Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38611836

RESUMEN

As a traditional Chinese medicine, Salvia miltiorrhiza Bunge was first recorded in the Shennong Materia Medica Classic and is widely used to treat "the accumulation of symptoms and masses". The main active ingredient of Salvia miltiorrhiza Bunge, Tanshinone IIA (TIIA), has shown anti-inflammatory, antitumor, antifibrosis, antibacterial, and antioxidative activities, etc. In this study, the results showed that TIIA could inhibit the proliferation and migration of HepG2 cells and downregulate glutathione (GSH) and Glutathione Peroxidase 4 (GPX4) levels; besides, TIIA induced the production of Reactive Oxygen Species (ROS), and upregulated the total iron content. Based on network pharmacology analysis, the antitumor effect of TIIA was found to be focused on the endoplasmic reticulum (ER)-mediated ferroptosis signaling pathway, with protein kinase R (PKR)-like ER kinase (PERK)-activating transcription factor 4 (ATF4)-heat shock 70 kDa protein 5 (HSPA5) as the main pathway. Herein, TIIA showed typical ferroptosis characteristics, and a ferroptosis inhibitor (ferrostatin-1) was used to verify the effect. The antitumor effects of TIIA, occurring through the inhibition of the PERK-ATF4-HSPA5 pathway, were further observed in vivo as significantly inhibited tumor growth and the improved pathological morphology of tumor tissue in H22-bearing mice. In summary, the antitumor mechanism of TIIA might be related to the downregulation of the activation of PERK-ATF4-HSPA5 pathway-mediated ferroptosis.


Asunto(s)
Factor de Transcripción Activador 4 , Ferroptosis , Animales , Ratones , Factor de Transcripción Activador 4/genética , Chaperón BiP del Retículo Endoplásmico , Abietanos/farmacología , Glutatión
2.
Zhen Ci Yan Jiu ; 49(4): 358-366, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38649203

RESUMEN

OBJECTIVES: To analyze the effects of electroacupuncture (EA) at "Fenglong" (ST40) and "Zusanli" (ST36) of different intensities and durations on rats with non-alcoholic fatty liver disease (NAFLD) based on the protein kinase R-like endoplasmic reticulum kinase (PERK)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP) signaling pathway, so as to explore its mechanism underlying improvement of NAFLD. METHODS: SD rats were randomly divided into normal diet group, high-fat model group, sham EA group, strong stimulation EA (SEA) group, and weak stimulation EA (WEA) group, with 15 rats in each group. Each group was further divided into 2, 3, and 4-week subgroups. NAFLD rat model was established by feeding a high-fat diet. After successful modeling, rats in the SEA and WEA groups received EA at bilateral ST40 and ST36 with dense and sparse waves (4 Hz/20 Hz) at current intensities of 4 mA (SEA group) and 2 mA (WEA group), lasting for 20 minutes, once a day, 5 days a week with 2 days of rest. The sham EA group only had the EA apparatus connected without electricity. Different duration subgroups were intervened for 2, 3, and 4 weeks. After the intervention, the contents of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in rats were detected by an automatic biochemical analyzer;liver morphological changes were observed by Oil Red O staining;real-time fluorescence quantitative PCR and Western blot were used to detect the expression of PERK, ATF4, and CHOP mRNAs and proteins in the rat liver tissue. RESULTS: In the high-fat model group, there was a significant accumulation of red lipid droplets in the liver cells, which was reduced significantly in the SEA group at the 4th week. Compared with the normal diet group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and proteins in the liver tissue were elevated (P<0.01) in the high-fat model group . Compared with the high-fat model group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, CHOP mRNAs and proteins in the liver tissue were decreased (P<0.01, P<0.05) in the SEA and WEA groups. Compared with the sham EA group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs were decreased (P<0.01, P<0.05) in the SEA and WEA groups, the expression of PERK, ATF4, and CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA group at the 2nd, 3rd, and 4th week, the expression of PERK and CHOP proteins at the 2nd, 3rd, 4th week and ATF4 protein at 2nd week in the liver tissue were decreased (P<0.01, P<0.05) in the WEA group. Compared with the SEA group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and proteins in the liver tissue were elevated (P<0.05, P<0.01) in the WEA group. Compared with the 2-week time point within the groups, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and PERK proteins in the liver tissue were decreased (P<0.01, P<0.05) in the SEA and WEA groups at 3rd and 4th week, the expression of ATF4 proteins in the liver tissue was decreased (P<0.01) in the SEA group at 3rd and 4th week, and the expression of CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA group at 4th week and in the WEA group at 3rd and 4th week. Compared with the 3-week time point within the groups, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs were significantly decreased (P<0.05, P<0.01) in the SEA and WEA groups at 4th week, the expression of PERK and CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA and WEA groups at 4th week, and the expression of ATF4 protein in the liver tissue was decreased (P<0.05) in the SEA group at 4th week. CONCLUSIONS: EA at ST40 and ST36 can significantly improve liver function in NAFLD rats, and its mechanism of action may involve inhibiting PERK expression thereby targeting the downstream ATF4/CHOP signaling pathway to suppress endoplasmic reticulum stress, exerting a liver protective effect;the optimal effect was observed with EA intensity of 4 mA for 4 weeks.


Asunto(s)
Factor de Transcripción Activador 4 , Puntos de Acupuntura , Electroacupuntura , Hígado , Enfermedad del Hígado Graso no Alcohólico , Ratas Sprague-Dawley , Transducción de Señal , Factor de Transcripción CHOP , eIF-2 Quinasa , Animales , Ratas , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/genética , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética
3.
J Biol Chem ; 299(7): 104877, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37269954

RESUMEN

Abcb10 is a mitochondrial membrane protein involved in hemoglobinization of red cells. Abcb10 topology and ATPase domain localization suggest it exports a substrate, likely biliverdin, out of mitochondria that is necessary for hemoglobinization. In this study, we generated Abcb10 deletion cell lines in both mouse murine erythroleukemia and human erythroid precursor human myelogenous leukemia (K562) cells to better understand the consequences of Abcb10 loss. Loss of Abcb10 resulted in an inability to hemoglobinize upon differentiation in both K562 and mouse murine erythroleukemia cells with reduced heme and intermediate porphyrins and decreased levels of aminolevulinic acid synthase 2 activity. Metabolomic and transcriptional analyses revealed that Abcb10 loss gave rise to decreased cellular arginine levels, increased transcripts for cationic and neutral amino acid transporters with reduced levels of the citrulline to arginine converting enzymes argininosuccinate synthetase and argininosuccinate lyase. The reduced arginine levels in Abcb10-null cells gave rise to decreased proliferative capacity. Arginine supplementation improved both Abcb10-null proliferation and hemoglobinization upon differentiation. Abcb10-null cells showed increased phosphorylation of eukaryotic translation initiation factor 2 subunit alpha, increased expression of nutrient sensing transcription factor ATF4 and downstream targets DNA damage inducible transcript 3 (Chop), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (Chac1), and arginyl-tRNA synthetase 1 (Rars). These results suggest that when the Abcb10 substrate is trapped in the mitochondria, the nutrient sensing machinery is turned on remodeling transcription to block protein synthesis necessary for proliferation and hemoglobin biosynthesis in erythroid models.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Animales , Humanos , Ratones , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Arginina , Transportadoras de Casetes de Unión a ATP/metabolismo , Hemoglobinas/metabolismo , Células K562 , Proteínas Mitocondriales/metabolismo
4.
Toxicol Lett ; 377: 51-61, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801351

RESUMEN

Toosendanin (TSN) is the main active compound of Melia toosendan Sieb et Zucc with various bioactivities. In this study, we investigated the role of ferroptosis in TSN-induced hepatotoxicity. The characteristic indicators of ferroptosis were detected including reactive oxygen species (ROS), lipid-ROS, glutathione (GSH), ferrous ion and the expression of glutathione peroxidase 4 (GPX4), which showed that TSN caused ferroptosis in hepatocytes. The results of qPCR analysis and western blotting assay showed that TSN-induced activation of protein kinase R-like endoplasmic reticulum kinase (PERK)- eukaryotic initiation factor 2 α subunit (eIF2α)- activation transcription factor 4 (ATF4) signaling pathway resulted in increasing activation transcription factor 3 (ATF3) expression, which upregulated the expression of transferrin receptor 1 (TFRC). Furthermore, TFRC mediated iron accumulation leading to ferroptosis in hepatocytes. To clarify whether TSN triggered ferroptosis in vivo, male Balb/c mice were treated with the different doses of TSN. The results of hematoxylin-eosin (H&E) staining, 4-hydroxynonenal (4-HNE) staining, malondialdehyde (MDA) content and the protein expression of GPX4 showed that ferroptosis contributed to TSN-induced hepatotoxicity. Iron homeostasis relative protein and PERK- eIF2α- ATF4 signaling pathway also involved in hepatotoxicity of TSN in vivo.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Ferroptosis , Animales , Ratones , Masculino , Factor 2 Eucariótico de Iniciación/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción 4 , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo
5.
Nutrients ; 14(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36235573

RESUMEN

Fibroblast growth factor 21 (FGF21), which is mainly synthesized and secreted by the liver, plays a crucial role in systemic glucose and lipid metabolism, ameliorating metabolic diseases. In this study, we screened the WAKANYAKU library derived from medicinal herbs to identify compounds that can activate Fgf21 expression in mouse hepatocyte AML12 cells. We identified Scutellaria baicalensis root extract and one of its components, wogonin, as an activator of Fgf21 expression. Wogonin also enhanced the expression of activating transcription factor 4 (ATF4) by a mechanism other than ER stress. Knockdown of ATF4 by siRNA suppressed wogonin-induced Fgf21 expression, highlighting its essential role in wogonin's mode of action. Thus, our results indicate that wogonin would be a strong candidate for a therapeutic to improve metabolic diseases by enhancing hepatic FGF21 production.


Asunto(s)
Flavanonas , Scutellaria baicalensis , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Factores de Crecimiento de Fibroblastos , Flavanonas/farmacología , Flavanonas/uso terapéutico , Glucosa , Hepatocitos/metabolismo , Ratones , Extractos Vegetales/farmacología , ARN Interferente Pequeño , Scutellaria baicalensis/metabolismo
6.
Mol Metab ; 66: 101615, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36252815

RESUMEN

OBJECTIVE: Exercise enhances the sensitivity of mammalian target of rapamycin complex 1 (mTORC1) to amino acids, in particular leucine. How long this enhanced sensitivity lasts, and which mechanisms control enhanced leucine-mediated mTORC1 activation following exercise is currently unknown. METHODS: C57BL/6J mice were exercised for one night in a resistance-braked running wheel after a 12-day acclimatization period. Mice were gavaged with a submaximal dose of l-leucine or saline acutely or 48 h after exercise cessation, following 3 h food withdrawal. Muscles were excised 30 min after leucine administration. To study the contribution of mTORC1, we repeated those experiments but blocked mTORC1 activation using rapamycin immediately before the overnight running bout and one hour before the first dose of leucine. mTORC1 signaling, muscle protein synthesis and amino acid sensing machinery were assessed using immunoblot and qPCR. Leucine uptake was measured using L-[14C(U)]-leucine tracer labeling. RESULTS: When compared to sedentary conditions, leucine supplementation more potently activated mTORC1 and protein synthesis in acutely exercised muscle. This effect was observed in m. soleus but not in m. tibialis anterior nor m. plantaris. The synergistic effect in m. soleus was long-lasting as key downstream markers of mTORC1 as well as protein synthesis remained higher when leucine was administered 48 h after exercise. We found that exercise enhanced the expression of amino acid transporters and promoted uptake of leucine into the muscle, leading to higher free intramuscular leucine levels. This coincided with increased expression of activating transcription factor 4 (ATF4), a main transcriptional regulator of amino acid uptake and metabolism, and downstream activation of amino acid genes as well as leucyl-tRNA synthetase (LARS), a putative leucine sensor. Finally, blocking mTORC1 using rapamycin did not reduce expression and activation of ATF4, suggesting that the latter does not act downstream of mTORC1. Rather, we found a robust increase in eukaryotic initiation factor 2α (eIF2α) phosphorylation, suggesting that the integrated stress response pathway, rather than exercise-induced mTORC1 activation, drives long-term ATF4 expression in skeletal muscle after exercise. CONCLUSIONS: The enhanced sensitivity of mTORC1 to leucine is maintained at least 48 h after exercise. This shows that the anabolic window of opportunity for protein ingestion is not restricted to the first hours immediately following exercise. Increased mTORC1 sensitivity to leucine coincided with enhanced leucine influx into muscle and higher expression of genes involved in leucine sensing and amino acid metabolism. Also, exercise induced an increase in ATF4 protein expression. Altogether, these data suggest that muscular contractions switch on a coordinated program to enhance amino acid uptake as well as intramuscular sensing of key amino acids involved in mTORC1 activation and the stimulation of muscle protein synthesis.


Asunto(s)
Leucina , Diana Mecanicista del Complejo 1 de la Rapamicina , Condicionamiento Físico Animal , Animales , Ratones , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Aminoácidos/metabolismo , Leucina/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Proteínas Musculares , Sirolimus , Condicionamiento Físico Animal/fisiología
7.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806203

RESUMEN

Chronic treatment with acetaminophen (APAP) induces cysteine (Cys) and glutathione (GSH) deficiency which leads to adverse metabolic effects including muscle atrophy. Mammalian cells respond to essential amino acid deprivation through the phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α). Phosphorylated eIF2α leads to the recruitment of activating transcription factor 4 (ATF4) to specific CCAAT/enhancer-binding protein-ATF response element (CARE) located in the promoters of target genes. Our purpose was to study the activation of the eIF2α-ATF4 pathway in response to APAP-induced Cys deficiency, as well as the potential contribution of the eIF2α kinase GCN2 and the effect of dietary supplementation with Cys. Our results showed that chronic treatment with APAP activated both GCN2 and PERK eIF2α kinases and downstream target genes in the liver. Activation of the eIF2α-ATF4 pathway in skeletal muscle was accompanied by muscle atrophy even in the absence of GCN2. The dietary supplementation with cysteine reversed APAP-induced decreases in plasma-free Cys, liver GSH, muscle mass, and muscle GSH. Our new findings demonstrate that dietary Cys supplementation also reversed the APAP-induced activation of GCN2 and PERK and downstream ATF4-target genes in the liver.


Asunto(s)
Factor de Transcripción Activador 4 , Factor 2 Eucariótico de Iniciación , Acetaminofén/efectos adversos , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Cisteína/metabolismo , Suplementos Dietéticos , Factor 2 Eucariótico de Iniciación/metabolismo , Glutatión/metabolismo , Mamíferos/metabolismo , Atrofia Muscular/inducido químicamente , Fosforilación , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
8.
Food Chem Toxicol ; 163: 112986, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35398186

RESUMEN

Mylabris, as a natural product of traditional Chinese medicine (TCM), exhibiting typical antitumor activity, and cantharidin (CTD) is the major bioactive component. However, drug-induced nephrotoxicity (DIN) extremely limited its clinical application. In this study, we proved that activation of the endoplasmic reticulum (ER) stress-dependent PERK/CHOP pathway exerts a toxic role in rats and HK-2 cells through inducing autophagy and apoptosis. Results showed that CTD could cause renal function damage, cytotoxicity, and apoptosis. The ER dilatation and autolysosomes were observed after CTD treatment. Furthermore, the distribution of LC3, ATF4, and CHOP proteins was observed in the nucleus and cytoplasm. In addition, the mRNA levels of ER stress-regulated genes (PERK, eIF2α, CHOP, and ATF4) were increased, and the expression levels of GRP78, ATF4, CHOP, LC3, Beclin-1, Atg3, Atg7, Caspase 3, and Bax/Bcl-2 proteins were increased both in vitro and in vivo. Consistently, this upregulation could be inhibited by an ER stress inhibitor 4-Phenylbutyric acid (4-PBA), indicating that ER stress is partly responsible for activation of autophagy and apoptosis in CTD-induced DIN. In conclusion, CTD could induce DIN by triggering ER stress, further activating autophagy and apoptosis both in vivo and in vitro.


Asunto(s)
Cantaridina , Estrés del Retículo Endoplásmico , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Apoptosis , Autofagia , Cantaridina/efectos adversos , Ratas , Transducción de Señal , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/metabolismo
9.
Am J Respir Cell Mol Biol ; 66(4): 402-414, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35045271

RESUMEN

Oxygen supplementation in preterm infants disrupts alveolar epithelial type 2 (AT2) cell proliferation through poorly understood mechanisms. Here, newborn mice are used to understand how hyperoxia stimulates an early aberrant wave of AT2 cell proliferation that occurs between Postnatal Days (PNDs) 0 and 4. RNA-sequencing analysis of AT2 cells isolated from PND4 mice revealed hyperoxia stimulates expression of mitochondrial-specific methylenetetrahydrofolate dehydrogenase 2 and other genes involved in mitochondrial one-carbon coupled folate metabolism and serine synthesis. The same genes are induced when AT2 cells normally proliferate on PND7 and when they proliferate in response to the mitogen fibroblast growth factor 7. However, hyperoxia selectively stimulated their expression via the stress-responsive activating transcription factor 4 (ATF4). Administration of the mitochondrial superoxide scavenger mitoTEMPO during hyperoxia suppressed ATF4 and thus early AT2 cell proliferation, but it had no effect on normative AT2 cell proliferation seen on PND7. Because ATF4 and methylenetetrahydrofolate dehydrogenase are detected in hyperplastic AT2 cells of preterm infant humans and baboons with bronchopulmonary dysplasia, dampening mitochondrial oxidative stress and ATF4 activation may provide new opportunities for controlling excess AT2 cell proliferation in neonatal lung disease.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Hiperoxia , Factor de Transcripción Activador 4/genética , Animales , Animales Recién Nacidos , Proliferación Celular , Ácido Fólico/farmacología , Hiperoxia/metabolismo , Recien Nacido Prematuro , Ratones
10.
Cell Metab ; 33(5): 888-904.e6, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33667386

RESUMEN

The protein leverage hypothesis predicts that low dietary protein should increase energy intake and cause adiposity. We designed 10 diets varying from 1% to 20% protein combined with either 60% or 20% fat. Contrasting the expectation, very low protein did not cause increased food intake. Although these mice had activated hunger signaling, they ate less food, resulting in decreased body weight and improved glucose tolerance but not increased frailty, even under 60% fat. Moreover, they did not show hyperphagia when returned to a 20% protein diet, which could be mimicked by treatment with rapamycin. Intracerebroventricular injection of AAV-S6K1 significantly blunted the decrease in both food intake and body weight in mice fed 1% protein, an effect not observed with inhibition of eIF2a, TRPML1, and Fgf21 signaling. Hence, the 1% protein diet induced decreased food intake and body weight via a mechanism partially dependent on hypothalamic mTOR signaling.


Asunto(s)
Dieta con Restricción de Proteínas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Ingestión de Alimentos , Metabolismo Energético , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Expresión Génica , Prueba de Tolerancia a la Glucosa , Hiperfagia/tratamiento farmacológico , Hipotálamo/metabolismo , Leptina/sangre , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Sirolimus/uso terapéutico , Pérdida de Peso
11.
J Physiol Biochem ; 77(2): 331-339, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33635524

RESUMEN

The unfolded protein response (UPR) plays a pivotal role in some exercise training-induced physiological adaptation. Our aim was to evaluate the changes in the protein kinase R-like endoplasmic reticulum kinase (PERK) arm of the UPR and hypertrophy signaling pathway following 8 weeks of resistance training and creatine (Cr) supplementation in rats. Thirty-two adult male Wistar rats (8 weeks old) were randomly divided into 4 groups of 8: untrained + placebo (UN+P), resistance training + placebo (RT+P), untrained + Cr (UN+Cr), and resistance training + Cr (RT+Cr). Trained animals were submitted to the ladder-climbing exercise training 5 days per week for a total of 8 weeks. Cr supplementation groups received creatine diluted with 1.5 ml of 5% dextrose orally. The flexor hallucis longus (FHL) muscle was extracted 48 h after the last training session and used for western blotting. After training period, the RT+Cr and RT+P groups presented a significant increase in phosphorylated and phosphorylated/total ratio hypertrophy indices, phosphorylated and phosphorylated/total ratio PERK pathway proteins, and other downstream proteins of the PERK cascade compared with their untrained counterparts (P < 0.05). The increase in hypertrophy indices were higher but PERK pathway proteins were lower in the RT-Cr group than in the RT+P group (P < 0.05). There was no significant difference between the untrained groups (P > 0.05). Our study suggests that resistance training in addition to Cr supplementation modifies PERK pathway response and improves skeletal muscle hypertrophy.


Asunto(s)
Creatina/administración & dosificación , Hipertrofia/genética , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/métodos , Procesamiento Proteico-Postraduccional , Respuesta de Proteína Desplegada , eIF-2 Quinasa/genética , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Adaptación Fisiológica , Animales , Suplementos Dietéticos , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Hipertrofia/etiología , Hipertrofia/metabolismo , Masculino , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Entrenamiento de Fuerza , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/metabolismo
12.
Environ Mol Mutagen ; 62(3): 216-226, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33615565

RESUMEN

Restriction of the sulfur amino acids methionine and cysteine has recently been proposed as potential adjuvant therapy in cancer. While cysteine depletion has been associated with ferroptotic cell death, methionine depletion has not. We hypothesized that comparing the response of melanoma cell lines to depletion of the amino acids methionine and cysteine would give us insight into the critical role in cancer of these two closely related amino acids. We analyzed the response to three conditions: methionine depletion, methionine replacement with homocysteine, and cysteine depletion. In cancer cells, the transcription factor ATF4 was induced by all three tested conditions. The replacement of methionine with homocysteine produced a strong ferroptotic gene signature. We also detected an activation of the NRF2 antioxidant pathway by both methionine and cysteine depletion. Total glutathione levels were decreased by 42% in melanoma cells grown without methionine, and by 95% in cells grown without cysteine. Lipid peroxidation was increased in cells grown without cysteine, but not in cells grown without methionine. Despite the large degree of overlap in gene expression between methionine and cysteine depletion, methionine depletion and replacement of methionine with homocysteine was associated with apoptosis while cysteine depletion was associated with ferroptosis. Glutamine depletion produced comparable gene expression patterns and was associated with a 28% decrease in glutathione. Apoptosis was detected in these cells. In this experiment, a strong ATF4-driven ferroptotic gene signature was insufficient to induce ferroptosis without a concomitant profound decrease in glutathione levels.


Asunto(s)
Factor de Transcripción Activador 4/genética , Cisteína/genética , Metionina/genética , Factor 2 Relacionado con NF-E2/genética , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Quimioterapia Adyuvante , Cisteína/antagonistas & inhibidores , Ferroptosis/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Homocisteína/genética , Humanos , Peroxidación de Lípido/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Metionina/antagonistas & inhibidores , Transcriptoma/genética
13.
J Cell Physiol ; 236(4): 2869-2880, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32944961

RESUMEN

Endoplasmic reticulum (ER) stress is a major contributor to embryonic development failure. Mammalian oocytes have a high risk of exposure to cellular stress during in vitro embryo production. We investigated the effects of zinc supplementation during in vitro maturation under ER stress. We evaluated cumulus expansion, embryonic development derived by parthenogenetic activation, reactive oxygen species, protein expression of X-box binding protein 1 (XBP1), and expression of genes related to ER stress. Supplementation with 1 µg/ml zinc significantly increased the nuclear maturation of oocytes, cleavage and blastocyst formation rates, and total blastocyst cell number (p < .05). Under ER stress, zinc significantly reduced protein expression of XBP1, and increased cleavage and blastocyst rates (p < .05). Concomitantly, zinc supplementation upregulated the expression of zinc transporters (SLC39A14 and SLC39A10), PTGS2, and downregulated ER stress-related genes (sXBP1, uXBP1, ATF4, and PTPN1/PTP1B), and caspase 3. These results suggest that zinc supplementation alleviates ER stress by providing essential metal-ion transporters for oocyte maturation and subsequent embryonic development.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Técnicas de Maduración In Vitro de los Oocitos , Oocitos/efectos de los fármacos , Sulfato de Zinc/farmacología , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Proteínas de Transporte de Catión/genética , Células Cultivadas , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica , Oocitos/metabolismo , Partenogénesis , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Especies Reactivas de Oxígeno , Sus scrofa , Regulación hacia Arriba , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo , Sulfato de Zinc/metabolismo
14.
Int J Mol Sci ; 21(10)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466337

RESUMEN

(+)-Bornyl p-coumarate is an active substance that is abundant in the Piper betle stem and has been shown to possess bioactivity against bacteria and a strong antioxidative effect. In the current study, we examined the actions of (+)-bornyl p-coumarate against A2058 and A375 melanoma cells. The inhibition effects of (+)-bornyl p-coumarate on these cell lines were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and the underlying mechanisms were identified by immunostaining, flow cytometry and western blotting of proteins associated with apoptosis and autophagy. Our results demonstrated that (+)-bornyl p-coumarate inhibited melanoma cell proliferation and caused loss of mitochondrial membrane potential, demonstrating treatment induced apoptosis. In addition, western blotting revealed that the process is mediated by caspase-dependent pathways, release of cytochrome C, activation of pro-apoptotic proteins (Bax, Bad and caspase-3/-9) and suppression of anti-apoptotic proteins (Bcl-2, Bcl-xl and Mcl-1). Also, the upregulated expressions of p-PERK, p-eIF2α, ATF4 and CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP) after treatment indicated that (+)-bornyl p-coumarate caused apoptosis via endoplasmic reticulum (ER) stress. Moreover, increased expressions of beclin-1, Atg3, Atg5, p62, LC3-I and LC3-II proteins and suppression by autophagic inhibitor 3-methyladenine (3-MA), indicated that (+)-bornyl p-coumarate triggered autophagy in the melanoma cells. In conclusion, our findings demonstrated that (+)-bornyl p-coumarate suppressed human melanoma cell growth and should be further investigated with regards to its potential use as a chemotherapy drug for the treatment of human melanoma.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Ácidos Cumáricos/farmacología , Melanoma/metabolismo , Piper betle/química , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Línea Celular Tumoral , Humanos , Potencial de la Membrana Mitocondrial , Extractos Vegetales/farmacología , Tallos de la Planta/química , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
15.
J Cell Mol Med ; 24(2): 1332-1344, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31811750

RESUMEN

Fuziline, an aminoalcohol-diterpenoid alkaloid derived from Aconiti lateralis radix preparata, has been reported to have a cardioprotective activity in vitro. However, the potential mechanism of fuziline on myocardial protection remains unknown. In this study, we aimed to explore the efficacy and mechanism of fuziline on isoproterenol (ISO)-induced myocardial injury in vitro and in vivo. As a result, fuziline effectively increased cell viability and alleviated ISO-induced apoptosis. Meanwhile, fuziline significantly decreased the production of ROS, maintained mitochondrial membrane potential (MMP) and blocked the release of cytochrome C, suggesting that fuziline could play the cardioprotective role through restoring the mitochondrial function. Fuziline also could suppress ISO-induced endoplasmic reticulum (ER) stress via the PERK/eIF2α/ATF4/Chop pathway. In addition, using ROS scavenger NAC could decrease ISO-induced apoptosis and block ISO-induced ER stress, while PERK inhibitor GSK2606414 did not reduce the production of ROS, indicating that excess production of ROS induced by ISO triggered ER stress. And fuziline protected against ISO-induced myocardial injury by inhibiting ROS-triggered ER stress. Furthermore, fuziline effectively improved cardiac function on ISO-induced myocardial injury in rats. Western blot analysis also showed that fuziline reduced ER stress-induced apoptosis in vivo. Above these results demonstrated that fuziline could reduce ISO-induced myocardial injury in vitro and in vivo by inhibiting ROS-triggered ER stress via the PERK/eIF2α/ATF4/Chop pathway.


Asunto(s)
Alcaloides/farmacología , Diterpenos/farmacología , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica/efectos de los fármacos , Isoproterenol/toxicidad , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Aconitum/química , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Agonistas Adrenérgicos beta/toxicidad , Animales , Apoptosis , Masculino , Daño por Reperfusión Miocárdica/inducido químicamente , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
16.
Molecules ; 24(17)2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461933

RESUMEN

In response to cellular stresses, activating transcriptional factor 4 (ATF4) regulates the expression of both stress-relieving genes and apoptosis-inducing genes, eliciting cell fate determination. Since pharmacological activation of ATF4 exerts potent anti-tumor effects, modulators of ATF4 activation may have potential in cancer therapy. We herein attempted to identify small molecules that activate ATF4. A cell-based screening to monitor TRB3 promoter activation was performed using crude drugs used in traditional Japanese Kampo medicine. We found that an extract from Sophora flavescens roots exhibited potent TRB3 promoter activation. The activity-guided fractionation revealed that kurarinone was identified as the active ingredient. Intriguingly, ATF4 activation in response to kurarinone required PKR-like endoplasmic reticulum kinase (PERK). Moreover, kurarinone induced the cyclin-dependent kinase inhibitor p21 as well as cytostasis in cancer cells. Importantly, the cytostatic effect of kurarinone was reduced by pharmacological inhibition of PERK. These results indicate that kurarinone triggers ATF4 activation through PERK and exerts cytostatic effects on cancer cells. Taken together, our results suggest that modulation of the PERK-ATF4 pathway with kurarinone has potential as a cancer treatment.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Proteínas de Ciclo Celular/genética , Flavonoides/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Represoras/genética , Sophora/química , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 4/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Fosforilación , Regiones Promotoras Genéticas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , eIF-2 Quinasa/genética
17.
Dig Dis Sci ; 64(12): 3630-3641, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31280390

RESUMEN

AIM: Renal toxicity of adefovir disoproxil (ADV) and tenofovir disoproxil fumarate (TDF) is a significant concern in chronic hepatitis B (CHB) patients. Early observational clinical data suggested that telbivudine (LdT) might have renoprotective effects. METHODS: In this prospective study, consecutive CHB patients on combined lamivudine (LAM) + ADV/TDF were switched to LdT + ADV/TDF at recruitment and were followed up for 24 months. Estimated glomerular filtration rate (eGFR) was calculated with the modification of diet in renal disease equation. The effects of LdT on cell viability and expression of kidney injury or apoptotic biomarkers were investigated in cultured renal tubular epithelial cell line HK-2. RESULTS: Thirty-one patients (median age 55 years, 90.3% male) were recruited (54.8% TDF: 45.2% ADV). Serum HBV DNA was undetectable at all time points. Median eGFR was 70.2 (IQR 62.6-77.9) and 81.5 (IQR 63.6-99.1) mL/min/1.73 m2 at baseline and 24 months, respectively (p < 0.001). Downstaging of chronic kidney disease was observed in eight (25.8%) patients and was more common in ADV-treated compared to TDF-treated patients (7/8 vs. 1/17, p = 0.011; OR 16, 95% CI 1.643-155.766, p = 0.017). In vitro data showed that adding LdT to ADV or TDF was associated with improved cell viability and lower expression of injury and apoptotic biomarkers compared with ADV or TDF alone. Treatment was prematurely discontinued in four(12.9%) patients due to myalgia. CONCLUSIONS: Clinical and in vitro data suggest that LdT has renoprotective effects in patients on long-term ADV/TDF treatment. LdT may be considered as an adjuvant therapy in this special group of patients with renal impairment (NCT03778567).


Asunto(s)
Adenina/análogos & derivados , Antivirales/uso terapéutico , Tasa de Filtración Glomerular , Hepatitis B Crónica/tratamiento farmacológico , Organofosfonatos/efectos adversos , Insuficiencia Renal Crónica/metabolismo , Telbivudina/uso terapéutico , Tenofovir/efectos adversos , Factor de Transcripción Activador 4/efectos de los fármacos , Factor de Transcripción Activador 4/genética , Adenina/efectos adversos , Adenina/farmacología , Antivirales/farmacología , Apoptosis/efectos de los fármacos , Caspasa 12/efectos de los fármacos , Caspasa 12/genética , Línea Celular , Supervivencia Celular/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Células Epiteliales , Femenino , Proteínas de Choque Térmico/efectos de los fármacos , Proteínas de Choque Térmico/genética , Receptor Celular 1 del Virus de la Hepatitis A/efectos de los fármacos , Receptor Celular 1 del Virus de la Hepatitis A/genética , Hepatitis B Crónica/complicaciones , Humanos , Técnicas In Vitro , Interleucina-18/genética , Túbulos Renales , Lamivudine/farmacología , Lipocalina 2/efectos de los fármacos , Lipocalina 2/genética , Masculino , Persona de Mediana Edad , Organofosfonatos/farmacología , Estudios Prospectivos , Sustancias Protectoras , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/complicaciones , Índice de Severidad de la Enfermedad , Tenofovir/farmacología
18.
Cell Death Dis ; 10(4): 311, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952841

RESUMEN

Ginseng is one of the most commonly used herbs that is believed to have a variety of biological activities, including reducing blood sugar and cholesterol levels, anti-cancer, and anti-diabetes activities. However, little is known about the molecular mechanisms involved. In this study, we showed that protopanaxadiol (PPD), a metabolite of the protopanaxadiol group ginsenosides that are the major pharmacological constituents of ginsengs, significantly altered the expression of genes involved in metabolism, elevated Sestrin2 (Sesn2) expression, activated AMPK, and induced autophagy. Using CRISPR/CAS9-mediated gene editing and shRNA-mediated gene silencing, we demonstrated that Sesn2 is required for PPD-induced AMPK activation and autophagy. Interestingly, we showed that PPD-induced Sesn2 expression is mediated redundantly by the GCN2/ATF4 amino acid-sensing pathway and the PERK/ATF4 endoplasmic reticulum (ER) stress pathway. Our results suggest that ginseng metabolite PPD modulates the metabolism of amino acids and lipids, leading to the activation of the stress-sensing kinases GCN2 and PERK to induce Sesn2 expression, which promotes AMPK activation, autophagy, and metabolic health.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Nucleares/metabolismo , Panax/química , Proteínas Serina-Treonina Quinasas/metabolismo , Sapogeninas/farmacología , eIF-2 Quinasa/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Aminoácidos/metabolismo , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Estrés del Retículo Endoplásmico , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Ginsenósidos/farmacología , Células HCT116 , Células HEK293 , Humanos , Ratones , Proteínas Nucleares/genética , Panax/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , eIF-2 Quinasa/genética
19.
Gastroenterology ; 156(4): 1098-1111, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30452920

RESUMEN

BACKGROUND & AIMS: Activating transcription factor 4 (ATF4) regulates genes involved in the inflammatory response, amino acid metabolism, autophagy, and endoplasmic reticulum stress. We investigated whether its activity is altered in patients with inflammatory bowel diseases (IBDs) and mice with enterocolitis. METHODS: We obtained biopsy samples during endoscopy from inflamed and/or uninflamed regions of the colon from 21 patients with active Crohn's disease (CD), 22 patients with active ulcerative colitis (UC), and 38 control individuals without IBD and of the ileum from 19 patients with active CD and 8 individuals without IBD in China. Mice with disruption of Atf4 specifically in intestinal epithelial cells (Atf4ΔIEC mice) and Atf4-floxed mice (controls) were given dextran sodium sulfate (DSS) to induce colitis. Some mice were given injections of recombinant defensin α1 (DEFA1) and supplementation of l-alanyl-glutamine or glutamine in drinking water. Human and mouse ileal and colon tissues were analyzed by quantitative real-time polymerase chain reaction, immunoblots, and immunohistochemistry. Serum and intestinal epithelial cell (IEC) amino acids were measured by high-performance liquid chromatography-tandem mass spectrometry. Levels of ATF4 were knocked down in IEC-18 cells with small interfering RNAs. Microbiomes were analyzed in ileal feces from mice by using 16S ribosomal DNA sequencing. RESULTS: Levels of ATF4 were significantly decreased in inflamed intestinal mucosa from patients with active CD or active UC compared with those from uninflamed regions or intestinal mucosa from control individuals. ATF4 was also decreased in colonic epithelia from mice with colitis vs mice without colitis. Atf4ΔIEC mice developed spontaneous enterocolitis and colitis of greater severity than control mice after administration of DSS. Atf4ΔIEC mice had decreased serum levels of glutamine and reduced levels of antimicrobial peptides, such as Defa1, Defa4, Defa5, Camp, and Lyz1, in ileal Paneth cells. Atf4ΔIEC mice had alterations in ileal microbiomes compared with control mice; these changes were reversed by administration of glutamine. Injections of DEFA1 reduced the severity of spontaneous enteritis and DSS-induced colitis in Atf4ΔIEC mice. We found that expression of solute carrier family 1 member 5 (SLC1A5), a glutamine transporter, was directly regulated by ATF4 in cell lines. Overexpression of SLC1A5 in IEC-18 or primary IEC cells increased glutamine uptake and expression of antimicrobial peptides. Knockdown of ATF4 in IEC-18 cells increased expression of inflammatory cytokines, whereas overexpression of SLC1A5 in the knockdown cells reduced cytokine expression. Levels of SLC1A5 were decreased in inflamed intestinal mucosa of patients with CD and UC and correlated with levels of ATF4. CONCLUSIONS: Levels of ATF4 are decreased in inflamed intestinal mucosa from patients with active CD or UC. In mice, ATF4 deficiency reduces glutamine uptake by intestinal epithelial cells and expression of antimicrobial peptides by decreasing transcription of Slc1a5. ATF4 might therefore be a target for the treatment of IBD.


Asunto(s)
Factor de Transcripción Activador 4/deficiencia , Péptidos Catiónicos Antimicrobianos/metabolismo , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/metabolismo , Glutamina/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Adolescente , Adulto , Sistema de Transporte de Aminoácidos ASC/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Estudios de Casos y Controles , Línea Celular , Colitis/inducido químicamente , Colitis/metabolismo , Colitis Ulcerosa/sangre , Colitis Ulcerosa/patología , Colon/citología , Colon/metabolismo , Enfermedad de Crohn/sangre , Enfermedad de Crohn/patología , Células Epiteliales , Femenino , Técnicas de Silenciamiento del Gen , Glutamina/sangre , Glutamina/farmacología , Humanos , Íleon/citología , Íleon/metabolismo , Íleon/microbiología , Mucosa Intestinal/metabolismo , Masculino , Ratones , Microbiota/efectos de los fármacos , Persona de Mediana Edad , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Células de Paneth/metabolismo , Adulto Joven
20.
Int J Nanomedicine ; 14: 9995-10007, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31908455

RESUMEN

BACKGROUND: In recent years, selenium nanostructures have been researched due to their antibacterial properties, low toxicity to mammalian cells, and high biological efficacy. However, the clinical implementation of the use of selenium has received mixed results, and there is much work needed to improve the understanding of the biological mechanisms involved in the observed cellular responses. MATERIALS AND METHODS: In this work, an investigation into the mechanistic pathways of selenium nanoparticles (SeNPs) in biological systems was conducted by studying the changes in gene expression of ATF4, Bcl-xL, BAD2, HSP70, and SOD2 in non-cancerous human dermal fibroblasts (HDF) under oxidative stress, nutrient deprivation stress, and no treatment (control) conditions. RESULTS: This study revealed that SeNP incubation led to reduced internal reactive oxygen species (ROS) generation for all conditions tested, thus, providing a protective environment for HDF. At the stress conditions, the expression of ATF4 and Bcl-xL increased for cells treated with SeNP incubation, leading to attenuation of the cells under stress. These results also hint at reductive stress causing a detrimental impact to cell proliferation under routine cell passaging conditions. CONCLUSION: In summary, this study highlights some possible mechanistic pathways implicated in the action of SeNPs that warrant further investigation (specifically, reducing stress conditions for HDF) and continues to support the promise of SeNPs in a wide range of medical applications.


Asunto(s)
Fibroblastos/efectos de los fármacos , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos , Selenio/farmacología , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/genética , Humanos , Estrés Oxidativo/genética , Selenio/química , Piel/citología , Superóxido Dismutasa/genética , Proteína Letal Asociada a bcl/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA