a combination of genetic fate-mapping and assays in mice. We unexpectedly found that Co neurons contribute to striatal-like projection neurons in the central extended amygdala. In particular, Co-like neurons participate in specific nuclei of the bed nucleus of the stria terminalis, which plays essential roles in anxiety circuits. Our study shows that Co neurons possess an evolutionary conserved role in anxiety circuits independently from an acquired guidepost function. It furthermore highlights that neurons can have multiple sequential functions during brain wiring and supports a general role of tangential migration in the building of subpallial circuits.


Asunto(s)
Vías Aferentes/fisiología , Orientación del Axón/genética , Movimiento Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Tegmento Pontino , Tálamo , Animales , Animales Recién Nacidos , Toxina del Cólera/metabolismo , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Embrión de Mamíferos , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Tegmento Pontino/citología , Tegmento Pontino/embriología , Tegmento Pontino/crecimiento & desarrollo , Embarazo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Tálamo/citología , Tálamo/embriología , Tálamo/crecimiento & desarrollo , Factor Nuclear Tiroideo 1/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Environ Toxicol ; 33(2): 209-219, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29139221

RESUMEN

Perchlorate is a widespread endocrine disruptor that was previously correlated with increased serum TSH levels and decreased thyroid hormones production both in animals and humans. Even so, the regulation of gene/protein expression in the hypothalamus, pituitary and thyroid by chronic perchlorate exposure was not completely elucidated. Therefore, this study aimed to investigate the underlying mechanisms involved in the disruption of hypothalamus-pituitary-thyroid axis by chronic perchlorate exposure. Male Wistar rats were treated or not with NaClO4 in the drinking water (35 mg/Kg/day) for 60 days. Thereafter, hormone/cytokines serum levels were measured through multiplex assays; genes/proteins expression were investigated by qPCR/Western Blotting and thyroid morphology was evaluated through histological analysis. Serum TSH levels were increased and serum T4 /T3 levels were decreased in perchlorate-treated animals. This treatment also altered the thyrotropin-releasing hormone mRNA/protein content in the hypothalamus. Additionally, the expression of both subunits of TSH were increased in the pituitary of perchlorate-treated rats, which also presented significant alterations in the thyroid morphology/gene expression. Furthermore, perchlorate exposure reduced liver Dio1 mRNA expression and increased the content of pro-inflammatory cytokines in the thyroid and the serum. In conclusion, our study adds novel findings about the perchlorate-induced disruption of the hypothalamus-pituitary-thyroid axis gene/protein expression in male rats. The data presented herein also suggest that perchlorate induces thyroid and systemic inflammation through the increased production of cytokines. Taken together, our results suggest that perchlorate contamination should be monitored, especially in the individuals most susceptible to the deleterious effects of reduced levels of thyroid hormones.


Asunto(s)
Disruptores Endocrinos/toxicidad , Hipotálamo/efectos de los fármacos , Percloratos/toxicidad , Hipófisis/efectos de los fármacos , Compuestos de Sodio/toxicidad , Glándula Tiroides/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Factor de Transcripción PAX8/metabolismo , Hipófisis/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Hormonas Tiroideas/sangre , Factor Nuclear Tiroideo 1/metabolismo , Hormona Liberadora de Tirotropina/genética , Hormona Liberadora de Tirotropina/metabolismo , Tiroxina/sangre , Triyodotironina/sangre
8.
Mol Endocrinol ; 30(5): 494-503, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27003443

RESUMEN

Brain-derived neurotrophic factor (BDNF) expressed in the paraventricular hypothalamus (PVH) has been shown to play a key role in regulating energy intake and energy expenditure. BDNF is also expressed in other hypothalamic nuclei; however, the role in the control of energy balance for BDNF produced in these structures remains largely unknown. We found that deleting the Bdnf gene in the ventromedial hypothalamus (VMH) during embryogenesis using the Sf1-Cre transgene had no effect on body weight in mice. In contrast, deleting the Bdnf gene in the adult VMH using Cre-expressing virus led to significant hyperphagia and obesity. These observations indicate that the lack of a hyperphagia phenotype in the Sf1-Cre/Bdnf mutant mice is likely due to developmental compensation. To investigate the role of BDNF expressed in other hypothalamic areas, we employed the hypothalamus-specific Nkx2.1-Cre transgene to delete the Bdnf gene. We found that the Nkx2.1-Cre transgene could abolish BDNF expression in many hypothalamic nuclei, but not in the PVH, and that the resulting mutant mice developed modest obesity due to reduced energy expenditure. Thus, BDNF produced in the VMH plays a role in regulating energy intake. Furthermore, BDNF expressed in hypothalamic areas other than PVH and VMH is also involved in the control of energy expenditure.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Metabolismo Energético/fisiología , Hipotálamo/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Peso Corporal/fisiología , Ingestión de Energía/fisiología , Hiperfagia/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Factores de Empalme de ARN/metabolismo , Factor Nuclear Tiroideo 1/metabolismo , Transgenes/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA