Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.972
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Iran J Kidney Dis ; 18(2): 87-98, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38660700

RESUMEN

INTRODUCTION: One of the most significant clinical features of chronic  kidney disease is renal interstitial fibrosis (RIF). This study aimed  to investigate the role and mechanism of Shenqi Pill (SQP) on RIF. METHODS: RIF model was established by conducting unilateral  ureteral obstruction (UUO) surgery on rat or stimulating human  kidney-2 (HK-2) cell with transforming growth factor ß1 (TGFß1).  After modeling, the rats in the SQP low dose group (SQP-L), SQP  middle dose group (SQP-M) and SQP high dose group (SQP-H)  were treated with SQP at 1.5, 3 or 6 g/kg/d, and the cells in the  TGFß1+SQP-L/M/H were treated with 2.5%, 5%, 10% SQP-containing  serum. In in vivo assays, serum creatinine (SCr) and blood urea  nitrogen (BUN) content were measured, kidney histopathology  was evaluated., and α-smooth muscle actin (α-SMA) expression  was detected by immunohistochemistry. Interleukin-1ß (IL-1ß),  interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) content,  inhibitor of kappa B alpha (IKBα) and P65 phosphorylation were  assessed. Meanwhile, cell viability, inflammatory cytokines content,  α-SMA expression, IKBα and P65 phosphorylation were detected  in vitro experiment.  Results. SQP exhibited reno-protective effect by decreasing SCr  and BUN content, improving renal interstitial damage, blunting  fibronectin (FN) and α-SMA expression in RIF rats. Similarly, after  the treatment with SQP-containing serum, viability and α-SMA  expression were remarkably decreased in TGFß1-stimulated HK-2  cell. Furthermore, SQP markedly down-regulated IL-1ß, IL-6, and  TNF-α content, IKBα and RelA (P65) phosphorylation both in vivo and in vitro.  Conclusion. SQP has a reno-protective effect against RIF in vivo and in vitro, and the effect is partly linked to nuclear factor-kappa  B (NF-κB) pathway related inflammatory response, which indicates  that SQP may be a candidate drug for RIF. DOI: 10.52547/ijkd.7546.


Asunto(s)
Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Fibrosis , Riñón , FN-kappa B , Animales , Humanos , Ratas , Actinas/metabolismo , Nitrógeno de la Urea Sanguínea , Línea Celular , Creatinina/sangre , Citocinas/metabolismo , Medicamentos Herbarios Chinos/farmacología , Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Fibrosis/patología , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/tratamiento farmacológico , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/patología , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico
2.
Rev Assoc Med Bras (1992) ; 70(3): e20230683, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655992

RESUMEN

OBJECTIVE: In this study, we aimed to determine the phenolic compounds, the antibacterial activity of extract from Laurus nobilis leaves, and its possible effect on transforming growth factor-ß1 expression level in peripheral blood mononuclear cells. METHODS: The phenolic components of Laurus nobilis were identified by the high-performance liquid chromatography method. The antibacterial activity of this extract was determined by disk diffusion and broth microdilution methods. The transforming growth factor-ß1 expression was analyzed using the RT-qPCR method. RESULTS: Epicatechin was found in the highest amount and o-coumaric acid in the lowest amount. The half-maximal inhibitory concentration (IC50) was determined to be 55.17 µg/mL. The zones of inhibition and minimum inhibitory concentration for Staphylococcus aureus, Enterococcus faecalis, and Klebsiella pneumoniae were 15, 14, and 8 mm and 125, 250, and 1000 µg/mL, respectively. The change in transforming growth factor-ß1 expression levels was found to be statistically significant compared with the control groups (p<0.0001). CONCLUSION: Laurus nobilis extract was found to be effective against bacteria and altered the expression level of transforming growth factor-ß1 in peripheral blood mononuclear cells.


Asunto(s)
Antibacterianos , Enterococcus faecalis , Laurus , Leucocitos Mononucleares , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Staphylococcus aureus , Factor de Crecimiento Transformador beta1 , Humanos , Antibacterianos/farmacología , Cromatografía Líquida de Alta Presión , Enterococcus faecalis/efectos de los fármacos , Concentración 50 Inhibidora , Klebsiella pneumoniae/efectos de los fármacos , Laurus/química , Leucocitos Mononucleares/efectos de los fármacos , Fenoles/farmacología , Fenoles/análisis , Extractos Vegetales/farmacología , Hojas de la Planta/química , Staphylococcus aureus/efectos de los fármacos , Factor de Crecimiento Transformador beta1/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo
3.
Medicine (Baltimore) ; 103(15): e37473, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608120

RESUMEN

Chronic renal failure (CRF) causes a reduction in glomerular filtration rate and damage to renal parenchyma. Fushengong decoction (FSGD) showed improvement in renal function in CRF rats. This study aims to analyze the differentially expressed proteins in CRF patients treated with Western medicine alone or in combination with FSGD. Sixty patients with CRF recruited from Yongchuan Traditional Chinese Medicine Hospital affiliated to Chongqing Medical University were randomly assigned into control (treated with Western medicine alone) and observation groups (received additional FSGD treatment thrice daily for 8 weeks). The clinical efficacy and changes in serum Bun, serum creatinine, Cystatin C, and transforming growth factor beta 1 (TGF-ß1) before and after treatment were observed. We employed isotope relative labeling absolute quantification labeling and liquid chromatography-mass spectrometry to identify differentially expressed proteins and carried out bioinformatics Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Patients in the observation group showed greater clinical improvement and lower levels of serum Bun, serum creatinine, Cyc-c, and TGF-ß1 than the control group. We identified 32 differentially up-regulated and 52 down-regulated proteins in the observation group. These proteins are involved in the blood coagulation system, protein serine/threonine kinase activity, and TGF-ß, which are closely related to the pathogenesis of CRF. Protein-protein-interaction network analysis indicated that candidate proteins fibronectin 1, fibrinogen alpha chain, vitronectin, and Serpin Family C Member 1 were in the key nodes. This study provided an experimental basis suggesting that FSGD combined with Western medicine could significantly improve renal function and renal fibrosis of CRF patients, which may be through the regulation of fibronectin 1, fibrinogen alpha chain, vitronectin, Serpin Family C Member 1, TGF-ß, and the complement coagulation pathway (see Graphical abstract S1, Supplemental Digital Content, http://links.lww.com/MD/L947).


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Serpinas , Animales , Humanos , Ratas , Creatinina , Proteínas de la Matriz Extracelular , Fibrinógeno , Fibronectinas , Fallo Renal Crónico/tratamiento farmacológico , Insuficiencia Renal Crónica/tratamiento farmacológico , Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta1 , Vitronectina
4.
Int Immunopharmacol ; 132: 111981, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38565039

RESUMEN

Cordycepin (CRD) is an active component derived from Cordyceps militaris, which possesses multiple biological activities and uses in liver disease. However, whether CRD improves liver fibrosis by regulating hepatic stellate cell (HSC) activation has remained unknown. The study aims further to clarify the activities of CRD on liver fibrosis and elucidate the possible mechanism. Our results demonstrated that CRD significantly relieved hepatocyte injury and inhibited HSC activation, alleviating hepatic fibrogenesis in the Diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate (DDC)-induced mice model. In vitro, CRD exhibited dose-dependent repress effects on HSC proliferation, migration, and pro-fibrotic function in TGF-ß1-activated LX-2 and JS-1 cells. The functional enrichment analysis of RNA-seq data indicated that the pathway through which CRD alleviates HSC activation involves cellular senescence and cell cycle-related pathways. Furthermore, it was observed that CRD accumulated the number of senescence-associated a-galactosidase positive cells and the levels of senescencemarker p21, and provoked S phasearrestof activated HSC. Remarkably, CRD treatment abolished TGF-ß-induced yes-associated protein (YAP) nuclear translocation that acts upstream of glutaminolysis in activated HSC. On the whole, CRD significantly inhibited glutaminolysis of activated-HSC and induced cell senescence through the YAP signaling pathway, consequently alleviating liver fibrosis, which may be a valuable supplement for treating liver fibrosis.


Asunto(s)
Senescencia Celular , Desoxiadenosinas , Células Estrelladas Hepáticas , Cirrosis Hepática , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Animales , Senescencia Celular/efectos de los fármacos , Desoxiadenosinas/farmacología , Desoxiadenosinas/uso terapéutico , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Ratones , Masculino , Humanos , Ratones Endogámicos C57BL , Proliferación Celular/efectos de los fármacos , Línea Celular , Proteínas Señalizadoras YAP/metabolismo , Modelos Animales de Enfermedad , Factor de Crecimiento Transformador beta1/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo
5.
Phytomedicine ; 128: 155477, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489890

RESUMEN

BACKGROUND: The alleviating effect of paeoniflorin (Pae) on liver fibrosis has been established; however, the molecular mechanism and specific target(s) underlying this effect remain elusive. PURPOSE: This study was to investigate the molecular mechanism underlying the regulatory effect of Pae on hepatic stellate cells (HSCs) activation in liver fibrosis, with a specific focus on the role of Pae in modulating histone methylation modifications. METHODS: The therapeutic effect of Pae was evaluated by establishing in vivo and in vitro models of carbon tetrachloride (CCl4)-induced mice and transforming growth factor ß1 (TGF-ß1)-induced LX-2 cells, respectively. Molecular docking, surface plasmon resonance (SPR), chromatin immunoprecipitation-quantitative real time PCR (ChIP-qPCR) and other molecular biological methods were used to clarify the molecular mechanism of Pae regulating HSCs activation. RESULTS: Our study found that Pae inhibited HSCs activation and histone trimethylation modification in liver of CCl4-induced mice and LX-2 cells. We demonstrated that the inhibitory effect of Pae on the activation of HSCs was dependent on peroxisome proliferator-activated receptor γ (PPARγ) expression and enhancer of zeste homolog 2 (EZH2). Mechanistically, Pae directly binded to EZH2 to effectively suppress its enzymatic activity. This attenuation leaded to the suppression of histone H3K27 trimethylation in the PPARγ promoter region, which induced upregulation of PPARγ expression. CONCLUSION: This investigative not only sheds new light on the precise targets that underlie the remission of hepatic fibrogenesis induced by Pae but also emphasizes the critical significance of EZH2-mediated H3K27 trimethylation in driving the pathogenesis of liver fibrosis.


Asunto(s)
Tetracloruro de Carbono , Proteína Potenciadora del Homólogo Zeste 2 , Glucósidos , Células Estrelladas Hepáticas , Histonas , Cirrosis Hepática , Monoterpenos , PPAR gamma , Animales , Glucósidos/farmacología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , PPAR gamma/metabolismo , Monoterpenos/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Histonas/metabolismo , Ratones , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/inducido químicamente , Masculino , Humanos , Ratones Endogámicos C57BL , Metilación , Factor de Crecimiento Transformador beta1/metabolismo , Línea Celular , Simulación del Acoplamiento Molecular
6.
Phytomedicine ; 128: 155318, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493719

RESUMEN

BACKGROUND: Pulmonary fibrosis (PF) is an escalating global health issue, characterized by rising rates of morbidity and mortality annually. Consequently, further investigation of potential damage mechanisms and potential preventive strategies for PF are warranted. Specnuezhenide (SPN), a prominent secoiridoid compound derived from Ligustrum lucidum Ait, exhibits anti-inflammatory and anti-oxidative capacities, indicating the potential therapeutic actions on PF. However, the underlying mechanisms of SPN on PF remain unclear. PURPOSE: This work was aimed at investigating the protective actions of SPN on PF and the potential mechanism. METHODS: In vivo, mice were administrated with bleomycin (BLM) to establish PF model. PF mice were treated with SPN (45/90 mg/kg) by gavage. In vitro, we employed TGF-ß1 (10 ng/mL)-induced MLE-12 and PLFs cells, which then were treated with SPN (5, 10, 20 µM). DARTS assay, biofilm interference experiment and molecular docking were performed to investigate the molecular target of SPN. RESULTS: In vivo, we found SPN treatment improved survival rate, alleviated pathological changes through reducing BLM-induced extracellular matrix (ECM) deposition, as well as BLM-induced epithelial-mesenchymal transition (EMT). In vitro, SPN inhibited EMT and lung fibroblast transdifferentiation. Mechanistically, SPN activated the AMPK protein to decrease the abnormally high level of PD-L1. Furthermore, the compound C, known as an AMPK inhibitor, exhibited a significant hindrance to the inhibition of SPN on TGF-ß1-caused fibroblast transdifferentiation and proliferation. This outcome could be attributed to the fact that compound C could eliminate the inhibitory effects of SPN on PD-L1 expression. Interestingly, DARTS assay, biofilm interference experiment and molecular docking results all indicated that SPN could bind to AMPK, which suggested that SPN might be a potential agonist targeting AMPK protein. CONCLUSION: Altogether, the results in our work illustrated that SPN promoted AMPK-dependent reduction of PD-L1 protein, contributing to the inhibition of fibrosis progression. Thus, SPN may represent a potential AMPK agonist for PF treatment.


Asunto(s)
Antígeno B7-H1 , Bleomicina , Simulación del Acoplamiento Molecular , Fibrosis Pulmonar , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Ratones , Antígeno B7-H1/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Línea Celular , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/patología , Factor de Crecimiento Transformador beta1/metabolismo
7.
Exp Cell Res ; 437(1): 113992, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492634

RESUMEN

BACKGROUND: Hepatic fibrosis, a common pathological process that occurs in end-stage liver diseases, is a serious public health problem and lacks effective therapy. Notoginsenoside R1 (NR1) is a small molecule derived from the traditional Chinese medicine Sanqi, exhibiting great potential in treating diverse metabolie disorders. Here we aimed to enquired the role of NR1 in liver fibrosis and its underlying mechanism in hepatoprotective effects. METHODS: We investigated the anti-fibrosis effect of NR1 using CCl4-induced mouse mode of liver fibrosis as well as TGF-ß1-activated JS-1, LX-2 cells and primary hepatic stellate cell. Cell samples treated by NR1 were collected for transcriptomic profiling analysis. PPAR-γ mediated TGF-ß1/Smads signaling was examined using PPAR-γ selective inhibitors and agonists intervention, immunofluorescence staining and western blot analysis. Additionally, we designed and studied the binding of NR1 to PPAR-γ using molecular docking. RESULTS: NR1 obviously attenuated liver histological damage, reduced serum ALT, AST levels, and decreased liver fibrogenesis markers in mouse mode. Mechanistically, NR1 elevated PPAR-γ and decreased TGF-ß1, p-Smad2/3 expression. The TGF-ß1/Smads signaling pathway and fibrotic phenotype were altered in JS-1 cells after using PPAR-γ selective inhibitors and agonists respectively, confirming PPAR-γ played a pivotal protection role inNR1 treating liver fibrosis. Further molecular docking indicated NR1 had a strong binding tendency to PPAR-γ with minimum free energy. CONCLUSIONS: NR1 attenuates hepatic stellate cell activation and hepatic fibrosis by elevating PPAR-γ to inhibit TGF-ß1/Smads signalling. NR1 may be a potential candidate compound for reliving liver fibrosis.


Asunto(s)
Ginsenósidos , Células Estrelladas Hepáticas , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Fibrosis , Células Estrelladas Hepáticas/metabolismo , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Simulación del Acoplamiento Molecular , PPAR gamma/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
8.
Eur J Med Res ; 29(1): 183, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500195

RESUMEN

BACKGROUND: Renal fibrosis (RF) produced adverse effect on kidney function. Recently, intestinal dysbiosis is a key regulator that promotes the formation of renal fibrosis. This study will focus on exploring the protective mechanism of Kangxianling Formula (KXL) on renal fibrosis from the perspective of intestinal flora. METHODS: Unilateral Ureteral Obstruction (UUO) was used to construct rats' model with RF, and receive KXL formula intervention for 1 week. The renal function indicators were measured. Hematoxylin-eosin (HE), Masson and Sirus red staining were employed to detect the pathological changes of renal tissue in each group. The expression of α-SMA, Col-III, TGF-ß, FN, ZO-1, and Occuludin was detected by immunofluorescence and immunohistochemistry. Rat feces samples were collected and analyzed for species' diversity using high-throughput sequencing 16S rRNA. RESULTS: Rats in UUO groups displayed poor renal function as well as severe RF. The pro-fibrotic protein expression in renal tissues including α-SMA, Col-III, TGF-ß and FN was increased in UUO rats, while ZO-1 and Occuludin -1 expression was downregulated in colon tissues. The above changes were attenuated by KXL treatment. 16S rRNA sequencing results revealed that compared with the sham group, the increased abundance of pathogenic bacteria including Acinetobacter, Enterobacter and Proteobacteria and the decreased abundance of beneficial bacteria including Actinobacteriota, Bifidobacteriales, Prevotellaceae, and Lactobacillus were found in UUO group. After the administration of KXL, the growth of potential pathogenic bacteria was reduced and the abundance of beneficial bacteria was enhanced. CONCLUSION: KXL displays a therapeutical potential in protecting renal function and inhibiting RF, and its mechanism of action may be associated with regulating intestinal microbiota.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Enfermedades Renales , Obstrucción Ureteral , Ratas , Animales , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Ratas Sprague-Dawley , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Riñón/patología , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Fibrosis , Factor de Crecimiento Transformador beta1
9.
Zhen Ci Yan Jiu ; 49(3): 274-282, 2024 Mar 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38500324

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) on the changes of behavior and hippocampal inflammatory factors in rats with chronic fatigue syndrome (CFS), so as to explore its possible mechanisms in the treatment of CFS. METHODS: Twenty-seven SD rats were randomly divided into control, model and electroacupuncture (EA) groups (n=9 rats in each group). The CFS model was established by multi-factor compound stress stimulation method. Rats of the EA group received EA (10 Hz) at "Shenting" (GV24) penetrating "Baihui" (GV20), "Dazhui" (GV14) for 15 min, twice a day for 14 days. The general conditions, Morris water maze test, open field test, the exhausted running platform were conducted for determining the rats' locomotor and learning-memory activities. H.E. staining was used to observe the morphological structure of neurons in hippocampal CA1 region. The contents of interleukin (IL)-10, IL-17 and transforming growth factor (TGF) ß1 in hippocampus and serum of rats were detected by ELISA, and the positive expressions of IL-10, IL-17 and TGF-ß1 in hippocampal CA1 region were detected by immunofluorescence staining. RESULTS: Compared with the control group, the score of general condition was increased (P<0.05), the escape latency was prolonged (P<0.05), the number of crossing the original platform was decreased (P<0.05), the numbers of crossing the grid and entering the central area were increased (P<0.05), and the exhaustive treadmill time was shortened (P<0.05) in the model group. The contents of IL-10 in the hippocampus and serum were decreased (P<0.05), while IL-17 and TGF-ß1 contents were increased (P<0.05). The immunofluorescence intensity of IL-10 in the hippocampus was decreased (P<0.05), while the intensity of IL-17 and TGF-ß1 were increased (P<0.05). After treatment, compared with the model group, the score of general condition was decreased (P<0.05), the escape latency was shortened (P<0.05), the number of crossing the original platform was increased (P<0.05), the numbers of crossing the grid and entering the central area were decreased (P<0.05), and the exhaustive treadmill time was prolonged (P<0.05) in the EA group. The contents of IL-10 in the hippocampus and serum were increased (P<0.05), while IL-17 and TGF-ß1 levels were decreased (P<0.05). The immunofluorescence intensity of IL-10 in the hippocampus was increased (P<0.05), while the intensity of IL-17 and TGF-ß1 were decreased (P<0.05). H.E. staining showed that in the model group, the number of neurons in the hippocampus decreased, with disordered arrangement and loose structure, and a small numbers of neuronal nuclei were missing. The degree of tissue damage of the EA group was milder than that of the model group. CONCLUSIONS: EA can alleviate fatigue and spatial learning and memory impairment in CFS rats, which may be related to the regulation of peripheral and central inflammation.


Asunto(s)
Electroacupuntura , Síndrome de Fatiga Crónica , Ratas , Animales , Ratas Sprague-Dawley , Interleucina-10 , Síndrome de Fatiga Crónica/terapia , Interleucina-17/genética , Factor de Crecimiento Transformador beta1/genética , Hipocampo
10.
J Tradit Chin Med ; 44(2): 324-333, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504538

RESUMEN

OBJECTIVE: To examine the nephroprotective mechanism of modified Huangqi Chifeng decoction (, MHCD) in immunoglobulin A nephropathy (IgAN) rats. METHODS: To establish the IgAN rat model, the bovine serum albumin, lipopolysaccharide, and carbon tetrachloride 4 method was employed. The rats were then randomly assigned to the control, model, telmisartan, and high-, medium-, and low-dose MHCD groups, and were administered the respective treatments via intragastric administration for 8 weeks. The levels of 24-h urinary protein, serum creatinine (CRE), and blood urea nitrogen (BUN) were measured in each group. Pathological alterations were detected. IgA deposition was visualized through the use of immunofluorescence staining. The ultrastructure of the kidney was observed using a transmission electron microscope. The expression levels of interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and transforming growth factor-ß1 (TGF-ß1) were examined by immunohistochemistry and quantitative polymerase chain reaction. Levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappa B (NF-κB) P65, were examined by immunohistochemistry, Western blotting, and quantitative polymerase chain reaction. RESULTS: The 24-h urine protein level in each group increased significantly at week 6, and worsen from then on. But this process can be reversed by treatments of telmisartan, and high-, medium-, and low-dose of MHCD, and these treatments did not affect renal function. Telmisartan, and high-, and medium-dose of MHCD reduced IgA deposition. Renal histopathology demonstrated the protective effect of high-, medium-, and low-dose of MHCD against kidney injury. The expression levels of MCP-1, IL-6, and TGF-ß1 in kidney tissues were downregulated by low, medium and high doses of MHCD treatment. Additionally, treatment of low, medium and high doses of MHCD decreased the protein and mRNA levels of TLR4, MyD88, and NF-κB. CONCLUSIONS: MHCD exerted nephroprotective effects on IgAN rats, and MHCD regulated the expressions of key targets in TLR4/MyD88/NF-κB signaling pathway, thereby alleviating renal inflammation by inhibiting MCP-1, IL-6 expressions, and ameliorating renal fibrosis by inhibiting TGF-ß1 expression.


Asunto(s)
Astragalus propinquus , Medicamentos Herbarios Chinos , Glomerulonefritis por IGA , Ratas , Animales , Glomerulonefritis por IGA/tratamiento farmacológico , Glomerulonefritis por IGA/genética , Glomerulonefritis por IGA/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Telmisartán/farmacología , Transducción de Señal , Inmunoglobulina A
11.
J Tradit Chin Med ; 44(2): 362-372, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504542

RESUMEN

OBJECTIVE: To investigate the mechanism by which Sini decoction (, SND) improves renal fibrosis (Rf) in rats based on transforming growth factor ß1/Smad (TGF-ß1/Smad) signaling pathway. METHODS: Network pharmacology was applied to obtain potentially involved signaling pathways in SND's improving effects on Rf. The targets of SND drug components and the targets of Rf were obtained by searching databases, such as the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCSMP) and GeenCard. The intersection targets of two searches were obtained and underwent signaling pathway analysis using a Venn diagram. Then experimental pharmacology was utilized to prove and investigate the effects of SND on target proteins in the TGF-ß1/Smad signaling pathway. The Rf rat model was established by unilateral ureteral occlusion (UUO). The expression levels of transforming growth factor, matrix metalloproteinase-9 (MMP-9), matrix metal protease-2 (MMP-2), connective tissue growth factor (CTGF), and tissue inhibitor of metalloproteinase-1 (TIMP-1) were determined by Masson staining of rat renal tissue, and immunohistochemical methods. The expression levels of Smad3, Smad2, and Smad7 in renal tissue were determined by Western blotting (WB). The mechanism of the improving effects of SND on Rf was investigated based on TGF-ß1/Smad signaling pathway. RESULTS: A total of 12 drug components of Fuzi (Radix Aconiti Lateralis Preparata), 5 drug components of Ganjiang (Rhizoma Zingiber), and 9 drug components of Gancao (Radix Glycy et Rhizoma) were obtained from the database search, and 207 shared targets were found. A total of 1063 Rf targets were found in the database search. According to the Venn diagram, in total, 96 intersection targets were found in two database searches. The metabolic pathways involved included TGF-ß signaling pathway, phosphatidylinositol-3-kinase/serine-threonine protein kinase signaling (PI3K/Akt) pathway, and hypoxia-inducible factor-1 (HIF-1) signaling pathway. Masson staining analysis showed that compared with the model group, the renal interstitial collagen deposition levels in the SSN and SND groups were significantly lower (P < 0.05). Immunohistochemical analysis, compared with the control group, the positive cell area expression levels of MMP-9/TIMP-1 and MMP-2/TIMP-1 in the kidney tissue of the model group were significantly decreased (P < 0.05, P < 0.01), and the positive cell area expression levels of CTGF and TGF-ß1 were significantly increased (P < 0.01). Compared with the model group, the positive cell area expression levels of MMP-9/TIMP-1 and MMP-2/TIMP-1 in the kidney tissue of the SSN and SND groups were significantly increased (P < 0.05, P < 0.01), and the positive cell area expression levels of CTGF and TGF-ß1 in the kidney tissue were significantly decreased (P < 0.05, P < 0.01). WB results showed that the SSN group and the SND group could reduce the expression of Smad2 and Smad3 (P < 0.05) and increase the expression of Smad7 (P < 0.05).


Asunto(s)
Medicamentos Herbarios Chinos , Enfermedades Renales , Factor de Crecimiento Transformador beta1 , Ratas , Animales , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Inhibidor Tisular de Metaloproteinasa-1/genética , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Ratas Sprague-Dawley , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Fibrosis
12.
Gene ; 911: 148351, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38462021

RESUMEN

OBJECTIVE: Our purpose is to unveil Andrographolide's potential multi-target and multi-mechanism therapeutic effects in treating OA via systematic network pharmacological analysis and cell experimental validation. MATERIALS AND METHODS: Initially, we gathered data from Andrographolide and OA-related databases to obtain information on Andrographolide's biological properties and the targets linked with OA. We developed a bioinformatic network about Andrographolide and OA, whereby we analyzed the network to identify potential therapeutic targets and mechanisms of action of Andrographolide. Subsequently, we used molecular docking to analyze the binding sites of Andrographolide to the target proteins. At the same time, SDF-1 was used to construct an OA cell model to verify the therapeutic effect of Andrographolide on OA and its effect on target proteins. RESULTS: Our experimental results show that Andrographolide has excellent pharmaceutical properties, by Lipinski's rules for drugs, suggesting that this compound can be considered to have a high therapeutic potential in drug development. 233 targets were preliminarily investigated, the mechanisms through which Andrographolide targets OA primarily involve the TNF signaling pathway, PI3K-AKT signaling pathway, IL-17 signaling pathway, and TLR signaling pathway. These mechanisms target OA by influencing immune and inflammatory responses in the joints, regulating apoptosis to prevent chondrocyte death. Finally, TNF-α, STAT3, TP53, IL-6, JUN, IL-1ß, HIF-1α, TGF-ß1, and AKT1 were identified as 9 key targets of Andrographolide anti-OA. In addition, our molecular docking analyzes with cell experimental validation further confirm the network pharmacology results. According to our molecular docking results, Andrographolide can bind to all the hub target proteins and has a good binding ability (binding energy < -5 kcal/mol), with the strongest binding affinity to AKT1 of -9.2 kcal/ mol. The results of cell experiments showed that Andrographolide treatment significantly increased the cell viability and the expression of COL2A1 and ACAN proteins. Moreover, 30 µM Andrographolide significantly reversed SDF-1-induced increases in the protein expression of TNF-α, STAT3, TP53, IL-6, JUN, IL-1ß, HIF-1α, and TGF-ß1, and decreases in the protein expression of AKT1. CONCLUSION: This study provides a comprehensive understanding of the potential therapeutic targets and mechanisms of action of Andrographolide in OA treatment. Our findings suggest that Andrographolide is a promising candidate for drug development in the management of OA.


Asunto(s)
Diterpenos , Medicamentos Herbarios Chinos , Factor de Crecimiento Transformador beta1 , Interleucina-6 , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Factor de Necrosis Tumoral alfa
13.
J Ethnopharmacol ; 327: 117975, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38432576

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Liver fibrosis (LF) is a common reversible consequence of chronic liver damage with limited therapeutic options. Yinchen Gongying decoction (YGD) composed of two homologous plants: (Artemisia capillaris Thunb, Taraxacum monochlamydeum Hand.-Mazz.), has a traditionally application as a medicinal diet for acute icteric hepatitis. However, its impact on LF and underlying mechanisms remain unclear. AIM OF THE STUDY: This study aims to assess the impact of YGD on a carbon tetrachloride (CCl4) induced liver fibrosis and elucidate its possible mechanisms. The study seeks to establish an experimental foundation for YGD as a candidate drug for hepatic fibrosis. MATERIALS AND METHODS: LC-MS/MS identified 11 blood-entry components in YGD, and network pharmacology predicted their involvement in the FoxO signaling pathway, insulin resistance, and PI3K-AKT signaling pathway. Using a CCl4-induced LF mouse model, YGD's protective effects were evaluated in comparison to a positive control and a normal group. The underlying mechanisms were explored through the assessments of hepatic stellate cells (HSCs) activation, fibrotic signaling, and inflammation. RESULTS: YGD treatment significantly improved liver function, enhanced liver morphology, and reduced liver collagen deposition in CCl4-induced LF mice. Mechanistically, YGD inhibited HSC activation, elevated MMPs/TIMP1 ratios, suppressed the FoxO1/TGF-ß1/Smad2/3 and YAP pathways, and exhibited anti-inflammatory and antioxidant effects. Notably, YGD improved the insulin signaling pathway. CONCLUSION: YGD mitigates LF in mice by modulating fibrotic and inflammatory pathways, enhancing antioxidant responses, and specifically inhibiting FoxO1/TGF-ß1/Smad2/3 and YAP signal pathways.


Asunto(s)
Artemisia , Medicamentos Herbarios Chinos , Fosfatidilinositol 3-Quinasas , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Cromatografía Liquida , Fosfatidilinositol 3-Quinasas/metabolismo , Células Estrelladas Hepáticas , Espectrometría de Masas en Tándem , Hígado , Transducción de Señal , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Tetracloruro de Carbono/farmacología
14.
J Ethnopharmacol ; 327: 118008, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38458343

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Compendium of Materia Medica and the Classic of Materia Medica, the two most prominent records of traditional Chinese medicine, documented the therapeutic benefits of Ganoderma sinense particularly in addressing pulmonary-related ailments. Ganoderma formosanum, an indigenous subspecies of G. sinense from Taiwan, has demonstrated the same therapeutic properties. AIM OF THE STUDY: The aim of this study is to identify bioactive compounds and evaluate the potential of G. formosanum extracts as a novel treatment to alleviate pulmonary fibrosis (PF). Using an in-house drug screening platform, two-stage screening was performed to determine their anti-fibrotic efficacy. METHODS AND MATERIALS: G. formosanum was fractionated into four partitions by solvents of different polarities. To determine their antifibrotic and pro-apoptotic properties, the fractions were analyzed using two TGF-ß1-induced pulmonary fibrosis cell models (NIH-3T3) and human pulmonary fibroblast cell lines, immunoblot, qRT-PCR, and annexin V assays. Subsequently, transcriptomic analysis was conducted to validate the findings and explore possible molecular pathways. The identification of potential bioactive compounds was achieved through UHPLC-MS/MS analysis, while molecular interaction study was investigated by multiple ligands docking and molecular dynamic simulations. RESULTS: The ethyl acetate fraction (EAF) extracted from G. formosanum demonstrated substantial anti-fibrotic and pro-apoptotic effects on TGF-ß1-induced fibrotic models. Moreover, the EAF exhibited no discernible cytotoxicity. Untargeted UHPLC-MS/MS analysis identified potential bioactive compounds in EAF, including stearic acid, palmitic acid, and pentadecanoic acid. Multiple ligands docking and molecular dynamic simulations further confirmed that those bioactive compounds possess the ability to inhibit TGF-ß receptor 1. CONCLUSION: Potential bioactive compounds in G. formosanum were successfully extracted and identified in the EAF, whose anti-fibrotic and pro-apoptotic properties could potentially modulate pulmonary fibrosis. This finding not only highlights the EAF's potential as a promising therapeutic candidate to treat pulmonary fibrosis, but it also elucidates how Ganoderma confers pulmonary health benefits as described in the ancient texts.


Asunto(s)
Ganoderma , Materia Medica , Fibrosis Pulmonar , Humanos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Materia Medica/farmacología , Espectrometría de Masas en Tándem , Fibrosis , Pulmón
15.
J Ethnopharmacol ; 327: 118014, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38460576

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic kidney disease can be caused by numerous diseases including obesity and hyperuricemia (HUA). Obesity may exacerbate the renal injury caused by HUA. Red ginseng, a steamed products of Panax ginseng Meyer root, is known for its remarkable efficacy in improving metabolic syndrome, such as maintaining lipid metabolic balance. However, the role of red ginseng on hyperuricemia-induced renal injury in obese cases remains unclear. AIM OF THE STUDY: This study aimed to investigate the action of red ginseng extract (RGE) on lipotoxicity-induced renal injury in HUA mice. MATERIALS AND METHODS: A high-fat diet (HFD)-induced obesity model was employed to initially investigate the effects of RGE on body weight, TC, OGTT, renal lipid droplets, and renal function indices such as uric acid, creatinine, and urea nitrogen. Renal structural improvement was demonstrated by H&E staining. Subsequently, an animal model combining obesity and HUA was established to further study the impact of RGE on OAT1 and ACC1 expression levels. The mechanisms underlying renal injury regulation by RGE were postulated on the basis of RNA sequencing, which was verified by immunohistochemical (including F4/80, Ki67, TGF-ß1, α-SMA, and E-cadherin), Masson, and Sirius red staining. RESULTS: RGE modulated HFD-induced weight gain, glucose metabolism, and abnormalities of uric acid, urea nitrogen, and creatinine. RGE alleviated the more severe renal histopathological changes induced by obesity combined with HUA, with down-regulated the protein levels of ACC1, F4/80, Ki67, TGF-ß1, and α-SMA, and up-regulated OAT1 and E-cadherin. CONCLUSIONS: RGE has ameliorative effects on chronic kidney disease caused by obesity combined with HUA by maintaining lipid balance and reducing renal inflammation and fibrosis.


Asunto(s)
Hiperuricemia , Panax , Insuficiencia Renal Crónica , Ratones , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/patología , Factor de Crecimiento Transformador beta1 , Ácido Úrico , Creatinina , Antígeno Ki-67 , Obesidad/tratamiento farmacológico , Fibrosis , Panax/química , Cadherinas , Nitrógeno , Lípidos , Urea
16.
Phytomedicine ; 128: 155465, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38471319

RESUMEN

BACKGROUND: Liver fibrosis (LF) is a pathological process of the liver that threatens human health. Currently, effective treatments are still lacking. Esculin, a prominent constituent found in the Fraxinus rhynchophylla. (bark), Aesculus hippocastanum. (bark), and Cichorium intybus. (herb), has been shown to possess significant anti-inflammatory, antioxidant, and antibacterial properties. However, to date, there have been no studies investigating its potential efficacy in the treatment of LF. OBJECTIVE: The study aims to investigate the therapeutic effect of esculin on LF and elucidate its potential molecular mechanism. METHODS: Carbon tetrachloride (CCl4) was injected intraperitoneally to induce LF in mice, and transforming growth factor ß1 (TGF-ß1) was injected to induce LX-2 cells to investigate the improvement effect of esculin on LF. Kit, histopathological staining, immunohistochemistry (IHC), immunofluorescence (IF), polymerase chain reaction (PCR), and western blot (WB) were used to detect the expression of fiber markers and nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway in liver tissue and LX-2 cells. Finally, molecular docking, cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) were used to verify the targeting between Nrf2 and esculin. RESULTS: Esculin significantly inhibited CCl4-induced hepatic fibrosis and inflammation in mice. This was evidenced by the improvement of liver function indexes, fibrosis indicators, and histopathology. Additionally, esculin treatment prominently reduced the levels of pro-inflammatory factors, oxidative stress, and liver Fe2+ in CCl4-induced mice. In vitro studies also showed that esculin treatment significantly inhibited TGF-ß1-induced LX-2 cell activation and decreased alpha-smooth muscle actin (α-SMA) and collagen I expression. Mechanism experiments proved that esculin can activate the Nrf2/GPX4 signaling pathway and inhibit liver ferroptosis. However, when LX-2 cells were treated with the Nrf2 inhibitor (ML385), the therapeutic effect of esculin significantly decreased. CONCLUSION: This study is the first to demonstrate that esculin is a potential natural active ingredient in the treatment of LF, which can inhibit the activation of hepatic stellate cells (HSC) and improve LF. Its therapeutic effect is related to the activation of the Nrf2/GPX4 signaling pathway.


Asunto(s)
Tetracloruro de Carbono , Esculina , Células Estrelladas Hepáticas , Cirrosis Hepática , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Masculino , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/inducido químicamente , Esculina/farmacología , Humanos , Glutatión Peroxidasa/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Línea Celular , Hígado/efectos de los fármacos , Hígado/metabolismo
17.
Biochem Pharmacol ; 222: 116121, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461906

RESUMEN

Liver fibrosis is a chronic liver disease characterized by a progressive wound healing response caused by chronic liver injury. Currently, there are no approved clinical treatments for liver fibrosis. Sevelamer is used clinically to treat hyperphosphatemia and has shown potential therapeutic effects on liver diseases. However, there have been few studies evaluating the therapeutic effects of sevelamer on liver fibrosis, and the specific mechanisms are still unclear. In this study, we investigated the antifibrotic effects of sevelamer-induced low inorganic phosphate (Pi) stress in vitro and in vivo and analyzed the detailed mechanisms. We found that low Pi stress could inhibit the proliferation of activated hepatic stellate cells (HSCs) by promoting apoptosis, effectively suppressing the migration and epithelial-mesenchymal transition (EMT) of hepatic stellate cells. Additionally, low Pi stress significantly increased the antioxidant stress response. It is worth noting that low Pi stress indirectly inhibited the activation and migration of HSCs by suppressing transforming growth factor ß (TGF-ß) expression in macrophages. In a rat model of liver fibrosis, oral administration of sevelamer significantly decreased blood phosphorus levels, improved liver function, reduced liver inflammation, and increased the antioxidant stress response in the liver. Our study revealed that the key mechanism by which sevelamer inhibited liver fibrosis involved binding to gastrointestinal phosphate, resulting in a decrease in blood phosphorus levels, the downregulation of TGF-ß expression in macrophages, and the inhibition of HSC migration and fibrosis-related protein expression. Therefore, our results suggest that sevelamer-induced low Pi stress can attenuate hepatic stellate cell activation and inhibit the progression of liver fibrosis, making it a potential option for the treatment of liver fibrosis and other refractory chronic liver diseases.


Asunto(s)
Células Estrelladas Hepáticas , Hepatopatías , Ratas , Animales , Sevelamer/efectos adversos , Antioxidantes/farmacología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Hepatopatías/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Fósforo/metabolismo , Fósforo/farmacología , Fósforo/uso terapéutico , Factor de Crecimiento Transformador beta1/metabolismo
18.
Cell Biochem Funct ; 42(2): e3977, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494660

RESUMEN

Langerhans cells (LCs) play a critical role in skin immune responses and the development of psoriasis. Yinxieling (YXL) is a representative Chinese herbal medicine for the treatment of psoriasis in South China. It was found to improve psoriasis without obvious side effects in the clinic. Here we attempted to clarify whether and how YXL regulates the differentiation and functions of LCs in Imiquimod (IMQ)-induced psoriasis in vivo and induced LCs in vitro. The Psoriasis Area Severity Index (PASI) score was used to evaluate the efficacy of YXL for IMQ-induced psoriasis-like mice. Flow cytometry was utilized to analyze the effects of YXL, to regulate the differentiation, migration, maturation, and antigen presentation of LCs. The results show that YXL significantly alleviated skin inflammation, as reduced in PASI score and classic psoriasis characteristics in pathological sections. Although there was no effect on the proportion of total DCs in the skin-draining lymph nodes, the expression of epidermal LCs and its transcription factor PU.1 were both markedly inhibited. LCs were also prevented from migrating from epidermal to skin-draining lymph nodes and mature. In addition, the number of LCs carrying antigens in the epidermis increased, which suggested that YXL could effectively prevent LCs from presenting antigens. In vitro, YXL had a significant impact on inhibiting the differentiation of LCs. Further data showed that YXL decreased the relative expression of transforming growth factor-ß (TGFß) messenger RNA (mRNA) and interleukin-23 (IL-23) mRNAs. Thus, YXL alleviates psoriasis by regulating differentiation, migration, maturation, and antigen presentation via the TGFß/PU.1/IL-23 signal axis.


Asunto(s)
Células de Langerhans , Psoriasis , Animales , Ratones , Interleucina-23 , Factor de Crecimiento Transformador beta1 , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Factor de Crecimiento Transformador beta , ARN Mensajero
19.
Atherosclerosis ; 391: 117431, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408412

RESUMEN

BACKGROUND AND AIMS: The gut microbe-derived metabolite trimethylamine-N-oxide (TMAO) has been implicated in the development of cardiovascular fibrosis. Endoplasmic reticulum (ER) stress occurs after the dysfunction of ER and its structure. The three signals PERK/ATF-4, IRE-1α/XBP-1s and ATF6 are activated upon ER stress. Recent reports have suggested that the activation of PERK/ATF-4 and IRE-1α/XBP-1s signaling contributes to cardiovascular fibrosis. However, whether TMAO mediates aortic valve fibrosis by activating PERK/ATF-4 and IRE-1α/XBP-1s signaling remains unclear. METHODS: Human aortic valve interstitial cells (AVICs) were isolated from aortic valve leaflets. PERK IRE-1α, ATF-4, XBP-1s and CHOP expression, and production of collagen Ⅰ and TGF-ß1 were analyzed following treatment with TMAO. The role of PERK/ATF-4 and IRE-1α/XBP-1s signaling pathways in TMAO-induced fibrotic formation was determined using inhibitors and small interfering RNA. RESULTS: Diseased valves produced greater levels of ATF-4, XBP-1, collagen Ⅰ and TGF-ß1. Interestingly, diseased cells exhibited augmented PERK/ATF-4 and IRE-1α/XBP-1s activation after TMAO stimulation. Inhibition and silencing of PERK/ATF-4 and IRE-1α/XBP-1s each resulted in enhanced suppression of TMAO-induced fibrogenic activity in diseased cells. Mice treated with dietary choline supplementation had substantially increased TMAO levels and aortic valve fibrosis, which were reduced by 3,3-dimethyl-1-butanol (DMB, an inhibitor of trimethylamine formation) treatment. Moreover, a high-choline and high-fat diet remodeled the gut microbiota in mice. CONCLUSIONS: TMAO promoted aortic valve fibrosis through activation of PERK/ATF-4 and IRE-1α/XBP-1s signaling pathways in vitro and in vivo. Modulation of diet, gut microbiota, TMAO, PERK/ATF-4 and IRE1-α/XBP-1s may be a promising approach to prevent aortic valve fibrosis.


Asunto(s)
Microbioma Gastrointestinal , Factor de Crecimiento Transformador beta1 , Ratones , Humanos , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Válvula Aórtica/metabolismo , Metilaminas/toxicidad , Metilaminas/metabolismo , Fibrosis , Colágeno , Colina , Óxidos
20.
Pathol Int ; 74(4): 197-209, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38353379

RESUMEN

Chronic hepatic diseases often involve fibrosis as a pivotal factor in their progression. This study investigates the regulatory mechanisms of Yin Yang 1 (YY1) in hepatic fibrosis. Our data reveal that YY1 binds to the prolyl hydroxylase domain 1 (PHD1) promoter. Rats treated with carbon tetrachloride (CCl4) display heightened fibrosis in liver tissues, accompanied by increased levels of YY1, PHD1, and the fibrosis marker alpha-smooth muscle actin (α-SMA). Elevated levels of YY1, PHD1, and α-SMA are observed in the liver tissues of CCl4-treated rats, primary hepatic stellate cells (HSCs) isolated from fibrotic liver tissues, and transforming growth factor beta-1 (TGF-ß1)-induced HSCs. The human HSC cell line LX-2, upon YY1 overexpression, exhibits enhanced TGF-ß1-induced activation, leading to increased expression of extracellular matrix (ECM)-related proteins and inflammatory cytokines. YY1 silencing produces the opposite effect. YY1 exerts a positive regulatory effect on the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and PHD1 expression. PHD1 silencing rescues the promotion of YY1 in cell activation, ECM-related protein expression, and inflammatory cytokine production in TGF-ß1-treated LX-2 cells. Overall, our findings propose a model wherein YY1 facilitates TGF-ß1-induced HSC activation, ECM-related protein expression, and inflammatory cytokine production by promoting PHD1 expression and activating the PI3K/AKT signaling pathway. This study positions YY1 as a promising therapeutic target for hepatic fibrosis.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Factor de Crecimiento Transformador beta1 , Humanos , Ratas , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/uso terapéutico , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Fosfatidilinositol 3-Quinasas/uso terapéutico , Yin-Yang , Cirrosis Hepática/metabolismo , Matriz Extracelular/metabolismo , Inflamación/metabolismo , Tetracloruro de Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA